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Physical motivations and problem statement

The standard approach to heat conduction in a medium is based on the continuity relation linking for the heat density u with the heat flux v, by means of the identity

∂ t u + ∂ x v = 0. (1) 
Such equation can be considered as a localized version of the global balance

d dt C u(t, x) dx + v(b) -v(a) = 0,
where C = (a, b) is an arbitrarily chosen control interval and dx describes the length element. Equation [START_REF] Bouche | Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation[END_REF] has to be coupled with a second equation relating again density u and flux v.

1.1. Parabolic diffusion modeling and traveling waves Among others, the most common choice is the Fourier's law, which is considered a good description of heat conduction,

v = -µ ∂ x u (2) 
for some non-negative proportionality parameter µ. The same equation is also called Fick's law when considered in biomathematical settings, Ohm's law in electromagnetism, Darcy's law in porous media. In general, the coefficient µ may depend on space and time (in case of heterogeneous media) and also on the density variable itself u (and/or on its derivatives). Here, we concentrate on the easiest case where µ is a strictly positive constant. The coupling of (1) with [START_REF] Bouin | Hyperbolic traveling waves driven by growth[END_REF] gives raise to the standard parabolic diffusion equation

∂ t u = µ ∂ xx u (3) 
which can be considered as a reliable description of many diffusive behaviors, such as heat conduction. The same equation can be obtained as an appropriate limit of a brownian random walk. Adding a reactive term f , which may, at first instance, depends only on the state variable u, consists in modifying the continuity equation (1) into a balance law with the form

∂ t u + ∂ x v = f (u). (4) 
Then, coupling with the Fourier's law [START_REF] Bouin | Hyperbolic traveling waves driven by growth[END_REF], we end up with the standard scalar parabolic reaction-diffusion equation

∂ t u = µ ∂ xx u + f (u). (5) 
Two basic example of nonlinear smooth functions f are usually considered i. monostable type: the function f is strictly positive in some fixed interval, say (U 0 , U 1 ) for some U 0 < U 1 , negative in (-∞, U 0 ) ∪ (U 1 , +∞), and with simple zeros, i.e. f (U 1 ) < 0 < f (U 0 );

ii. bistable type. the function f is strictly positive in some fixed interval (-∞, U 0 ) ∪ (U α , U 1 ) for some U 0 < U α < U 1 , negative in (U 0 , U α ) ∪ (U 1 , +∞), and with simple zeros, i.e. f (U 0 ), f (U 1 ) strictly negative and f (U α ) strictly positive.

The former case, whose prototype is f (u) ∝ u(1 -u), corresponds to a logistic-type reaction term and it is usually referred to as Fisher-KPP equation (using the initials of the names Kolmogorov, Petrovskii and Piscounov); the latter, roughly given by the third order polynomial f (u) ∝ u(u-α)(1-u) with α ∈ (0, 1), is referred to the presence of an Allee-type effect (see [START_REF] Courchamp | Allee effects in ecology and conservation[END_REF]), and it is called Allen-Cahn equation (sometimes, also named Nagumo and/or Ginzburg-Landau equation).

In both cases, the equations support existence of traveling wave solutions, namely functions with the form u(t, x) := φ(ξ) with ξ := x -ct. Hence, the profile of the wave φ is such that

µ φ + c φ + f (φ) = 0,
for some speed c ∈ R. Due to the fact that equation ( 5) is autonomous, the profile is determined up to a space translation.

In addition, traveling waves are called i. traveling pulses, if they are homoclinic orbits connecting one equilibrium with itself, that is

φ 0 := lim ξ→+∞ φ(ξ),
for some non-constant wave profile φ;

ii. traveling fronts (or propagating fronts), if they are heteroclinic orbits connecting two distinct equilibria, that is

φ ± := lim ξ→+∞ φ(ξ).
To fix ideas, let us concentrate on the case φ + stable. Monotonicity of the front is a necessary condition for stability. In fact, when dealing with partial differential equations for which a maximum principle holds, such as for the scalar parabolic case [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF], the first eigenfunction has one sign. Thus the first order derivative with respect to the variable ξ, which can be verified is an eigenfunction of the linearized operator at the wave itself relative to the eigenvalue λ = 0, is the first eigenfunction since it has one sign. Therefore, when the maximum principle holds, all monotone waves, in case of existence, are (weakly) stable. Analogously, non-monotone waves, again in case of existence, are unstable.

In term of existence of traveling waves, there is a significant difference between the two cases (Fisher-KPP and Allen-Cahn), consequence of the different nature of stability of the critical points of the associated ODE for the traveling wave profile. Specifically, in the case of the Fisher-KPP equation, the heteroclinic orbit is a saddle/node connection; while, in the case of the Allen-Cahn equation, it is a saddle/saddle connection. This translates into the fact that, for the Fisher-KPP equation, there exists a (strictly negative) maximal speed c 0 such that traveling wave solutions exists if and only if c ≤ c 0 (remember that we have chosen φ + stable). On the contrary, for the Allen-Cahn equation there exists a unique value of the speed c * which corresponds to a traveling profile φ * .

For the Allen-Cahn equation, an explicit formula for both the profile φ and the speed c can be found in the specific case of the third order polynomial case f (u) = κ u(u -α)(1 -u). In this case, the equation for the traveling wave solutions can be rewritten as

µ φ + c φ + κ φ(φ -α)(1 -φ) = 0, (6) 
and thus, considering the new variable φ = -Aφ(1 -φ) with A > 0 to be determined, since

φ = dφ dφ φ = -A(1 -2φ)φ equation (6) reduces to µ A 2 (1 -2φ) + c A + κ(φ -α) = 0.
Such relation can be further rewritten as a first order polynomial in φ

(κ -2µA 2 )φ + µA 2 + cA -κα = 0.
In order to satisfy the identity, we need to impose the conditions

A = - κ 2µ , c = c * := 2µκ 1 2 -α ,
so that the unique traveling front for the Allen-Cahn equation has speed c * and profile φ given by the solution to

φ = - κ 2µ φ(1 -φ) = - κ 2µ φ + κ 2µ φ 2 ,
which has an explicit solution given by

φ(ξ) = 1 1 + e √ κ 2µ (ξ-ξ 0 ) = 1 2 {1 -tanh(C κ,µ ξ)} , (7) 
where C κ,µ = κ/8µ.

Extended models

While both the continuity equation ( 1) and the balance law (4) can be considered reliable in general contexts, the Fourier law (2) should be regarded as a single possible choice among many others. Using the same words of Onsager (cf. [START_REF] Onsager | Reciprocal relations in irreversible processes I[END_REF]), Fourier's law is only an approximate description of the process of conduction, neglecting the time needed for acceleration of the heat flow; for practical purposes the time-lag can be neglected in all cases of heat conduction that are likely to be studied. Nevertheless, in many applications, considering extensions of the Fourier's law is required. The first possible modification is the so-called Maxwell-Cattaneo law (or Maxwell-Cattaneo-Vernotte law)

τ ∂ t v + v = -µ ∂ x u, (8) 
where τ > 0 is a relaxation parameter describing the time needed by the the flux v to alignate with the (negative) gradient of the density unknown u. Different alternative to the Fourier's law could be considered. Among others, let us quote here the so-called Guyer-Krumhansl's law. In the onedimensional setting, this consists in adding a further term at the righthand side, namely

τ ∂ t v + v = -µ ∂ x u + ν ∂ xx v (9) 
where ν > 0 is related to the mean free path of (heat) carriers. Both Maxwell-Cattaneo's and Guyer-Krumhansl's law can be considered as a way for incorporating into the diffusion modeling some physical terms in the framework of Extended Irreversible Thermodynamics [START_REF] Cimmelli | Entropy principle and recent results in non-equilibrium theories[END_REF]. In such a context, appropriate modification of the entropy law has to be taken into account for each one of the corresponding modified flux laws.

Coupling [START_REF] Gustafsson | High order difference methods for time dependent PDEs[END_REF] with [START_REF] Bouche | Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation[END_REF] give raise to the classical telegraph equation

τ ∂ tt u + ∂ t u = µ ∂ xx u. (10) 
The principal part of equation ( 10) coincides with the one of the wave equation, and the equation is thus of hyperbolic type. Therefore, for τ sufficiently small, this new equation amends a number of drawbacks inherent in (3) such as infinite speed of propagation, ill-posedness of boundary value problems and lack of inertia. Here, we take into particular consideration the amendment of the latter drawback. Similarly, coupling ( 9) with (1) furnishes the third order equation

τ ∂ tt u + ∂ t u = (µ + ν ∂ t )∂ xx u, (11) 
which is usually classified as a pseudo-parabolic regularization of the standard telegraph equation, that is formally obtained in the singular limit ν → 0 + . The variable v can be eliminated from the coupled system given by the balance law (4) and the Maxwell-Cattaneo equation ( 8) by using the socalled Kac's trick (see [START_REF] Hadeler | Dynamical systems of population dynamics[END_REF][START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF]), consisting in differentiating equation ( 4) with respect to time t and the relation [START_REF] Gustafsson | High order difference methods for time dependent PDEs[END_REF] with respect to space x and merging them together, giving raise to the one-field equation

τ ∂ tt u + 1 -τ f (u) ∂ t u -µ ∂ xx u = f (u). ( 12 
)
Let us stress that the specific form for the hyperbolic reaction-diffusion equation [START_REF] Hillen | Invariance principles for hyperbolic random walk systems[END_REF] depends only on the coupling of the balance law (4) with the Maxwell-Cattaneo's law [START_REF] Gustafsson | High order difference methods for time dependent PDEs[END_REF] and not on the specific dependency of f with respect to u. In particular, the same form holds for both monostable and bistable cases.

A similar, but more complicated, equation can be in principle obtained coupling with the Guyer-Krumhansl's law, namely

τ ∂ tt u + 1 -τ f (u) ∂ t u = ∂ xx µ u -νf (u) + ν ∂ t u + f (u). ( 13 
)
which is an additional alternative pseudo-parabolic variation of [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF]. In all of the three models above presented, it is possible to introduce a convenient rescaling of the dependent variables. To start with, let us consider the standard reaction-diffusion equation [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF]. Next, let us introduce a rescaled variable ũ in the form defined by

ũ = u -U 0 U -U 0 .
for some significant value U . A reasonable choice could be U = U 1 so that f (U 1 ) = 0. Plugging into (5), we obtain an equation for ũ

∂ t ũ = µ ∂ xx ũ + f (ũ) where f (ũ) := f U 0 + (U 1 -U 0 )ũ U 1 -U 0 , with the advantage of having f (1) = f (U 1 )/(U 1 -U 0 ) = 0.
Similarly, since both Maxwell-Cattaneo ( 8) and Guyer-Krumhansl relations [START_REF] Hadeler | Dynamical systems of population dynamics[END_REF] are linear in both u and v, considering the same scaling for u and

v ũ = u -U 0 U -U 0 , ṽ := v U -U 0 ,
gives an analogous reduction to the corresponding one-field equation. As an example, in the case of Allen-Cahn equation with relaxation, we obtain

τ ∂ tt ũ + 1 -τ f (ũ) ∂ t ũ -µ ∂ xx ũ = f (ũ),
with the same definition of f reported above. In particular, the assumption f (1) = 0 is not restrictive. A comprehensive theory of traveling waves for the Allen-Cahn model with relaxation is presented in [START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF], and further extension to the case of the Guyer-Krumhansl variation is in progress.

Diagonalization and kinetic representation

From now on, we will focus on the case of Allen-Cahn equation with relaxation, that is the semilinear hyperbolic system

∂ t u + ∂ x v = f (u) , ∂ t v + µ τ ∂ x u = - 1 τ v , (14) 
for t ∈ R + , x ∈ R, relaxation parameter τ > 0 and viscosity µ > 0 , with the assumption that f is of bistable type with U 0 = 0, U α ∈ (0, 1) and U 1 = 1 (refer to Section 1). Specifically, we are interested in studying numerically the dynamics of solutions to [START_REF] Hwu | GPU computing gems[END_REF] for f (u) = κ u(u -α)(1 -u), κ > 0 and α ∈ (0, 1). The corresponding Cauchy problem is determined by the initial conditions

u(0, x) = u 0 (x) , v(0, x) = v 0 (x) , (15) 
whereas the initial conditions for ( 12) should be assigned by deducing them from (15) through system [START_REF] Hwu | GPU computing gems[END_REF] as 14), we recognize the following hyperbolic system of balance laws

u(0, x) = u 0 (x) , ∂ t u(0, x) = f (u 0 (x)) -v 0 (x) . Setting W = (u, v), together with A(W ) = v, µ τ u and S(W ) = f (u), -1 τ v in (
∂ t W + ∂ x A(W ) = S(W ) ,
where the Jacobian of the flux A is given by the 2×2 constant coefficients matrix

A = 0 1 µ/τ 0 ,
thus leading to the nonconservative form

∂ t W + A ∂ x W = S(W ) .
This system can be directly diagonalized for numerical purposes, with eigenvalues λ ± = ± µ/τ and diagonalization matrix D, with its inverse D -1 , given by

D = 1 1 -µ/τ µ/τ , D -1 = 1 2 1 -τ /µ 1 τ /µ , so that D -1 A D = diag (λ -, λ + ).
Therefore, the diagonal variables Z = D -1 W , corresponding to the Riemann invariants for the homogeneous part of ( 14), namely

∂ t u + ∂ x v = 0 , ∂ t v + µ τ ∂ x u = 0 , they have components z -= 1 2 u - τ µ v , z + = 1 2 u + τ µ v , so that u = z -+ z + , v = µ τ (z + -z -) . ( 16 
)
The source term is transformed into

D -1 S(W ) = 1 2 f (u) + 1 √ τ µ v f (u) -1 √ τ µ v , that is D -1 S(DZ) = 1 2 f (z -+ z + ) + 1 τ (z + -z -) f (z -+ z + ) -1 τ (z + -z -)
.

Finally, for = µ/τ , the diagonal system reads

     ∂ t z --∂ x z -= 1 2 f (z -+ z + ) + 1 2τ (z + -z -) ∂ t z + + ∂ x z + = 1 2 f (z -+ z + ) - 1 2τ (z + -z -) (17) 
meaning that the diagonal variables satisfy the so-called weakly coupled semilinear Goldstein-Taylor model of diffusion equations. Such system admits an important physical interpretation, since it can be interpreted as the reactive version of the hyperbolic Goldstein-Kac model [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF] for the (easiest possible) correlated random walk. In view of its numerical approximation, this representation is intrinsically upwind in the sense that z -represents the contribution to the density u of the particles moving to the left with negative velocity -, while z + corresponds to the particles moving to the right with positive velocity , according to the uniform jump process with equally distributed transition probability.

Formulation of the numerical method

We perform finite volume schemes because of the possible implementation for models with low regularity of the solutions, so that an integral formulation is suitable. Moreover, nonuniform discretizations of the physical space are specially required, taking into account the typical inhomogeneity of the dynamics over different regions. This is important as well for computational issues, when nonuniform time-grids are used for improving the CPU performance.
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Figure 1: piecewise constant reconstruction on nonuniform mesh/grid (19)

First order scheme and nonuniform grids

We set up a nonuniform mesh on the one-dimensional space (see Figure 1) and we denote by

C i = [x i-1 2 , x i+ 1 2
) the finite volume (cell) centered at point

x i = 1 2 (x i-1 2 + x i+ 1 2
), i ∈ Z , where x i-1 2 and x i+ 1 2 are the cell's interfaces and dx i = length(C i ), therefore the characteristic space-step is given by dx = sup i∈Z dx i . We build a piecewise constant approximation of any (sufficiently smooth) function by means of its integral cell-averages, namely

w i = 1 dx i C i w(x) dx ≈ w(x i ) + O(dx 2 ) , (18) 
because of the symmetric integral C i (x -x i ) dx = 0 due to the cell-centered structure of the grid, that converges uniformly to w(x) as dx → 0 . Moreover, a straightforward computation leads to the approximation

w i+1 -w i = w (x i ) dx i+1 2 + dx i 2 + O(dx 2 ) , (19) 
that is defined over an interfacial interval [x i , x i+1 ] and, for example, it reproduces the correct upwind interfacial quadrature for the advection with negative speed if we observe that

1 dx i C i w (x) dx = 1 dx i w(x i+ 1 2 ) -w(x i-1 2 ) . (20) 
In that framework, a semi-discrete finite volume scheme applied to the system (17) produces a numerical solution in the form of a (discrete valued) vector whose in-cell values are interpreted as approximations of the cellaverages, i.e.

r i (t) ≈ 1 dx i C i z -(t, x) dx , s i (t) ≈ 1 dx i C i z + (t, x) dx , (21) 
and which satisfy the upwind three-points scheme

dr i dt = dx i (r i+1 -r i ) + 1 2 f (r i + s i ) + 1 2τ (s i -r i ) ds i dt = - dx i (s i -s i-1 ) + 1 2 f (r i + s i ) - 1 2τ (s i -r i ) (22) 
when considering [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] for the diagonal variables in [START_REF] Kirk | Programming massively parallel processors: a hands-on approach[END_REF] which are advected with constant speed. By setting u i = r i + s i and v i = (s i -r i ) according to [START_REF] Th | Three-points interfacial quadrature for geometrical source terms on nonuniform grids: application to finite volume schemes for parameter-dependent differential equations[END_REF], and recalling that = µ/τ , we obtain through a straightforward computation a semi-discrete version of ( 14) that is

du i dt = - v i+1 -v i-1 2dx i + f (u i ) + 1 2 dx i u i+1 -2u i + u i-1 dx 2 i dv i dt = -2 u i+1 -u i-1 2dx i - 1 τ v i + 1 2 dx i v i+1 -2v i + v i-1 dx 2 i ( 23 
)
with initial data corresponding to [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF] by means of an approximate condition

u i (0) = 1 dx i C i u 0 (x) dx , v i (0) = 1 dx i C i v 0 (x) dx , i ∈ Z .
It is worthwhile noticing that, in case of uniform grids, i.e. dx i = dx , for any i ∈ Z , a standard Taylor's expansion from ( 18)-( 19) leads to show that [START_REF] Quarteroni | Numerical mathematics (second edition)[END_REF] formally corresponds to

∂ t u + ∂ x v = f (u) + 1 2 dx ∂ xx u , ∂ t v + 2 ∂ x u = - 1 τ v + 1 2 dx ∂ xx v ,
so that the scheme is consistent in the usual sense of the modified equation [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF], although we expect the appearance of a numerical viscosity with strength measured through the physical and numerical parameters and dx . However, the utilization of unstructured spatial grids is required for problems incorporating composite geometries, also in view of the recent theoretical advances on adaptive techniques for mesh refinement in the resolution of multi-scale complex systems. For the case of a nonuniform mesh, the approximation [START_REF] Leveque | A study of numerical methods for hyperbolic conservation laws with stiff source terms[END_REF] seems to reveal a lack of consistency of the numerical scheme [START_REF] Quarteroni | Numerical mathematics (second edition)[END_REF] with the underlying continuous equations, as the space-step dx i could be very different from the length of an interfacial interval x i+1 -x i = 1 2 dx i + 1 2 dx i+1 . Nevertheless, the issue of an error analysis with optimal rates can be pursued, by virtue of the results concerning the supra-convergence phenomenon for numerical approximation of hyperbolic conservation laws. In fact, despite a deterioration of the pointwise consistency is observed in consequence of the non-uniformity of the mesh, the formal accuracy is actually maintained as the global error behaves better than the (local) truncation error would indicate. This property of enhancement of the numerical error has been widely explored, and the question of (finite volume) upwind schemes for conservation laws and balance equations is addressed in [START_REF] Bouche | Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation[END_REF], [START_REF] Th | Three-points interfacial quadrature for geometrical source terms on nonuniform grids: application to finite volume schemes for parameter-dependent differential equations[END_REF] and [START_REF] Simeoni | Remarks on the consistency of upwind source at interface schemes on nonuniform grids[END_REF], with proof of convergence at optimal rates for smooth solutions.

Time discretization

We introduce a variable time-step dt n = t n+1 -t n , n ∈ N, and we set dt = sup n∈N dt n , therefore we have to consider a CFL-condition [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] on the ratio dtn dx i for the numerical stability. We discretize the time operator in ( 22) by means of a mixed explicit-implicit approach, as follows

r n+1 i -r n i dt n = dx i r n+1 i+1 -r n+1 i + 1 2 f (r n i + s n i ) + 1 2τ s n+1 i -r n+1 i s n+1 i -s n i dt n = - dx i s n+1 i -s n+1 i-1 + 1 2 f (r n i + s n i ) - 1 2τ s n+1 i -r n+1 i
Fully implicit schemes have also been tested with no significant advantage in the quality of the approximation, but with a significant increase of the computational time. At this point, an important simplification in terms of the actual implementation of the above algorithm arises if considering uniform time and space stepping, i.e. dt n = dt , for any n ∈ N and dx i = dx , for any i ∈ Z . Indeed, by setting

α = dt dx , β = dt 2τ , f n i = f (r n i + s n i )
, the above algorithm can be rewritten in compact form as

(1 + β)I -α D + -β I -β I (1 + β)I + α D - r n+1 s n+1 = r n + dt 2 f n s n + dt 2 f n (24) 
where the matrices I , D -and D + are given by

I = (δ i,j ) , D -= δ i,j -δ i,j+1 , D + = δ i+1,j -δ i,j ,
and δ i,j is the standard Kronecker symbol . The block-matrix in ( 24) is invertible, since its spectrum is contained in the complex half plane λ ∈ C : Rel(λ) ≥ 1 as a consequence of the Geršgorin criterion [START_REF] Quarteroni | Numerical mathematics (second edition)[END_REF].

A direct manipulation of [START_REF] Sanderson | A framework for exploring numerical of advection-reaction-diffusion equations using a GPU-based approach[END_REF] gives

r n+1 = S -α 2 D -D + -1 (1 + β)I + α D -r n + β s n + dt 2 (1 + 2β)I + α D -f n s n+1 = S -α 2 D + D - -1 β r n + (1 + β)I -α D + s n + dt 2 (1 + 2β)I -α D + f n ( 25 
)
where S is the symmetric matrix

S = (1 + 2β)I + α (1 + β) D --D + .
Nevertheless, one of the most important features of the models described in Section 1 is that they could produce strikingly nontrivial patterns. Therefore, the use of nonuniform meshes is somehow mandatory and hence the numerical solution often requires very long computational time, for the large amount of data to be traded in order to accurately capture the details of physical phenomena. Moreover, especially for applied scientists involved in setting up realistic experiments, the possibility of running fast comparative simulations using simple algorithms implemented into affordable processors is of a primary interest. In this context, parallel computing based on modern graphics processing units (GPUs) enjoys the advantages of a high performance system with relatively low cost, allowing for software development on general-purpose microprocessors even in personal computers. As a matter of fact, GPUs are revolutionizing scientific simulation by providing several orders of magnitude of increased computing capability inside a mass-market product, making these facilities economically attractive across subsets of industry domains [START_REF] Hagen | How to solve systems of conservation laws numerically using the graphics processor as a high-performance computational engine[END_REF][START_REF] Tomov | Dense linear algebra solvers for multicore with GPU accelerators[END_REF][START_REF] Molná | Simulation of reactiondiffusion processes in three dimensions using CUDA[END_REF][START_REF] Hwu | GPU computing gems[END_REF]. Simple approximation schemes like [START_REF] Quarteroni | Numerical mathematics (second edition)[END_REF] are often acceptable even for real problems, so that proper numerical modeling becomes accessible to practitioners from various scientific fields.

Second order scheme

The basic idea to develop second order schemes is to replace the piecewise constant reconstruction [START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF] by piecewise linear approximations (see Figure 2), which provide more accurate values at the cell's interfaces. On that account, based on the cell-averages, we associate to (21) some correct coefficients, for all i ∈ Z , x ∈ C i , which are given by

s x i-1 x i-1 2 s x i x i+ 1 2 s x i+1 r w i-1 r w i r w i+1 ¨¨¨¨¨¨¨ 2 2 2 2 2 2 2 2 2 2 2 w - i w + i w + i-1 w - i+1
r i (t, x) = r i (t) + (x -x i ) r i , s i (t, x) = s i (t) + (x -x i ) s i , (26) 
where r i and s i indicate the numerical derivatives, which are defined as appropriate interpolations of the discrete increments between neighboring cells, for example,

r i = lmtr r i+1 -r i x i+1 -x i , r i -r i-1 x i -x i-1 , i ∈ Z . ( 27 
)
Because also higher-order reconstructions are, in general, discontinuous at the cell's interfaces, possible oscillations are suppressed by applying suitable slope-limiter techniques (see [START_REF] Harten | Uniformly high-order accurate nonoscillatory schemes[END_REF][START_REF] Hubbard | Multidimensional slope limiters for MUSCL-type volume schemes on unstructured grids[END_REF] for instance). Therefore, second order interpolations are computed from [START_REF] Tomov | Dense linear algebra solvers for multicore with GPU accelerators[END_REF] to define the interfacial values at x i-1 2 and x i+ 1 2 as follows

r - i (t) = r i (t) - dx i 2 r i , r + i (t) = r i (t) + dx i 2 r i , s - i (t) = s i (t) - dx i 2 s i , s + i (t) = v i (t) + dx i 2 s i ,
which are then substituted inside ( 22) to obtain more accurate numerical jumps at the interfaces, namely

dr i dt = dx i r - i+1 -r + i + 1 2 f (r i + s i ) + 1 2τ (s i -r i ) ds i dt = - dx i s - i -s + i-1 + 1 2 f (r i + s i ) - 1 2τ (s i -r i ) (28) 
We notice that, the equation being linear in the principal hyperbolic part, the second order scheme with flux limiter in [START_REF] Bouin | Hyperbolic traveling waves driven by growth[END_REF] is precisely of the type above, since the flux is trivially given by the conservation variables.

For the sake of simplicity, we have been considering in Section 3 only the first order discretization in time, but it is easy recovering higher order accuracy by applying Runge-Kutta methods (refer to [START_REF] Gustafsson | High order difference methods for time dependent PDEs[END_REF] for an overall introduction), that appears to be essential for practical computations.

Numerical simulations

We start by briefly revising some basics of the numerical results in [START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF], in order to assess the reliability of the numerical method presented in Section 2 for determining the behavior of the solutions to reaction-diffusion models with relaxation introduced in Section 1.

We use the algorithm [START_REF] Simeoni | Remarks on the consistency of upwind source at interface schemes on nonuniform grids[END_REF] to analyse the wave speeds c * of the traveling front connecting the stable states 0 and 1. Following [START_REF] Leveque | A study of numerical methods for hyperbolic conservation laws with stiff source terms[END_REF], we introduce an average speed of the numerical solution at time t n defined by

c n = 1 dt 1 • (u n -u n+1 ) = 1 dt i (u n i -u n+1 i ), (29) 
where 1 = (1, . . . , 1) and recalling that u n = r n + s n , n ∈ N . We consider the bistable function f (u) = u(u-α)(1-u) with α ∈ (0, 1), aiming at comparing the values for the propagation speed c * as obtained by means of the shooting argument in [START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF] and the ones given by (29). The solution to the Cauchy problem is selected with an increasing datum connecting 0 and 1 , and then computing c n at a time t so large that stabilization of the propagation speed for the numerical solution is reached. We have been testing three choices for the couple (τ, α) for different values of dt and dx, where the range of variation of τ is chosen so that the condition τ f (u) < 1 is satisfied for all values of the unstable zero α (see Table 1). Requiring to detect the speed value with an error always less than 5% of the effective value, we heuristically determine dx = 2 -3 and dt = 10 -2 , that will be used for subsequent numerical experiments. For such a choice, we record in Table 2 the results of the first order scheme for various values of α and τ = 1 or τ = 4 (together with the corresponding relative error) and in Table 3 those of a second order scheme. 

Riemann problem as a large perturbation

For these applications, we restrict to the first order discretization, since we are interested in considering initial data with sharp transitions. In such cases, higher order approximations of the derivatives typically introduce spurious oscillations that, even being transient and possibly cured by employing suitable slope limiters , they may however lead to catastrophic consequences because of the bistable nature of the reaction term.

The main achievement is that we are able to show that the actual domain of attraction of the front is much larger than guaranteed by the nonlinear stability analysis performed in [START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF]. Indeed, the analytical results state that small perturbations to the propagating fronts are dissipated, with an exponential rate. Nevertheless, we expect that the front possesses a larger domain of attraction (as already known for the parabolic Allen-Cahn equation [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF]) and, specifically, that any bounded initial data u 0 such that lim sup

x→-∞ u 0 (x) < α < lim inf x→+∞ u 0 (x) (30) 
gives raise to a solution that is asymptotically convergent to some traveling front connecting u = 0 with u = 1.

To support such conjecture, we perform numerical experiments with τ = 4 , = 25 , dx = 0.125 , dt = 0.01 .

We consider the case α = 1/2 motivated by the fact that the profile of the traveling front for the hyperbolic Allen-Cahn equation is stationary and it coincides with the one of the corresponding original parabolic equation, explicitly given by [START_REF] Gottlieb | Total variation diminishing Runge-Kutta schemes[END_REF] and normalized by the condition U (0) = 1/2. Numerical simulations confirm the decay of the solution to the equilibrium profile (see Figure 3, left). When compared with the standard Allen-Cahn equation, it appears evident that the dissipation mechanism of the hyperbolic equation is weaker with respect to the parabolic case (see Figure 3, right).

Randomly perturbed initial data

The genuine novelty of the numerical simulations illustrated in this section consists in suggesting that stability of the traveling waves actually goes beyond the regime 1 -τ f (u) positive, that is required in the theoretical statements proven in [START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF].

We consider initial data that resemble only very roughly the transition from 0 to 1. More precisely, we divide the interval (0, ) into three parts of equal length and we choose a random value in each of these sub-intervals coherently with the requirement (30). We assign u 0 (x) to be any different random value in (0, 0.5) for each x ∈ (0, /3), in (0, 1) for each x ∈ ( /3, 2 /3) and in (0.5, 1) for each x ∈ (2 /3, ). Such choice can be considered as reasonable concerning the hypothesis (30), and the results of the computation are shown in Figure 4. The transition is even more robust than what the previous computation shows, since initial data that do not satisfy the requirement (30) still exhibits convergence. As an example, let us consider the case of a randomly chosen initial datum u 0 (x) given by any random value in (0, 0.7) for each x ∈ (0, /3), in (0, 1) for each x ∈ ( /3, 2 /3) and in (0.3, 1) for each x ∈ (2 /3, ). Also in such a case, we clearly observe the appearance and formation of a stable front, as shown in Figure 5. The convergence is manifest also in the case where the stability condition g(u) := 1 -τ f (u) > 0 fails in some region. At least for the cubic (bistable) nonlinear reaction term f , such region is typically centered at u = α. In particular, being u = α an unstable equilibrium, f (α) is positive, thus g(α) is negative when τ is sufficiently large. The values of the function g are plotted in Figure 6 and Figure 7, respectively, for two different times, namely t = 10 and t = 20, and different values of τ , namely τ = 1, τ = 5 and τ = 10. Of course, the function g is asymptotically positive, since 0 and 1 are stable equilibria, and thus the value of the first order derivative f is negative. The numerical results show that, for sufficiently large values of τ , some region corresponding to the center of the wave profile appears where τ > 1/f (u) for some u ∈ (0, 1) , and it contains the value u = α (at least for the cubic case).

Pseudo-kinetic scheme for the Guyer-Krumhansl's law

The diagonalization procedure that has been performed in Section 1 to deduce a kinetic interpretation of the reaction-diffusion equation with relaxation, starting from the Maxwell-Cattaneo law (8), it cannot be straight- forwardly extended to the case of the GuyerKrumhansl law because of the presence of a higher order (conservative) operator in the model [START_REF] Hadeler | Dynamical systems of population dynamics[END_REF]. Although such an issue is rigorously pursued in a work in progress, here we attempt at presenting an hybrid version of the kinetic scheme [START_REF] Quarteroni | Numerical mathematics (second edition)[END_REF] to adapt to the present case, thus providing an easy-to-implement algorithm for the pseudo-parabolic equation [START_REF] Hubbard | Multidimensional slope limiters for MUSCL-type volume schemes on unstructured grids[END_REF].

Starting from [START_REF] Quarteroni | Numerical mathematics (second edition)[END_REF], we consider the following variation,

dv i dt = -2 u i+1 -u i-1 2dx i - 1 τ v i + ν + 1 2 dx i v i+1 -2v i + v i-1 dx 2 i , (31) 
that enjoys the same consistency properties as the original scheme, since the that is considered in [START_REF] Folino | Metastable dynamics for hyperbolic variations of Allen-Cahn equation[END_REF], for example. Unless expression for the external field g are taken into account for physical reasons, the only approach to the numerical approximation of (34) seems to be the transcription into a first order system by putting

∂ t u = w , τ ∂ t w + g(t, x, u ; τ ) w -µ ∂ xx u = f (u) .
On the other hand, under the hypothesis that g does not depend explicitly on the independent variables, one can consider that is even different from all the previous versions, thus revealing the great advantage of a physical justification for the models at hands, as already suggested in Section 1.
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 2 Figure 2: piecewise linear reconstruction on nonuniform mesh

Table 1 :

 1 Relative error for the numerical velocity of the Riemann problem with jump at /2, = 25 (T final time and N number of grid points): A. τ = 1, α = 0.9, c * = 0.5646, T = 40; B. τ = 2, α = 0.6, c * = 0.1737, T = 30; C. τ = 4, α = 0.7, c * = 0.3682, T = 35.

  dx

Figure 3 :

 3 Figure 3: Riemann problem with initial datum χ (0, ) in (-, ), = 25. Left: solution profiles zoomed in the interval (-5, 5) at time t = 1 (dash-dot), t = 5 (dash), t = 15 (continuous), for comparison, solution to the parabolic Allen-Cahn equation at time t = 1 (dot). Right: Decay of the L 2 distance to the exact equilibrium solution for the hyperbolic (continuous) and parabolic (dot) Allen-Cahn equations.

Figure 4 :

 4 Figure 4: Random initial datum ( ). Solution profiles for the hyperbolic Allen-Cahn equation with relaxation at time t = 10 (left) and time t = 20 (right) for τ = 1 (continuous line), τ = 5 (dashed) and τ = 10 (dotted).

Figure 5 :

 5 Figure 5: Random initial datum ( ) in (0, ). Solution profiles for the hyperbolic Allen-Cahn equation with relaxation at times t = 10 (left) and t = 20 (right), for τ = 1 (continuous line), τ = 5 (dashed) and τ = 10

Figure 6 :

 6 Figure 6: Profile of the function g(u) := 1 -τ f (u) for time t = 10 (left) and t = 20 (right) corresponding to the initial datum shown in Figure 4. The legend for the lines is the same as in the previous figures.

Figure 7 :

 7 Figure 7: Profile of the function g(u) := 1 -τ f (u) for time t = 10 (left) and t = 20 (right) corresponding to the initial datum shown in Figure 5. The legend for the lines is the same as in the previous figures.

  g(u ; τ ) ∂ t u = ∂ t g(u ; τ )u -∂ u g(u ; τ ) u ∂ t uand then equation (34) reads∂ t τ ∂ t u + g(u ; τ )u -∂ u g(u ; τ ) u ∂ t u -µ ∂ xx u = f (u) , so that we can define τ ∂ t u + g(u ; τ )u = w , ∂ t w -∂ u g(u ; τ ) u ∂ t u -µ ∂ xx u = f (u) ,with the second equation rewritten like∂ t w -1 τ ∂ u g(u ; τ ) u (w -g(u ; τ ) u) -µ ∂ xx u = f (u)

Table 2 :

 2 First order in space: final average speed (29) and relative error with respect to c

	2 0	2 -1	2 -2	2 -3	2 -4
	A 0.1664 0.0787 0.0325 0.0091 0.0018
	dt = 10 -1 B 0.0383 0.0306 0.0241 0.0198 0.0175
	C 0.1527 0.1144 0.0818 0.0581 0.0442
	A 0.1751 0.0876 0.0417 0.0186 0.0079
	dt = 10 -2 B 0.0275 0.0196 0.0128 0.0084 0.0061
	C 0.1420 0.1018 0.0684 0.0457 0.0339
	A 0.1760 0.0885 0.0427 0.0196 0.0089
	dt = 10 -3 B 0.0265 0.0184 0.0117 0.0072 0.0049
	C 0.1411 0.1006 0.0670 0.0441 0.0321
	* given in [18] (N = 400, dx = 0.125, dt = 0.01, = 25, T = 40)	
	α = 0.6 α = 0.7 α = 0.8 α = 0.9	
	τ = 1 0.1580	0.3096	0.4497	0.5751	
	0.0101	0.0118	0.0145	0.0186	
	τ = 4 0.2102	0.3533	0.4337	0.4825	
	0.0396	0.0404	0.0365	0.0118	

Table 3 :

 3 Second order in space: final average speed (29) and relative error with respect to c * given in[START_REF] Lattanzio | Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation[END_REF] (N = 400, dx = 0.125, dt = 0.01, = 25, T = 40)

	α = 0.6 α = 0.7 α = 0.8 α = 0.9
	τ = 1 0.1560	0.3052	0.4421	0.5630
	0.0025	0.0025	0.0026	0.0029
	τ = 4 0.2184	0.3672	0.4485	0.4885
	0.0022	0.0025	0.0034	0.0004
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order of magnitude of the physical parameter ν is clearly bigger than that of correction by the numerical viscosity 1 2 dx . Although it deserves to be rigorously justified and further confirmed by extensive numerical simulations, this approach is clearly more convenient than the usual way of putting higher order hyperbolic equations like [START_REF] Hillen | Invariance principles for hyperbolic random walk systems[END_REF] and [START_REF] Hubbard | Multidimensional slope limiters for MUSCL-type volume schemes on unstructured grids[END_REF] in form of lower order systems for numerical issues, namely

for which a direct semi-discrete approximation provides du i dt = w i , together with

Another way of dealing with higher order one-field equations can be the following: we rewrite (13) as

for which an alternative representation as second order system is given by

thus generalizing (5), with corresponding semi-discrete approximation

Both schemes (32) and (33) formally converge to the standard discretization of (5) for τ → 0 + and ν → 0 , but they exhibit the well-known criticality of defining the correct reconstruction of the external field f (u) on the (possibly nonuniform) spatial mesh. Therefore, the pseudo-kinetic scheme (31) maintains a wider interest in view of its underlying physical interpretation.

We conclude by remarking that such peculiar feature is not shared by other more general forms of relaxation system, for instance τ ∂ tt u + g(t, x, u ; τ