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Abstract

This paper deals with the numerical (finite volume) approximation of reaction-
diffusion systems with relaxation, among which the hyperbolic extension of
the Allen–Cahn equation represents a notable prototype. Appropriate dis-
cretizations are constructed starting from the kinetic interpretation of the
model as a particular case of reactive jump process. Numerical experiments1

are provided for exemplifying the theoretical analysis (previously developed
by the same authors) concerning the stability of traveling waves, and impor-
tant evidence of the validity of those results beyond the formal hypotheses
is numerically established.
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1. Physical motivations and problem statement

The standard approach to heat conduction in a medium is based on the
continuity relation linking for the heat density u with the heat flux v, by
means of the identity

∂tu+ ∂xv = 0. (1)

Such equation can be considered as a localized version of the global balance

d

dt

∫
C

u(t, x) dx+ v(b)− v(a) = 0,

where C = (a, b) is an arbitrarily chosen control interval and dx describes
the length element. Equation (1) has to be coupled with a second equation
relating again density u and flux v.

1.1. Parabolic diffusion modeling and traveling waves

Among others, the most common choice is the Fourier’s law, which is
considered a good description of heat conduction,

v = −µ ∂xu (2)

for some non-negative proportionality parameter µ. The same equation is
also called Fick’s law when considered in biomathematical settings, Ohm’s
law in electromagnetism, Darcy’s law in porous media. In general, the co-
efficient µ may depend on space and time (in case of heterogeneous media)
and also on the density variable itself u (and/or on its derivatives). Here, we
concentrate on the easiest case where µ is a strictly positive constant.

The coupling of (1) with (2) gives raise to the standard parabolic diffusion
equation

∂tu = µ ∂xxu (3)

which can be considered as a reliable description of many diffusive behav-
iors, such as heat conduction. The same equation can be obtained as an
appropriate limit of a brownian random walk.

Adding a reactive term f , which may, at first instance, depends only on
the state variable u, consists in modifying the continuity equation (1) into a
balance law with the form

∂tu+ ∂xv = f(u). (4)
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Then, coupling with the Fourier’s law (2), we end up with the standard scalar
parabolic reaction–diffusion equation

∂tu = µ ∂xxu+ f(u). (5)

Two basic example of nonlinear smooth functions f are usually considered

i. monostable type: the function f is strictly positive in some fixed inter-
val, say (U0, U1) for some U0 < U1, negative in (−∞, U0) ∪ (U1,+∞),
and with simple zeros, i.e. f ′(U1) < 0 < f ′(U0);

ii. bistable type. the function f is strictly positive in some fixed interval
(−∞, U0) ∪ (Uα, U1) for some U0 < Uα < U1, negative in (U0, Uα) ∪
(U1,+∞), and with simple zeros, i.e. f ′(U0), f

′(U1) strictly negative
and f ′(Uα) strictly positive.

The former case, whose prototype is f(u) ∝ u(1 − u), corresponds to a
logistic-type reaction term and it is usually referred to as Fisher–KPP equa-
tion (using the initials of the names Kolmogorov, Petrovskii and Piscounov);
the latter, roughly given by the third order polynomial f(u) ∝ u(u−α)(1−u)
with α ∈ (0, 1), is referred to the presence of an Allee-type effect (see [4]),
and it is called Allen–Cahn equation (sometimes, also named Nagumo and/or
Ginzburg–Landau equation).

In both cases, the equations support existence of traveling wave solutions,
namely functions with the form u(t, x) := φ(ξ) with ξ := x− ct. Hence, the
profile of the wave φ is such that

µφ′′ + c φ′ + f(φ) = 0,

for some speed c ∈ R. Due to the fact that equation (5) is autonomous, the
profile is determined up to a space translation.

In addition, traveling waves are called
i. traveling pulses, if they are homoclinic orbits connecting one equilibrium
with itself, that is

φ0 := lim
ξ→+∞

φ(ξ),

for some non-constant wave profile φ;
ii. traveling fronts (or propagating fronts), if they are heteroclinic orbits
connecting two distinct equilibria, that is

φ± := lim
ξ→+∞

φ(ξ).
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To fix ideas, let us concentrate on the case φ+ stable.
Monotonicity of the front is a necessary condition for stability. In fact,

when dealing with partial differential equations for which a maximum prin-
ciple holds, such as for the scalar parabolic case (5), the first eigenfunction
has one sign. Thus the first order derivative with respect to the variable ξ,
which can be verified is an eigenfunction of the linearized operator at the
wave itself relative to the eigenvalue λ = 0, is the first eigenfunction since it
has one sign. Therefore, when the maximum principle holds, all monotone
waves, in case of existence, are (weakly) stable. Analogously, non-monotone
waves, again in case of existence, are unstable.

In term of existence of traveling waves, there is a significant difference
between the two cases (Fisher–KPP and Allen–Cahn), consequence of the
different nature of stability of the critical points of the associated ODE for the
traveling wave profile. Specifically, in the case of the Fisher–KPP equation,
the heteroclinic orbit is a saddle/node connection; while, in the case of the
Allen–Cahn equation, it is a saddle/saddle connection. This translates into
the fact that, for the Fisher–KPP equation, there exists a (strictly negative)
maximal speed c0 such that traveling wave solutions exists if and only if
c ≤ c0 (remember that we have chosen φ+ stable). On the contrary, for
the Allen–Cahn equation there exists a unique value of the speed c∗ which
corresponds to a traveling profile φ∗.

For the Allen–Cahn equation, an explicit formula for both the profile φ
and the speed c can be found in the specific case of the third order polynomial
case f(u) = κu(u − α)(1 − u). In this case, the equation for the traveling
wave solutions can be rewritten as

µφ′′ + c φ′ + κφ(φ− α)(1− φ) = 0, (6)

and thus, considering the new variable φ′ = −Aφ(1 − φ) with A > 0 to be
determined, since

φ′′ =
dφ′

dφ
φ′ = −A(1− 2φ)φ′

equation (6) reduces to

µA2(1− 2φ) + cA+ κ(φ− α) = 0.

Such relation can be further rewritten as a first order polynomial in φ

(κ− 2µA2)φ+ µA2 + cA− κα = 0.
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In order to satisfy the identity, we need to impose the conditions

A = −
√

κ

2µ
, c = c∗ :=

√
2µκ

(
1

2
− α

)
,

so that the unique traveling front for the Allen–Cahn equation has speed c∗
and profile φ given by the solution to

φ′ = −
√

κ

2µ
φ(1− φ) = −

√
κ

2µ
φ+

√
κ

2µ
φ2,

which has an explicit solution given by

φ(ξ) =
1

1 + e
√

κ
2µ

(ξ−ξ0)
=

1

2
{1− tanh(Cκ,µξ)} , (7)

where Cκ,µ =
√
κ/8µ.

1.2. Extended models

While both the continuity equation (1) and the balance law (4) can be
considered reliable in general contexts, the Fourier law (2) should be regarded
as a single possible choice among many others. Using the same words of
Onsager (cf. [22]), Fourier’s law is only an approximate description of the
process of conduction, neglecting the time needed for acceleration of the heat
flow; for practical purposes the time-lag can be neglected in all cases of heat
conduction that are likely to be studied. Nevertheless, in many applications,
considering extensions of the Fourier’s law is required. The first possible
modification is the so-called Maxwell–Cattaneo law (or Maxwell–Cattaneo–
Vernotte law)

τ∂tv + v = −µ ∂xu, (8)

where τ > 0 is a relaxation parameter describing the time needed by the
the flux v to alignate with the (negative) gradient of the density unknown
u. Different alternative to the Fourier’s law could be considered. Among
others, let us quote here the so-called Guyer–Krumhansl’s law. In the one-
dimensional setting, this consists in adding a further term at the righthand
side, namely

τ∂tv + v = −µ ∂xu+ ν ∂xxv (9)

where ν > 0 is related to the mean free path of (heat) carriers. Both Maxwell–
Cattaneo’s and Guyer–Krumhansl’s law can be considered as a way for incor-
porating into the diffusion modeling some physical terms in the framework of

5



Extended Irreversible Thermodynamics [3]. In such a context, appropriate
modification of the entropy law has to be taken into account for each one of
the corresponding modified flux laws.

Coupling (8) with (1) give raise to the classical telegraph equation

τ ∂ttu+ ∂tu = µ ∂xxu. (10)

The principal part of equation (10) coincides with the one of the wave equa-
tion, and the equation is thus of hyperbolic type. Therefore, for τ sufficiently
small, this new equation amends a number of drawbacks inherent in (3) such
as infinite speed of propagation, ill-posedness of boundary value problems and
lack of inertia. Here, we take into particular consideration the amendment
of the latter drawback.

Similarly, coupling (9) with (1) furnishes the third order equation

τ∂ttu+ ∂tu = (µ+ ν ∂t)∂xxu, (11)

which is usually classified as a pseudo-parabolic regularization of the standard
telegraph equation, that is formally obtained in the singular limit ν → 0+.

The variable v can be eliminated from the coupled system given by the
balance law (4) and the Maxwell–Cattaneo equation (8) by using the so-
called Kac’s trick (see [9, 15]), consisting in differentiating equation (4) with
respect to time t and the relation (8) with respect to space x and merging
them together, giving raise to the one-field equation

τ∂ttu+
(
1− τf ′(u)

)
∂tu− µ ∂xxu = f(u). (12)

Let us stress that the specific form for the hyperbolic reaction-diffusion equa-
tion (12) depends only on the coupling of the balance law (4) with the
Maxwell–Cattaneo’s law (8) and not on the specific dependency of f with
respect to u. In particular, the same form holds for both monostable and
bistable cases.

A similar, but more complicated, equation can be in principle obtained
coupling with the Guyer–Krumhansl’s law, namely

τ∂ttu+
(
1− τf ′(u)

)
∂tu = ∂xx

(
µu− νf(u) + ν ∂tu

)
+ f(u). (13)

which is an additional alternative pseudo-parabolic variation of (5).
In all of the three models above presented, it is possible to introduce a

convenient rescaling of the dependent variables. To start with, let us consider
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the standard reaction-diffusion equation (5). Next, let us introduce a rescaled
variable ũ in the form defined by

ũ =
u− U0

U − U0

.

for some significant value U . A reasonable choice could be U = U1 so that
f(U1) = 0. Plugging into (5), we obtain an equation for ũ

∂tũ = µ ∂xxũ+ f̃(ũ)

where

f̃(ũ) :=
f
(
U0 + (U1 − U0)ũ

)
U1 − U0

,

with the advantage of having f̃(1) = f(U1)/(U1 − U0) = 0.
Similarly, since both Maxwell–Cattaneo (8) and Guyer–Krumhansl rela-

tions (9) are linear in both u and v, considering the same scaling for u and
v

ũ =
u− U0

U − U0

, ṽ :=
v

U − U0

,

gives an analogous reduction to the corresponding one-field equation. As an
example, in the case of Allen–Cahn equation with relaxation, we obtain

τ∂ttũ+
(
1− τ f̃ ′(ũ)

)
∂tũ− µ ∂xxũ = f̃(ũ),

with the same definition of f̃ reported above. In particular, the assumption
f(1) = 0 is not restrictive.

A comprehensive theory of traveling waves for the Allen-Cahn model with
relaxation is presented in [18], and further extension to the case of the Guyer-
Krumhansl variation is in progress.

1.3. Diagonalization and kinetic representation

From now on, we will focus on the case of Allen–Cahn equation with
relaxation, that is the semilinear hyperbolic system

∂tu+ ∂xv = f(u) , ∂tv +
µ

τ
∂xu = −1

τ
v , (14)

for t ∈ R+, x ∈ R, relaxation parameter τ > 0 and viscosity µ > 0 , with the
assumption that f is of bistable type with U0 = 0, Uα ∈ (0, 1) and U1 = 1
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(refer to Section 1). Specifically, we are interested in studying numerically
the dynamics of solutions to (14) for f(u) = κu(u − α)(1 − u), κ > 0 and
α ∈ (0, 1). The corresponding Cauchy problem is determined by the initial
conditions

u(0, x) = u0(x) , v(0, x) = v0(x) , (15)

whereas the initial conditions for (12) should be assigned by deducing them
from (15) through system (14) as

u(0, x) = u0(x) , ∂tu(0, x) = f(u0(x))− v′0(x) .

Setting W = (u, v), together with A(W ) =
(
v, µ

τ
u
)

and S(W ) =
(
f(u),− 1

τ
v
)

in (14), we recognize the following hyperbolic system of balance laws

∂tW + ∂xA(W ) = S(W ) ,

where the Jacobian of the flux A is given by the 2×2 constant coefficients
matrix

A′ =
(

0 1
µ/τ 0

)
,

thus leading to the nonconservative form

∂tW +A′∂xW = S(W ) .

This system can be directly diagonalized for numerical purposes, with eigen-
values λ± = ±

√
µ/τ and diagonalization matrix D, with its inverse D−1,

given by

D =

(
1 1

−
√
µ/τ

√
µ/τ

)
, D−1 =

1

2

(
1 −

√
τ/µ

1
√
τ/µ

)
,

so that D−1A′D = diag (λ−, λ+). Therefore, the diagonal variables Z =
D−1W , corresponding to the Riemann invariants for the homogeneous part
of (14), namely

∂tu+ ∂xv = 0 , ∂tv +
µ

τ
∂xu = 0 ,

they have components

z− =
1

2

(
u−

√
τ

µ
v

)
, z+ =

1

2

(
u+

√
τ

µ
v

)
,
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so that

u = z− + z+ , v =

√
µ

τ
(z+ − z−) . (16)

The source term is transformed into

D−1S(W ) =
1

2

(
f(u) + 1√

τµ
v

f(u)− 1√
τµ
v

)
,

that is

D−1S(DZ) =
1

2

(
f(z− + z+) + 1

τ
(z+ − z−)

f(z− + z+)− 1
τ

(z+ − z−)

)
.

Finally, for % =
√
µ/τ , the diagonal system reads

∂tz− − % ∂xz− =
1

2
f(z− + z+) +

1

2τ
(z+ − z−)

∂tz+ + % ∂xz+ =
1

2
f(z− + z+)− 1

2τ
(z+ − z−)

(17)

meaning that the diagonal variables satisfy the so-called weakly coupled semi-
linear Goldstein–Taylor model of diffusion equations. Such system admits an
important physical interpretation, since it can be interpreted as the reactive
version of the hyperbolic Goldstein–Kac model [15] for the (easiest possi-
ble) correlated random walk. In view of its numerical approximation, this
representation is intrinsically upwind in the sense that z− represents the con-
tribution to the density u of the particles moving to the left with negative
velocity −% , while z+ corresponds to the particles moving to the right with
positive velocity % , according to the uniform jump process with equally dis-
tributed transition probability.

2. Formulation of the numerical method

We perform finite volume schemes because of the possible implemen-
tation for models with low regularity of the solutions, so that an integral
formulation is suitable. Moreover, nonuniform discretizations of the physical
space are specially required, taking into account the typical inhomogeneity
of the dynamics over different regions. This is important as well for compu-
tational issues, when nonuniform time-grids are used for improving the CPU
performance.
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Figure 1: piecewise constant reconstruction on nonuniform mesh/grid (19)

2.1. First order scheme and nonuniform grids

We set up a nonuniform mesh on the one-dimensional space (see Figure 1)
and we denote by Ci=[xi− 1

2
, xi+ 1

2
) the finite volume (cell) centered at point

xi =
1
2
(xi− 1

2
+ xi+ 1

2
), i∈Z , where xi− 1

2
and xi+ 1

2
are the cell’s interfaces and

dxi = length(Ci), therefore the characteristic space-step is given by dx =
supi∈Z dxi . We build a piecewise constant approximation of any (sufficiently
smooth) function by means of its integral cell-averages, namely

wi =
1

dxi

∫
Ci

w(x) dx ≈ w(xi) +O(dx2) , (18)

because of the symmetric integral
∫
Ci

(x− xi) dx = 0 due to the cell-centered
structure of the grid, that converges uniformly to w(x) as dx→ 0 . Moreover,
a straightforward computation leads to the approximation

wi+1 − wi = w′(xi)

(
dxi+1

2
+

dxi
2

)
+O(dx2) , (19)

that is defined over an interfacial interval [xi, xi+1] and, for example, it re-
produces the correct upwind interfacial quadrature for the advection with
negative speed if we observe that

1

dxi

∫
Ci

w′(x) dx =
1

dxi

(
w(xi+ 1

2
)− w(xi− 1

2
)
)
. (20)

In that framework, a semi-discrete finite volume scheme applied to the
system (17) produces a numerical solution in the form of a (discrete valued)
vector whose in-cell values are interpreted as approximations of the cell-
averages, i.e.

ri(t) ≈
1

dxi

∫
Ci

z−(t, x) dx , si(t) ≈
1

dxi

∫
Ci

z+(t, x) dx , (21)
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and which satisfy the upwind three-points scheme

dri
dt

=
%

dxi
(ri+1 − ri) +

1

2
f(ri + si) +

1

2τ
(si − ri)

dsi
dt

= − %

dxi
(si − si−1) +

1

2
f(ri + si)−

1

2τ
(si − ri)

(22)

when considering (20) for the diagonal variables in (17) which are advected
with constant speed. By setting ui = ri + si and vi = % (si − ri) according
to (16), and recalling that % =

√
µ/τ , we obtain through a straightforward

computation a semi-discrete version of (14) that is

dui
dt

= −vi+1 − vi−1
2dxi

+ f(ui) +
1

2
% dxi

ui+1 − 2ui + ui−1

dx2
i

dvi
dt

= −%2ui+1 − ui−1
2dxi

− 1

τ
vi +

1

2
% dxi

vi+1 − 2vi + vi−1

dx2
i

(23)

with initial data corresponding to (15) by means of an approximate condition

ui(0) =
1

dxi

∫
Ci

u0(x) dx , vi(0) =
1

dxi

∫
Ci

v0(x) dx , i ∈ Z .

It is worthwhile noticing that, in case of uniform grids, i.e. dxi = dx , for any
i ∈ Z , a standard Taylor’s expansion from (18)-(19) leads to show that (23)
formally corresponds to

∂tu+ ∂xv = f(u) +
1

2
% dx ∂xxu , ∂tv + %2∂xu = −1

τ
v +

1

2
% dx ∂xxv ,

so that the scheme is consistent in the usual sense of the modified equa-
tion [20], although we expect the appearance of a numerical viscosity with
strength measured through the physical and numerical parameters % and dx .

However, the utilization of unstructured spatial grids is required for prob-
lems incorporating composite geometries, also in view of the recent theoreti-
cal advances on adaptive techniques for mesh refinement in the resolution of
multi-scale complex systems. For the case of a nonuniform mesh, the approxi-
mation (19) seems to reveal a lack of consistency of the numerical scheme (23)
with the underlying continuous equations, as the space-step dxi could be very
different from the length of an interfacial interval

∣∣xi+1−xi
∣∣ = 1

2
dxi+

1
2
dxi+1.

Nevertheless, the issue of an error analysis with optimal rates can be pur-
sued, by virtue of the results concerning the supra-convergence phenomenon
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for numerical approximation of hyperbolic conservation laws. In fact, despite
a deterioration of the pointwise consistency is observed in consequence of the
non-uniformity of the mesh, the formal accuracy is actually maintained as
the global error behaves better than the (local) truncation error would indi-
cate. This property of enhancement of the numerical error has been widely
explored, and the question of (finite volume) upwind schemes for conserva-
tion laws and balance equations is addressed in [1], [16] and [25], with proof
of convergence at optimal rates for smooth solutions.

2.2. Time discretization

We introduce a variable time-step dtn = tn+1− tn, n ∈ N, and we set
dt = supn∈N dtn , therefore we have to consider a CFL-condition [20] on the
ratio dtn

dxi
for the numerical stability. We discretize the time operator in (22)

by means of a mixed explicit-implicit approach, as follows

rn+1
i − rni

dtn
=

%

dxi

(
rn+1
i+1 − rn+1

i

)
+

1

2
f(rni + sni ) +

1

2τ

(
sn+1
i − rn+1

i

)
sn+1
i − sni

dtn
= − %

dxi

(
sn+1
i − sn+1

i−1
)

+
1

2
f(rni + sni )− 1

2τ

(
sn+1
i − rn+1

i

)
Fully implicit schemes have also been tested with no significant advantage
in the quality of the approximation, but with a significant increase of the
computational time.

At this point, an important simplification in terms of the actual imple-
mentation of the above algorithm arises if considering uniform time and space
stepping, i.e. dtn = dt , for any n ∈ N and dxi = dx , for any i ∈ Z . Indeed,
by setting

α = %
dt

dx
, β =

dt

2τ
, fni = f(rni + sni ) ,

the above algorithm can be rewritten in compact form as(
(1 + β)I− αD+ −β I

−β I (1 + β)I + αD−

)(
rn+1

sn+1

)
=

(
rn + dt

2
fn

sn + dt
2

fn

)
(24)

where the matrices I , D− and D+ are given by

I = (δi,j) , D− =
(
δi,j − δi,j+1

)
, D+ =

(
δi+1,j − δi,j

)
,

and δi,j is the standard Kronecker symbol . The block-matrix in (24) is in-
vertible, since its spectrum is contained in the complex half plane

{
λ ∈ C :

12



Rel(λ) ≥ 1
}

as a consequence of the Geršgorin criterion [23].
A direct manipulation of (24) gives

rn+1 =
(
S− α2D−D+

)−1{[
(1 + β)I + αD−

]
rn + β sn

+
dt

2

[
(1 + 2β)I + αD−

]
fn
}

sn+1 =
(
S− α2D+D−

)−1{
β rn +

[
(1 + β)I− αD+

]
sn

+
dt

2

[
(1 + 2β)I− αD+

]
fn
}

(25)

where S is the symmetric matrix

S = (1 + 2β)I + α (1 + β)
(
D− − D+

)
.

Nevertheless, one of the most important features of the models described
in Section 1 is that they could produce strikingly nontrivial patterns. There-
fore, the use of nonuniform meshes is somehow mandatory and hence the
numerical solution often requires very long computational time, for the large
amount of data to be traded in order to accurately capture the details of
physical phenomena. Moreover, especially for applied scientists involved in
setting up realistic experiments, the possibility of running fast comparative
simulations using simple algorithms implemented into affordable processors
is of a primary interest. In this context, parallel computing based on modern
graphics processing units (GPUs) enjoys the advantages of a high perfor-
mance system with relatively low cost, allowing for software development on
general-purpose microprocessors even in personal computers. As a matter
of fact, GPUs are revolutionizing scientific simulation by providing several
orders of magnitude of increased computing capability inside a mass-market
product, making these facilities economically attractive across subsets of in-
dustry domains [10, 26, 21, 14]. Simple approximation schemes like (23) are
often acceptable even for real problems, so that proper numerical modeling
becomes accessible to practitioners from various scientific fields.

2.3. Second order scheme

The basic idea to develop second order schemes is to replace the piece-
wise constant reconstruction (18) by piecewise linear approximations (see
Figure 2), which provide more accurate values at the cell’s interfaces.
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Figure 2: piecewise linear reconstruction on nonuniform mesh

On that account, based on the cell-averages, we associate to (21) some
correct coefficients, for all i∈Z , x∈Ci , which are given by

ri(t, x) = ri(t) + (x− xi) r′i , si(t, x) = si(t) + (x− xi) s′i , (26)

where r′i and s′i indicate the numerical derivatives, which are defined as ap-
propriate interpolations of the discrete increments between neighboring cells,
for example,

r′i = lmtr

{
ri+1 − ri
xi+1 − xi

,
ri − ri−1
xi − xi−1

}
, i ∈ Z . (27)

Because also higher-order reconstructions are, in general, discontinuous at
the cell’s interfaces, possible oscillations are suppressed by applying suitable
slope-limiter techniques (see [11, 13] for instance).

Therefore, second order interpolations are computed from (26) to define
the interfacial values at xi− 1

2
and xi+ 1

2
as follows

r−i (t) = ri(t)−
dxi
2

r′i , r+i (t) = ri(t) +
dxi
2

r′i ,

s−i (t) = si(t)−
dxi
2

s′i , s+i (t) = vi(t) +
dxi
2

s′i ,

which are then substituted inside (22) to obtain more accurate numerical
jumps at the interfaces, namely

dri
dt

=
%

dxi

(
r−i+1 − r+i

)
+

1

2
f(ri + si) +

1

2τ
(si − ri)

dsi
dt

= − %

dxi

(
s−i − s+i−1

)
+

1

2
f(ri + si)−

1

2τ
(si − ri)

(28)
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We notice that, the equation being linear in the principal hyperbolic part,
the second order scheme with flux limiter in [2] is precisely of the type above,
since the flux is trivially given by the conservation variables.

For the sake of simplicity, we have been considering in Section 3 only
the first order discretization in time, but it is easy recovering higher order
accuracy by applying Runge-Kutta methods (refer to [8] for an overall intro-
duction), that appears to be essential for practical computations.

3. Numerical simulations

We start by briefly revising some basics of the numerical results in [18], in
order to assess the reliability of the numerical method presented in Section 2
for determining the behavior of the solutions to reaction-diffusion models
with relaxation introduced in Section 1.

We use the algorithm (25) to analyse the wave speeds c∗ of the traveling
front connecting the stable states 0 and 1. Following [19], we introduce an
average speed of the numerical solution at time tn defined by

cn =
1

dt
1 · (un − un+1) =

1

dt

∑
i

(uni − un+1
i ), (29)

where 1 = (1, . . . , 1) and recalling that un = rn+sn , n ∈ N . We consider the
bistable function f(u) = u(u−α)(1−u) with α ∈ (0, 1), aiming at comparing
the values for the propagation speed c∗ as obtained by means of the shooting
argument in [18] and the ones given by (29).

The solution to the Cauchy problem is selected with an increasing datum
connecting 0 and 1 , and then computing cn at a time t so large that stabi-
lization of the propagation speed for the numerical solution is reached. We
have been testing three choices for the couple (τ, α) for different values of
dt and dx, where the range of variation of τ is chosen so that the condition
τ f ′(u) < 1 is satisfied for all values of the unstable zero α (see Table 1).
Requiring to detect the speed value with an error always less than 5% of
the effective value, we heuristically determine dx = 2−3 and dt = 10−2, that
will be used for subsequent numerical experiments. For such a choice, we
record in Table 2 the results of the first order scheme for various values of α
and τ = 1 or τ = 4 (together with the corresponding relative error) and in
Table 3 those of a second order scheme.
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Table 1: Relative error for the numerical velocity of the Riemann problem with jump at
`/2, ` = 25 (T final time and N number of grid points): A. τ = 1, α = 0.9, c∗ = 0.5646,
T = 40; B. τ = 2, α = 0.6, c∗ = 0.1737, T = 30; C. τ = 4, α = 0.7, c∗ = 0.3682, T = 35.

dx 20 2−1 2−2 2−3 2−4

A 0.1664 0.0787 0.0325 0.0091 0.0018
dt = 10−1 B 0.0383 0.0306 0.0241 0.0198 0.0175

C 0.1527 0.1144 0.0818 0.0581 0.0442
A 0.1751 0.0876 0.0417 0.0186 0.0079

dt = 10−2 B 0.0275 0.0196 0.0128 0.0084 0.0061
C 0.1420 0.1018 0.0684 0.0457 0.0339
A 0.1760 0.0885 0.0427 0.0196 0.0089

dt = 10−3 B 0.0265 0.0184 0.0117 0.0072 0.0049
C 0.1411 0.1006 0.0670 0.0441 0.0321

Table 2: First order in space: final average speed (29) and relative error with respect to
c∗ given in [18] (N = 400, dx = 0.125, dt = 0.01, ` = 25, T = 40)

α = 0.6 α = 0.7 α = 0.8 α = 0.9
τ = 1 0.1580 0.3096 0.4497 0.5751

0.0101 0.0118 0.0145 0.0186

τ = 4 0.2102 0.3533 0.4337 0.4825
0.0396 0.0404 0.0365 0.0118

Table 3: Second order in space: final average speed (29) and relative error with respect to
c∗ given in [18] (N = 400, dx = 0.125, dt = 0.01, ` = 25, T = 40)

α = 0.6 α = 0.7 α = 0.8 α = 0.9
τ = 1 0.1560 0.3052 0.4421 0.5630

0.0025 0.0025 0.0026 0.0029

τ = 4 0.2184 0.3672 0.4485 0.4885
0.0022 0.0025 0.0034 0.0004
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3.1. Riemann problem as a large perturbation

For these applications, we restrict to the first order discretization, since
we are interested in considering initial data with sharp transitions. In such
cases, higher order approximations of the derivatives typically introduce spu-
rious oscillations that, even being transient and possibly cured by employing
suitable slope limiters , they may however lead to catastrophic consequences
because of the bistable nature of the reaction term.

The main achievement is that we are able to show that the actual domain
of attraction of the front is much larger than guaranteed by the nonlinear
stability analysis performed in [18]. Indeed, the analytical results state that
small perturbations to the propagating fronts are dissipated, with an expo-
nential rate. Nevertheless, we expect that the front possesses a larger domain
of attraction (as already known for the parabolic Allen–Cahn equation [5])
and, specifically, that any bounded initial data u0 such that

lim sup
x→−∞

u0(x) < α < lim inf
x→+∞

u0(x) (30)

gives raise to a solution that is asymptotically convergent to some traveling
front connecting u = 0 with u = 1.

To support such conjecture, we perform numerical experiments with

τ = 4 , ` = 25 , dx = 0.125 , dt = 0.01 .

We consider the case α = 1/2 motivated by the fact that the profile of the
traveling front for the hyperbolic Allen–Cahn equation is stationary and it
coincides with the one of the corresponding original parabolic equation, ex-
plicitly given by (7) and normalized by the condition U(0) = 1/2. Numerical
simulations confirm the decay of the solution to the equilibrium profile (see
Figure 3, left). When compared with the standard Allen–Cahn equation, it
appears evident that the dissipation mechanism of the hyperbolic equation
is weaker with respect to the parabolic case (see Figure 3, right).

3.2. Randomly perturbed initial data

The genuine novelty of the numerical simulations illustrated in this sec-
tion consists in suggesting that stability of the traveling waves actually goes
beyond the regime 1 − τf ′(u) positive, that is required in the theoretical
statements proven in [18].

We consider initial data that resemble only very roughly the transition
from 0 to 1. More precisely, we divide the interval (0, `) into three parts of

17



Figure 3: Riemann problem with initial datum χ
(0,`)

in (−`, `), ` = 25. Left: solution
profiles zoomed in the interval (−5, 5) at time t = 1 (dash-dot), t = 5 (dash), t = 15
(continuous), for comparison, solution to the parabolic Allen–Cahn equation at time t = 1
(dot). Right: Decay of the L2 distance to the exact equilibrium solution for the hyperbolic
(continuous) and parabolic (dot) Allen–Cahn equations.

equal length and we choose a random value in each of these sub-intervals
coherently with the requirement (30). We assign u0(x) to be any different
random value in (0, 0.5) for each x ∈ (0, `/3), in (0, 1) for each x ∈ (`/3, 2`/3)
and in (0.5, 1) for each x ∈ (2`/3, `). Such choice can be considered as
reasonable concerning the hypothesis (30), and the results of the computation
are shown in Figure 4.

Figure 4: Random initial datum (�). Solution profiles for the hyperbolic Allen–Cahn
equation with relaxation at time t = 10 (left) and time t = 20 (right) for τ = 1 (continuous
line), τ = 5 (dashed) and τ = 10 (dotted).

The transition is even more robust than what the previous computation
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shows, since initial data that do not satisfy the requirement (30) still exhibits
convergence. As an example, let us consider the case of a randomly chosen
initial datum u0(x) given by any random value in (0, 0.7) for each x ∈ (0, `/3),
in (0, 1) for each x ∈ (`/3, 2`/3) and in (0.3, 1) for each x ∈ (2`/3, `). Also
in such a case, we clearly observe the appearance and formation of a stable
front, as shown in Figure 5.

Figure 5: Random initial datum (�) in (0, `). Solution profiles for the hyperbolic Allen–
Cahn equation with relaxation at times t = 10 (left) and t = 20 (right), for τ = 1
(continuous line), τ = 5 (dashed) and τ = 10 (dotted).

The convergence is manifest also in the case where the stability condition
g(u) := 1− τf ′(u) > 0 fails in some region. At least for the cubic (bistable)
nonlinear reaction term f , such region is typically centered at u = α. In
particular, being u = α an unstable equilibrium, f ′(α) is positive, thus g(α)
is negative when τ is sufficiently large. The values of the function g are
plotted in Figure 6 and Figure 7, respectively, for two different times, namely
t = 10 and t = 20, and different values of τ , namely τ = 1, τ = 5 and τ = 10.
Of course, the function g is asymptotically positive, since 0 and 1 are stable
equilibria, and thus the value of the first order derivative f ′ is negative. The
numerical results show that, for sufficiently large values of τ , some region
corresponding to the center of the wave profile appears where τ > 1/f ′(u)
for some u ∈ (0, 1) , and it contains the value u = α (at least for the cubic
case).

3.3. Pseudo-kinetic scheme for the Guyer-Krumhansl’s law

The diagonalization procedure that has been performed in Section 1 to
deduce a kinetic interpretation of the reaction-diffusion equation with relax-
ation, starting from the Maxwell-Cattaneo law (8), it cannot be straight-
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Figure 6: Profile of the function g(u) := 1−τf ′(u) for time t = 10 (left) and t = 20 (right)
corresponding to the initial datum shown in Figure 4. The legend for the lines is the same
as in the previous figures.

Figure 7: Profile of the function g(u) := 1−τf ′(u) for time t = 10 (left) and t = 20 (right)
corresponding to the initial datum shown in Figure 5. The legend for the lines is the same
as in the previous figures.

forwardly extended to the case of the GuyerKrumhansl law because of the
presence of a higher order (conservative) operator in the model (9). Al-
though such an issue is rigorously pursued in a work in progress, here we
attempt at presenting an hybrid version of the kinetic scheme (23) to adapt
to the present case, thus providing an easy-to-implement algorithm for the
pseudo-parabolic equation (13).

Starting from (23), we consider the following variation,

dvi
dt

= −%2ui+1 − ui−1
2dxi

− 1

τ
vi +

(
ν +

1

2
% dxi

)vi+1 − 2vi + vi−1

dx2
i

, (31)

that enjoys the same consistency properties as the original scheme, since the
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order of magnitude of the physical parameter ν is clearly bigger than that of
the correction by the numerical viscosity 1

2
% dx .

Although it deserves to be rigorously justified and further confirmed by
extensive numerical simulations, this approach is clearly more convenient
than the usual way of putting higher order hyperbolic equations like (12)
and (13) in form of lower order systems for numerical issues, namely

∂tu = w , τ∂tw +
(
1− τf ′(u)

)
w − µ ∂xxu+ ν ∂xxw = f(u) + ν ∂xxf(u) ,

for which a direct semi-discrete approximation provides dui
dt

= wi , together
with

τ
dwi

dt
= f(ui)−

(
1− τf ′(ui)

)
wi + µ

ui+1 − 2 ui + ui−1

dx2 ,

− ν wi+1 − 2 wi + wi−1

dx2 + ν
f(u)i+1 − 2 f(u)i + f(u)i−1

dx2 .

(32)

Another way of dealing with higher order one-field equations can be the
following: we rewrite (13) as

∂t
(
τ∂tu+ u− τf(u)− ν ∂xxu

)
− µ ∂xxu = f(u)− ν ∂xxf(u) ,

for which an alternative representation as second order system is given by

τ∂tu+ u− τf(u)− ν ∂xxu = w , ∂tw − µ ∂xxu = f(u)− ν ∂xxf(u) ,

thus generalizing (5), with corresponding semi-discrete approximation

τ
dui
dt

= wi − ui + τf(ui) + ν
ui+1 − 2 ui + ui−1

dx2 ,

dwi

dt
= f(ui) + µ

ui+1 − 2 ui + ui−1

dx2 − ν
f(u)i+1 − 2 f(u)i + f(u)i−1

dx2 .

(33)

Both schemes (32) and (33) formally converge to the standard discretiza-
tion of (5) for τ → 0+ and ν → 0 , but they exhibit the well-known criticality
of defining the correct reconstruction of the external field f(u) on the (pos-
sibly nonuniform) spatial mesh. Therefore, the pseudo-kinetic scheme (31)
maintains a wider interest in view of its underlying physical interpretation.

We conclude by remarking that such peculiar feature is not shared by
other more general forms of relaxation system, for instance

τ∂ttu+ g(t, x, u ; τ) ∂tu− µ ∂xxu = f(u) , (34)
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that is considered in [6], for example. Unless specific expression for the
external field g are taken into account for physical reasons, the only approach
to the numerical approximation of (34) seems to be the transcription into a
first order system by putting

∂tu = w , τ∂tw + g(t, x, u ; τ)w − µ ∂xxu = f(u) .

On the other hand, under the hypothesis that g does not depend explicitly
on the independent variables, one can consider

g(u ; τ) ∂tu = ∂t
(
g(u ; τ)u

)
− ∂ug(u ; τ)u ∂tu

and then equation (34) reads

∂t
(
τ ∂tu+ g(u ; τ)u

)
− ∂ug(u ; τ)u ∂tu− µ ∂xxu = f(u) ,

so that we can define

τ∂tu+ g(u ; τ)u = w , ∂tw − ∂ug(u ; τ)u ∂tu− µ ∂xxu = f(u) ,

with the second equation rewritten like

∂tw −
1

τ
∂ug(u ; τ)u (w − g(u ; τ)u)− µ ∂xxu = f(u)

that is even different from all the previous versions, thus revealing the great
advantage of a physical justification for the models at hands, as already
suggested in Section 1.
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