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Abstract

In this report, we aim at presenting a viable strategy for the study
of Epithelial-Mesenchymal Transition (EMT) and its opposite Mesen-
chymal-Epithelial Transition (MET) by means of a Systems Biology
approach combined with a suitable Mathematical Modeling analysis.
Precisely, it is shown how the presence of a metastable state, that is
identified at a mesoscopic level of description, is crucial for making pos-
sible the appearance of a phase transition mechanism in the framework
of fast-slow dynamics for Ordinary Differential Equations (ODEs).
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1 Introduction

1.1 Complex systems and phase transition

Cell transition from a phenotype into another constitutes a critical event

during development, differentiation and eventually the onset of degenerative

diseases, like cancer. Phenotypic differentiation involves several changes

at molecular, physiological and morphological level. Yet, rather than a

progressive process, such transformation behaves like a first order phase

transition, also involving the overall system in a coherent and global (phase)

change.

A phase of a thermodynamic system and the states of matter typically have

uniform physical properties. During a phase transition, certain properties

of the given medium change, as a result of the variation of some external

conditions (for example, temperature, pressure, or others). In Physics, first

order phase transitions are characterized by a discontinuity in one or more

state variables, and those we are particularly interested in also imply a

change in entropy values [1]. By analogy, in biological systems, among the

most reliable potential functions which describe such transitions, the Gibbs

free energy plays a key role since its variations in response to the control

parameters are usually mirrored by changes of the entropy.

Despite a number of factors have been demonstrated to participate into

cell transitions – including stochastic genetic expression, physical and chem-

ical forces – the cell differentiating process is still poorly understood.

The dynamics of a complex living system can be described at different levels

of organization. The current mainstream posits that the lower level, that

is the molecular one, exerts a privileged and even unique causative role in

shaping how and why the basic units of life, cells and tissues, behave and

develop [2]. The prevailing approach postulates that cell fate specification

occurs as a deterministic process. In response to intrinsic and/or extrinsic

chemical signals, a coordinated change in gene expression patterns drives

the cell population into a specific differentiating pathway. This determinis-

tic model has been widely criticized given that gene expression patterns are

physiologically stochastic, and fluctuations increase even dramatically when

the system (i.e., the cell population) is facing a critical transition from one

stable differentiated state into another [3].

To reconcile the wide variability occurring at the microscale (i.e., molec-

ular level) with the deterministic achievement of stable differentiated phe-
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notypes, the concept of epithelial plasticity has been introduced into the

explanatory scheme [4]. This definition strives to capture two remarkable

properties of living systems, namely resilience (robustness) to perturbations

and extreme sensitivity to even small fluctuations of the environmental con-

ditions.

A recurrent metaphor for the complex developmental path of cell systems

across different phenotypic states is given by the Waddington landscape. In

this model, cell phenotypes are depicted as stable attractors, also named as

“valleys”, while metastable or unstable states represent unstable attractors

and are named as “hills” [5]. In view of the Mathematical Modeling of bi-

ological phase transitions we attempt at formalizing, a comment is in order

about the semantic misunderstanding concerning the definition of metastable

states. Actually, the geometrical characterization of such critical points is

better illustrated by the denomination “saddle”, and we shall employ the

classical stability theory of dynamical systems [6] for the analytical study

of the mathematical equations aiming at reproducing the biological experi-

ments.

Stable states are usually identified by specific gene expression patterns

and gene regulatory networks (GRNs) architecture. Indeed, the phase-

space is reconstructed by computing GRNs from data provided by high-

throughput experiments. However, because GRNs are typically intricate

and contain highly nested feedback and feedforward loops that give rise to

complex dynamics, it is difficult to elucidate cell behavior from these reg-

ulatory circuitries. Moreover, regulation of gene expression is currently no

longer considered the causal factor driving cell differentiation [7]. A com-

pelling body of evidence has shown that higher order factors efficiently con-

strain, and ultimately drive, processes occurring at lower scales [8, 9]. Such

results have questioned the classical causative paradigm, deeply rooted into

a reductionist, bottom-up approach. In addition, the non-linear interplay

among factors belonging to different levels is highly sensitive to even smaller

fluctuations in the initial conditions, or in other environmental parameters,

thus providing the system with unexpected and unpredictable properties.

This is why higher levels of matter aggregation display emerging proper-

ties that cannot be anticipated by fundamental laws or by analyzing single

components, although the underlying enzimatic-genetic networks in a cell

population also support the emergence of macroscopic structures.

Instead of focusing on the role of individual genes, proteins or pathways
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in biological phenomena, the aim of Systems Biology is to characterize the

ways in which essential molecular parts interact with each others to deter-

mine the collective dynamics of the system as a whole.

Furthermore, regulation of the cell journey across the Waddington landscape

may shed light to the emergence of complexity, and even into biological evo-

lution. Indeed, it seems that complex forms of “organized” behavior in living

matter emerge from the competition between different forms of order, rather

than between species [10]. Therefore, as longer as conceptual categories

such as order and complexity are involved in these processes, parameters

like entropy and dissipative structures should be properly considered in any

model of cell phenotypic commitment (refer to Section 3.3).

Thereby, to grasp physical emergent processes – namely, those occurring

during phenotypic transitions, where the biological system is involved and

changes coherently as a whole – we must look at the mesoscopic level/scale.

By analogy with Physics, this is strongly affected by fluctuations around the

average and subject to a probabilistic behavior. Indeed, it is mostly from

such macroscopic changes that diseases, and especially cancer, are diagnosed.

1.2 The mesoscopic framework

The mesoscopic scale is the realm comprised between the nanometer and the

micrometer, where “wonderful things start to occur that severely challenge

our understanding” [11]. That is to say, at the mesoscopic level non-linear

effects, as well as non-equilibrium processes, are more likely to be appre-

ciated and “captured” [12]. Within that framework, both chemo-physical

forces and boundary constraints can be deemed acting as causative factors,

even if this property – the causal role – should be ascribed mostly to the

very specific non-linear dynamics to which the different system components

are subjected.

In Biology, the mesoscopic level usually entails both cells and tissues,

and scientific investigation requires capturing pivotal features of these con-

stituents. That approach also implies integrating different levels by focusing

on parameters that display self-similarities at different scales (fractal dimen-

sion represents a paradigmatic case in point [13]). Through such a strategy,

one would likely establish strict correlations between the local processes and

the global structure of the living beings, by connecting every level with each

other. It is worth noting that the topology (i.e., the geometrical three-

dimensional distribution) of the interacting components plays a critical role
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in shaping biological processes. Therefore, quantitative morphological anal-

ysis of both cells and tissues architecture has recently regained much interest,

given that “the organization becomes cause in the matter” [14].

Furthermore, the mesoscopic framework shall provide an acceptable so-

lution to the tyranny of scales problem, still a challenge to reductive expla-

nations in both Physics and Biology [15]. The problem refers to the scale-

dependency of physical and biological behaviors, that often forces researchers

to combine different models relying on different scale-specific mathematical

strategies and boundary conditions. On the other hand, the mesoscopic

approach outlines how coordinated (i.e., ordered) macroscale features and

properties – including fractal morphology, cell population connectivity and

motility, cytoskeleton rearrangement – arise from the collective behavior of

microscale variables.

Those issues can be efficiently addressed by adopting a formalism (con-

ceptual premises and framework) borrowed from the phase-space theory [16].

Indeed, the phenotypic differentiation is strongly reminiscent of phase tran-

sitions we observe in physical and chemical systems, and it is in fact for-

mally equivalent when the non-linear dynamics features are properly taken

into account [17]. From a mathematical point of view, the nonlinearity

is mandatory to support the existence of multiple stationary states with

various types of stability properties [6].

By analogy with phase transitions observed in inanimate matter, specific

qualities of the biological system should be viewed as order parameters, and

then their modifications are appreciated under the variation of a number

of control parameters. As happens in Physics, also in Biology control pa-

rameters induce coherent changes in the system by involving it as a whole,

that is to say by affecting “pleiotropically” a number of hypothetical targets

(molecules and pathways, as well as cellular structures).

The transition from a state of order to a new one appears at the point of in-

stability (bifurcation point), where the increased fluctuation in some of the

order parameters leads to a transformation of the cell system, that displays

long-range correlations and is self-similar at all scales of physical observa-

tion [18]. Order parameters, like the physical observables, thus enable in

capturing the non-linear dynamics of the system. Moreover, a model based

on those parameters shall overcome shortcomings represented by bottom-up

modeling, on which reductionist approach usually relies. We strive to iden-

tify control parameters that drive the system to instability when approaching
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their critical values, and the resultant changes in the order parameters that

correspond to the major physical modifications in the system under study.

The relevance of control parameters, usually belonging to description

levels higher than the molecular one, has recently been vindicated by stud-

ies showing that cancer can be “reversed” through physical manipulation

of the microenvironment [19]. For instance, it has been demonstrated that

cell fate commitment in microgravity is largely dependent on the removal

of physical (i.e., gravity) constraints [20]. Overall, such data strongly in-

dicate that the stochastic non-linear dynamics governing processes at the

molecular level can be efficiently and deterministically “constrained” and

“ordered” by higher biophysical cues. The classical principle of causality is

herewith addressed by taking into consideration those higher factors driv-

ing the system dynamics, hence recognized as control parameters, including

external chemical stimuli, physical forces, environmental constraints and so

forth.

Therefore, our central hypothesis is that the phenotypic transition may

be described as a dynamical phase transition by considering only few system

parameters and according to a multiscale approach. That model would

allow capturing the critical points of the whole process to which further

focused investigations are likely to unveil pivotal targets, eventually useful

for therapeutically efficient intervention. The ultimate goal is to obtain a

physico-chemical description of cell transition that could be translated into

carcinogenesis studies, as cancer can be considered a “developmental process

gone awry” [21].

1.3 Epithelial-Mesenchymal Transition as metastable state

Cells undergoing a phenotypic switch need preliminarily to enter into a

metastable state, thus “destabilizing” their previous stable differentiated

state. This destabilization is consistent with a first order critical transition,

since suddenly opening access to new stable states – evoking a tipping point

in the terminology of catastrophe theory [22, 23]. In correspondence to

these points, the system experiences a wide fluctuation of many inherent

parameters, including gene expression patterns [24].

A paradigmatic case in point is represented by the Epithelial-Mesenchy-

mal Transition (EMT). Epithelial cells normally interact through specialized

structures – mainly relying on E-cadherin-based “bridges” – as well as with

basement membrane via their basal surface, thus being distributed within
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the surrounding space in a characteristic (fractal) manner. EMT is the bi-

ological process allowing such polarized cells to undergo multiple biochem-

ical and/or structural changes that enable them to assume a mesenchymal

cell phenotype, which includes enhanced migratory capacity, invasiveness,

elevated resistance to apoptosis, and greatly increased production of Extra-

Cellular Matrix (ECM) components [25].

This transition occurs in a sufficiently dense population of cells (refer to

Section 2.2) and involves the replacement of one group of cells – which orig-

inally adhere to each other forming a differentiated tissue – by another group

of cells characterized by a highly heterogeneous and more motile aggregate.

As such, EMT is a system process given that it is usually referred to a cell

population sample, and can be assessed only at this level. Therefore, from a

conceptual point of view, a Systems Biology approach is required to properly

investigate EMT dynamics.

The transition from epithelial- to mesenchymal-cell characteristics en-

compasses a wide spectrum of inter- and intra-cellular changes, also involving

the relationship among cells and with their microenvironment, thus repre-

senting a true modification of the whole system. It is remarkable that such

transformation is reversible under specific environmental constraints, and it

should be considered like a phase transition compatible with a mathematical

formalization exhibiting a hysteresis loop (see Fig. 1(a)).

(a) Inflammatory stimulus and myo-Ins
treatment effects on the EMT-MET pro-
cess.
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(b) An intermediate metastable state is
necessary to accomplish a phase transi-
tion.

Figure 1: the EMT-MET schema.

Indeed, the reverse process, known as Mesenchymal-Epithelial Transition

(MET), has also been reported [26], and promising studies on the “ben-

eficial” effects of some external stimuli for inducing MET are in progress
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(see Fig. 2). Additionally, the recent discovery that MET is required for

transforming somatic cells into pluripotent stem cells suggests that the in-

tersection between EMT and MET is a fundamental crossroad for cell fate

decisions [27].

Figure 2: phenotypic reversal through myo-Ins-induced MET; schematic cell
shape profiles are depicted as extracted from images, highlighting changes
occurring during phenotypic transition.

Although such processes involve an overwhelming number of molecular

factors and cellular structures [25], at the mesoscopic level a discrete num-

ber of parameters suffices for depicting the transition. Those parameters,

mostly relying on (quantitative) changes entailing cell morphology and its

dynamical relationships with the neighborhood, can be suitably considered

as order parameters.

In this report, we aim at illustrating a methodological pathway for the

phenomenon of phase-space transitions during cell fate specification, when

a system passes from a stable state to another through a metastable bridge,

having in mind the paradigmatic case of the EMT and MET. In that context,

Mathematical Modeling provides an inherent texture for reality with the spe-

cific target of non-linear dynamics of diffuse information systems [28]. Also

it is required to formalize external fields and boundary conditions which

are determinant for the system dynamics, and to appreciate subtler sys-

tem variations to predict more sophisticated behaviors (symmetry breaking,

equilibria transition, ...). Mathematical Modeling may ultimately help rec-

ognizing critical factors and steps in promoting tumor reversal.

Two methodological directions are conceivable. Firstly, applied math-
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ematics for identifying and measuring the attractor manifolds for different

equilibria by extrapolating information from experimental data. In that

respect, the mathematical formulation of the biological problem helps in

facilitating measurement quantifications rather than its qualification. Sec-

ondly, real-time multi-scale modeling to give evidence of phenomena with

cumulative effects, for example models with memory terms and search for

precursive factors to phase-space transitions. That approach can be per-

formed at all description levels, from cells to organs passing through tissues,

in order to induce medical actions starting from the theoretical analysis of

precursive factors before the system moves too far from the healthy (stable)

equilibrium (see Fig. 1 (b)). It is worthwhile stressing that a stable dynamics

should not be confused with a system in a stationary stable phase (namely,

when nothing significant happens). Indeed, the former may anyway undergo

a wide range of fluctuations without losing its stability. This means that a

stable dynamics is characterized by resilience (robustness) with respect to

external perturbations, given that it is located in the manifold of a stable

attractor. On the contrary, a stationary stable system lies in a phase where

no apparent dynamical changes occur.

Mathematical Modeling is asked to develop criteria to guide the inter-

pretation of the observations in making “causes” and “effects” to raise from

experiments (see Fig. 3). One wishes to identify lower order changes that

are precursory to phase transitions inside the biological systems. In fact,

identifying the metastable state during a complex biological process is a

challenging task, because the state of the system may show neither apparent

changes nor clear phenomena before a critical transition. Therefore, recog-

nizing specific steps by means of additional mathematical variables which

vary gradually could help, not only in identifying markers of transformation

for early diagnosis, but also in determining drug targets.

The interaction between Systems Biology and Mathematical Modeling

would have no hope of generating a virtuous circle, if not for the emergence

of a new actor on stage: the computer. The performance development of

modern computers has permitted to test models even remotely approachable

in the past, through suitable numerical implementations [29]. By means of

numerical algorithms, mathematical models so complex that they are not

amenable of any rigorous analysis can be handled. In the biological field, we

come even to coin a third experimental type class, adding to the experiments

in vivo and in vitro also those in silico, with specific reference to computer
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Figure 3: Mathematical Modeling pathway for adaptive design of biological
experiments.

simulations (refer to Section 4).

2 Material and methods

2.1 The experimental setting

The experimental model is constituted by normal breast cells (MCF10A)

that are exposed to micromolar concentrations of Transforming growth factor-

β (Tgf-β), a well-known pro-inflammatory molecular effector [30]. As a

result, MCF10A cells undergo a clear EMT within about 5 days – although

preliminary effects can be appreciated already after 24-48 hours – by modi-

fying their shape, the cytoskeleton architecture, the degree of inter-cellular

relationships (with a significant reduction in E-cadherin based junctions),
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as well as their motility striving to occupy any available space (see Fig. 2).

The Tgf-β-induced EMT should be considered a precursive step towards full

transformation into fibrosis or an even worse (cancer) phenotype [31].

On the other hand, EMT is still a reversible process, which also exhibits an

“intermediate” metastable state, that can be switched backward by appro-

priate changes in the control parameters. Indeed, by adding myo-Inositol

(myo-Ins) treatments, the Tgf-β-induced EMT is almost reversed into a

MET within 24-48 hours (see Fig. 1 (a)).

In what concerns the technical aspects of cell culture and reagents, the

MCF10A breast cells line was purchased from the American Type Tissue

Culture Collection (ATCC) and then cultured in a DMEM/F12 medium

supplemented with 5% horse serum, 10 µg/mL insulin, 0.5 µg/mL hydro-

cortisone, 20 ng/mL EGF and 100 ng/mL cholera toxin. The cells were

accompanied by 100 IU/mL penicillin and 100 µg/mL streptomycin, and

kept in 5% CO2 and humidified atmosphere at 37◦C. Recombinant human

Tgf-β1 was purchased from PeproTech and myo-Inositol was obtained from

Lo.Li.pharma. About 3000 cells/well were originally plated, in a complete

medium, onto micro cover glasses. Once at sub-confluent concentration, the

cells were treated with 1 µL/mL of Tgf-β1. After about 5 days, during which

EMT occurred, the cells where stimulated with 4 mM of myo-Inositol for 24

hours. As regards immunofluorescence, cellular morphology and F-actin ul-

trastructure have been investigated by adding phalloidin (Alexa Fluor 488)

staining after cellular fixation with 4% paraformaldehyde and membrane

permeabilization with ethanol and acetone in 1:1 ratio, and then visualized

through confocal microscopy.

2.2 Control parameters

According to our experimental setting, cell-phase transition is triggered by

two molecular signaling factors, acting essentially in opposite ways: Trans-

forming growth factor-β is a well-known inducer of EMT, while myo-Inositol

has recently been demonstrated to be capable of inducing MET, thus coun-

teracting the EMT opposite transformation [32].

The myo-Ins, a cyclic carbohydrate with six hydroxyl groups, is among

the oldest components of living beings, undergoing complex evolutionary

modifications ultimately leading to the current multiplicity of functions for

Ins-containing molecules in eukaryotes [33]. While myo-Ins has no effect on

normal (stable) cells, it significantly inhibits EMT in cells exposed to pro-
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inflammatory stimulation, as such provided by Tgf-β. This finding clearly

suggests that myo-Ins effects start becoming apparent only at the bifur-

cation point, where the system undertakes the phase transition through a

metastable state, near to symmetry breaking points [34].

Therefore, according to the formalism of phase-space transitions, both Tgf-β

and myo-Ins can be managed as control parameters.

The cell density should also be considered an “environmental” constraint.

Indeed, experiments performed at different densities typically exhibit signif-

icant differences in terms of their results [35]. Changes in the cell density

may actually influence cell-to-cell adhesion (thus modifying the overall con-

nectivity of the cell population), stiffness and tensegrity response of the cell

cluster (by modulating the mechano-transduction of a number of biophysical

cues), and ultimately the shape acquired by cells [36].

2.3 Order parameters

As we have previously discussed, order parameters are measurable physi-

cal observables that allow representing the biological phenomenon. At the

mesoscopic scale, a careful examination of the Tgf-β-induced EMT makes

possible to extract a few key order parameters, which characterize crucial

aspects of the experiments, including:

• Downregulation of E-cadherin (with reduced density values along the

membrane border). Indeed, E-cadherin downregulation is a hallmark

of the EMT and it constitutes a pre-requisite for cells committed to-

wards transformation [37]. E-cadherin parameter evaluation epito-

mizes how different levels of observation are interconnected each other:

on one side, E-cadherin can be quantified as an inter-molecular param-

eter (concentrations measured by western-blot assay within the cells);

on the other side, E-cadherin distribution in discrete regions inside

the cell can be appreciated by confocal (quantitative) microscopy, thus

permitting its understanding as structural element. The combination

of both these methods allows assessing the functional meaning of even

subtle E-cadherin fluctuations. In addition, the correlation of raw E-

cadherin concentration data with its specific localization inside the cell

(in the membrane or cytosol domain) could actually provide the link

between the sought molecular and structural levels of observation.

E-cadherin also participates, altogether with a number of other fac-
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tors, in the formation of cellular adhesion structures. In particular, its

downregulation is responsible for reduced number of cell-to-cell adhe-

sion foci experimentally observed [38]. Reduction in structural inter-

and intra-molecular characteristics is among the most relevant cues

that inhibit the constitution of a tissue and promote cells scattering

in the available space.

• Shape changes and fractal dimension. Modification of the cell form

usually entails the loss of apical-basolateral cell polarity, ultimately

leading to substrate detachment. Cells detached from the substrate,

as well as from their neighboring, are free to acquire new configura-

tions and skills, including motility (see Fig. 4). Cell shape can be

quantitatively assessed by means of a fractal approach and, in partic-

ular, fractal dimension (FD) is a well-suited marker of cell malignancy

and motility [39].

Moreover, the fractal dimension epitomizes the morphological com-

plexity of the overall cell system, by referring to the minimal required

information for its description [40] and, at the same time, it allows to

directly tackling the problem of multiple hierarchical levels. However,

although the fractal dimension usually provides an indirect measure

for the system entropy values, as extracted from quantitative mor-

phological analysis, in the present context this value should not be

confused with the internal entropy of the cell population.

In general, quantitative assessment of even subtle morphological chan-

ges has been proven to be predictive of further cell fate differentiation.

In this respect, high-throughput time-lapse microscopy is a powerful

tool for studying cell differentiation and bright-field imaging has been

used to track and reconstruct cellular genealogies, namely through

fluorescence-based recognition of molecular lineage markers [41]. How-

ever, molecular lineage markers are only available for few specific cell

types, that are often already differentiated, thus hindering the early

identification of differentiating cells. On the other hand, a few at-

tempts have already been made to extract and exploit the information

embedded in confocal microscopy images for prospective detection of

lineage commitment.

• Cytoskeleton rearrangement and stress fibers. The cytoskeleton (CSK),

especially through F-actin remodeling, promotes both new shape con-
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Figure 4: parallel changes in cell shape and phenotypic plasticity highlight-
ing how the more migrating/invading cells display higher fractal dimension.

figurations and selective activation of a number of genetic and bio-

chemical pathways. Overall, changes in CSK can be appreciated by

means of an integrated parameter, named coherency, that extracts the

relative strength of the edges of structures compared to their surround-

ings. Therefore, it should be considered like a measure of “the global

alterations in the organization of the F-actin” [42].

Appearance of stress fibers is quantitatively assessed, as for other CSK

components, through confocal microscopy. Stress fibers have been

shown to play an important role in cellular contractility, migration

and invasiveness, especially during EMT [43]. This process ultimately

ends up in the emergence of filopodia and pseudopodia, indicating in-

crease motility and invading capacity (see Fig. 5). These structures

are mechanistically linked to CSK and to the cell membrane, allow-

ing cells to perform many specialized functions (invasion of the ECM,

motility, exploration of the surrounding space).

An important fact is that the aforementioned parameters are “indepen-

dent” each other, and they cannot be replaced from one another. Yet, they

are not exclusive given that various order parameters, tightly correlated

with the same features we are looking at, could have been also taken into

account (refer to Section 4) and shall further be incorporated for improving

the Mathematical Modeling.

It is wortwhile stressing that, in our experimental setting, normal cells

in culture are usually “confined” into clusters and they do not display sig-

nificant spreading. Moreover, during the first 24-48 hours of culture, the

mitotic and apoptotic rates do not change significantly, so that the cell den-

sity (cells per area) can reliably be considered as fixed. Together with the

fact that density influences in a crucial way the experimental development,
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Figure 5: different CSK configurations supporting distinct cell phenotypes.

this justifies its role as control parameter.

3 Modeling

3.1 The mathematical framework

Next, we attempt at listing crucial features of the mathematical model to

reproduce the biological problem described above.

• ODEs and time-discrete approximation. The experiments are essen-

tially time-dependent, and changes of the distribution of cells in space

and number (density) could be considered constant, at a first model-

ing stage. That assumption would be satisfied in agreement with the

experimental conditions we set for our model, in particular low values

of fetal bovine serum (FBS) added to the culture medium (refer to

Section 4). Indeed, low FBS concentration implies that cells are only

minimally stimulated, and thus display negligible growth rate and mi-

gratory capabilities.

Therefore, the mathematical models are constituted by systems of Or-

dinary Differential Equations (ODEs) with the eventual presence of

stochastic terms [44]. In addition, time-discrete approximations could

be developed, in order to perform numerical simulations for compar-

ison with the experimental data (refer to Section 4). As a matter
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of fact, since the evaluations of the biological process are typically

conducted at discrete time instants, one could also directly formalize

time-discrete models (i.e., recurrence equations) from which appropri-

ate ODEs are deduced by taking times-continuous limits [45].

• Space dependency. Nevertheless, space dependency is relevant: since

our target is to “revert” potentially malignant cells earlier, before they

acquire a migrative and invasive phenotype, the space rather plays the

role of an external parameter in the sense that important properties

of the cell population manifest a space dependency (density, lacunar-

ity, critical malignant features, ...) although without transport terms

and/or spatial gradients.

Moreover, the experimental setting presupposes initial conditions with

cells uniformly distributed and synchronized over the culture support,

but however slight differences in the cell cycle cannot be avoided, and

thus space inhomogeneoities have to be taken into account.

• Slow-fast dynamics. The transition time for EMT and MET is typ-

ically very short with respect to the overall lifetime of the biological

system. This translates into the fact that the corresponding mathe-

matical model should exhibit a slow-fast decomposition [46].

More precisely, we require that the differential equations incorporate a

small parameter τ ≥ 0 governing the time-scale, so that, for infinitely

small values of such parameter, namely as τ → 0+ (the so-called sin-

gular perturbation limit), we recover the qualities of a first order phase

transition. A major consequence of this approach is that the ODEs

system still hold for strictly positive values of the time-scale parame-

ter, hence providing a reliable description also for second order phase

transitions with τ  0.

• Multi-scale approach. Phase transitions are described by means of

a multi-scale model. Some observable parameters are actually av-

erages of microscopic quantities and can be further mirrored by the

behavior of lower order parameters. Within its general structure, our

mathematical formalization do not restrain from taking into account

genetic or other microscopic factors (GRNs, for example). Systems

Biology considers external forces which are integrated to the various

levels for having effects on the cells, then the feedbacks inside the

system are essential ingredients for adequate models. Several math-
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ematical strategies allow to relate passages from different space-time

levels and different scales can be effectively included: hydrodynamical

limits from cells to tissues, integro-differential equations for memory

terms and non-local issues, and asymptotic analysis, among others.

• Entropy and fractal analysis. In biological systems, fluctuations in

the amount of entropy can be equated, at a first glance, to variations

of the Gibbs free energy. In turn, changes in entropy values can be

tracked by evaluating modifications in the fractal properties of the cell

system [47, 48]. Various formulae for the fractal dimension of bio-

logical systems are in fact defined based on entropy functions [49].

It is worth recalling that entropy evaluation always depends on the

scale of measurement, thus resulting in uncertainty, whilst the fractal

dimension is independent of (discrete) measurement scales.

From a mathematical point of view, we aim at identifying a global

(space- and time-dependent) function, the so-called Lyapunov func-

tional, accounting for the overall “stress” of the dynamical process [6],

and try to determine the points where this function experiences a sym-

metry breaking so that the system starts transiting towards metastable

states (refer to Section 1.3). The variational analysis of auxiliary quan-

tities different from the order parameters, which have eventually varied

when the system leaves an equilibrium, would provide the precursive

signature of a phase-space transition.

3.2 Formal equations

Let us consider the vector (i.e., collection) of physical variables V = (E,F,C),

where E,F,C stand for system-averaged values of E-cadherin, fractal dimen-

sion and coherency, respectively. We assume that the dynamics of the cell

system is justly characterized by the time evolution of these quantities. The

choice of those order parameters for reproducing the biological experiments

is not exclusive, and the same mathematical formalism could also be adopted

for other observable quantities (refer to Section 4).

Then, the experimental setting is translated into a set of first order ODEs for

the instantaneous time variation of the order parameters, which is denoted

by
dV

dt
=

(
dE

dt
,
dF

dt
,
dC

dt

)
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and should be interpreted as time-derivative in mathematical language.

For time t varying between 0 and about 5 days (starting and ending of the

biological experiment), the differential model reads

dV

dt
= Φ(V ;S) (1)

for some (vector-valued) structural function Φ = (Φ1,Φ2,Φ3) describing the

biological mechanism underlying the dynamical process, and with S repre-

senting the external stimuli (i.e., control parameters), that include inflam-

matory factors, myo-Ins, cell density, physical constraints and other eventual

terms. The equation (1) can be rewritten in scalar components as

dE

dt
= Φ1(E,F,C;S)

dF

dt
= Φ2(E,F,C;S)

dC

dt
= Φ3(E,F,C;S)

(2)

and it must be complemented with appropriate initial conditions E(0) = E0,

F (0) = F0 and C(0) = C0 to be deduced from the experimental measures for

E0, F0 and C0. On the other hand, since S embodies the control parameters,

it should be considered as a known function which may be constant or rather

time- and space-dependent (for example, if growth factors or treatments are

administered at specific discrete temporal instants or/and in a spatial non-

homogeneous way to the population of cells).

Concerning the space dependency, we choose a two-dimensional reference

domain Ω ⊂ R2 corresponding, for example, to a Petri dish or any technical

support where the cell culture is analyzed (see Fig. 6). In principle, similar

statements hold in the physical three-dimensional space.

Due to the high number of cells involved in the biological trials, a tissue-like

behavior emerges for the whole system, and thus the hypothesis of a space-

continuous description is pertinent. Hence, system-averaged values of E, F

and C can be defined in terms of the corresponding cell-related “densities”

as the following spatial integrals

E(t) =
1

|Ω|

∫
Ω
e(t,x) dx,

F (t) =
1

|Ω|

∫
Ω
f(t,x) dx,

C(t) =
1

|Ω|

∫
Ω
c(t,x) dx,

(3)
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(a) A circular Petri dish. (b) A squared Petri dish.

Figure 6: two examples of cell culture plates.

with |Ω| denoting the area of the experimental domain. Here, for time

t ≥ 0 and position x ∈ Ω, the functions e, f and c describe the density

of E-cadherin, fractal dimension and coherency, respectively, and they are

introduced to take into account the microscopic features of the cell system.

This constitutes a first instance of multi-scale approach since different lev-

els of observation – specifically, from cells to tissues – are mathematically

related. Indeed, a model similar to (2) can be formulated also at the micro-

scopic scale, namely 

de

dt
= ϕ1(e, f, c;S)

df

dt
= ϕ2(e, f, c;S)

dc

dt
= ϕ3(e, f, c;S)

(4)

so that the macroscopic equations (2) are recovered through space-averaged

integrals (3) provided that the structural functions ϕ1, ϕ2 and ϕ3 in (4)

are properly designated. Although intrinsically coherent with a multi-scale

framework, such procedure could be extremely intricated to be performed

in practical cases, especially when the control parameters S are space-

dependent. Nevertheless, unlike the global/macroscopic order parameters

E, F and C which are naturally defined for the whole system by extracting

information from the corresponding local/microscopic densities e, f and c

(refer to Section 2.3), the control parameters S are more efficiently estab-

lished directly at a higher order (i.e., mesoscopic) level, without the necessity

of moving down to the microscopic scale. Obviously, that strategy does not

exclude from considering the microscopic processes induced on the cells by

the presence of those external stimuli – including genetic expression, physi-

cal and chemical molecular forces – by formulating explicit forms for ϕ1, ϕ2
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and ϕ3 in (4), but this is not mandatory for the success of our approach.

The minimal requirement for the vectorial model (1) or, equivalently,

for its component-wise version (2) to represent an acceptable candidate for

modeling EMT processes is that they displays three stationary solutions,

two stable states and one unstable/metastable state (see Fig. 1). This forces

the function Φ and its components Φ1, Φ2 and Φ3 to satisfy some essential

structural conditions, in order to ensure that

Φ(V ;S) = 0 ⇐⇒ V ∈ {A,B,M} for any S (5)

or, equivalently,
Φ1(E,F,C;S) = 0

Φ2(E,F,C;S) = 0

Φ3(E,F,C;S) = 0

⇐⇒ (E,F,C) ∈ {A,B,M} for any S (6)

for some (distinct) vectors A = (EA, FA, CA), B = (EB, FB, CB) and M =

(EM , FM , CM ) corresponding to biologically relevant equilibria.

Additional conditions guaranteeing stability for A and B, and metastability

for M , have also to be satisfied (refer to Section 3.3).

Since the equilibrium system (5)-(6) is multi-dimensional, the phase-space

exhibits a non-trivial geometrical landscape (see Fig. 7), and transitions can

occur with sudden change of values concerning only some variables (like for

contact discontinuities in continuum physics [50]).

Figure 7: hypothetical three-dimensional space-phase diagram depicting the
performance of order parameters.
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3.3 A tutorial example

We consider a simplified model consisting of a (nonlinear) system with two

coupled first order ODEs for the variables u and w, that is

τ
du

dt
+ u = w,

dw

dt
+ w = λg(u), (7)

where the external constraints are given by constant parameters τ, λ > 0

and g is a known structural function whose properties are detailed later on.

In comparison with the general model (1)-(2), order and control parameters

correspond to V = (u,w) and S = (τ, λ), respectively, and

Φ1(u,w; τ, λ) =
1

τ
(w − u) , Φ2(u,w; τ, λ) = λg(u)− w. (8)

We attempt at formulating a hypothetical interpretation of the dynami-

cal process (7) in terms of biological observations, assuming that u represents

E-cadherin boundary values and w stands for the coherency, which is con-

nected with relative E-cadherin density values along the membrane border

with respect to its overall concentration. Then, the specific expression for Φ1

encodes the fact that u – describing the E-cadherin boundary distribution

of the cell population – tends to conform to the behavior of w – accounting

for the system coherency – in a (typically fast) time-scale of order τ . Simi-

larly, the expression for Φ2 entails the convergence of w towards λg(u) in a

(slower) time-scale of order 1.

According to the abstract calculations in (5)-(6), that now translate into{
Φ1(u,w; τ, λ) = 0

Φ2(u,w; τ, λ) = 0

for the specific functions (8), the stationary solutions to (7) are given by the

points (u,w) which are located at the intersection of the curves

w = u and λg(u) = w (9)

laying on the phase-plane (i.e., the two-dimensional projection of the phase-

space). As a consequence, the set of equilibria for the dynamical system (7) is

characterized, for any fixed λ > 0, as the zeros of the function (see Fig. 8(b))

h(u;λ) := u− λg(u)

and the stability properties are deduced by analyzing its first order derivative

(namely, the first order variation of h with respect to u), that is

dh

du
(u;λ) = 1− λdg

du
(u). (10)
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with p = 1 and ` = 1.
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Figure 8: the graphs of the structural functions g and h.

Actually, for the particular case of system (7), this approach is equivalent

to the standard spectral analysis (refer to Section 4). More precisely, if

the derivative
dh

du
(u;λ) is positive, the equilibrium is stable; otherwise, if it

is negative, the equilibrium is unstable/metastable. Under the assumption

that g is non-decreasing (namely,
dg

du
(u) ≥ 0 for any u) and such that g(0) =

dg

du
(0) = 0, the origin of the phase-plane (u,w) = (0, 0) is a solution to (9)

and, moreover, it is a stable equilibrium because
dh

du
(0;λ) = 1 for any λ > 0

from equation (10).

In terms of biological experiments, the stationary state (0, 0) satisfying

the above conditions could be associated with the original (unperturbed)

phase of the system (normal cells). Besides, due to the nonlinearity of the

function g, the mathematical description (7) also incorporates the existence

of other biological equilibria – different from (0, 0) – corresponding to further

phases of the cell system during EMT or/and MET (refer to Section 1.3).

Indeed, according to (9), any eventual subsequent intersection between the

curve w = λg(u) and the straight line w = u gives raise to additional

equilibria, alternating stable and unstable/metastable states in the case of

simple zeros of h (which occur under the generic assumption that h(u;λ) = 0

implies
dh

du
(u;λ) 6= 0, that is the so-called transversality condition).

Then, we conjecture that g behaves like an S-shaped function, meaning

that g is convex in the interval (0, p) and concave in its complement (p,+∞)

for some p > 0, and its values are bounded from above, so that g(+∞) = `

for some threshold ` > 0 (see Fig. 8(a)). Therefore, two distinct ranges
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of values for the control parameter λ can be considered, leading to quite

different emerging scenarios (see Fig. 8(b)) classified as follows:

• small λ, corresponding to a unique equilibrium, given by (u,w) = (0, 0);

• large λ, that is consistent with the presence of three intersection points

(i.e., equilibria).

These two regimes are separated by a (non-generic) critical value λ = λc > 0

which produces only two distinct equilibria.

In view of the previous analysis, one infers that model (7) is, at the

same time, minimal and reliable. Indeed, small values of λ (i.e., λ < λc,

see Fig. 9(a)) illustrate a biological situation where the external physical

constraints – for example, inflammatory factors or myo-Ins treatments – are

too weak for determining any phase transition, hence the system remains in

its original (healthy or pre-cancerous) configuration. On the other hand, for

large λ (i.e., λ > λc, see Fig. 9(b)) the mathematical system supports phase

transitions alternating stable and metastable states, and the possibility of

simulating EMT or/and MET with the typical “destabilization mechanism”

introducing a metastable state (refer to Section 1.3). The importance of

identifying, and also quantifying, the critical threshold λc appears, in par-

ticular, when medical actions have finally to be undertaken, because the

control parameters can be adjusted to predictively regulate the system re-

sponse.

0.5 1 1.5 2

0.5

1

1.5

2

u

w

(a) Case λ = 1 < λc with p = 1, ` = 1.
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0.5

1

1.5

2

u

w

(b) Case λ = 2 > λc with p = 1, ` = 1.

Figure 9: relative positions of the straight line w = u (dotted) and the curve
w = λg(u) (continuous) corresponding to different values of λ.

It is worthwhile noticing that multiple equilibria could be generated by as-

suming other forms for the function g, thus allowing to establish effective
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mathematical models for reproducing a wide variety of biological dynamics.

The fast-dynamics of (7) is described by a new time variable s related to

the old one t by the relationship s = t/τ , which corresponds to the following

differential equality for the instantaneous time variation:

d

ds
= τ

d

dt
.

This procedure consists in rescaling the time variable in order to zoom in

on the system process during the first temporal period. Passing from t to s,

the system of ODEs becomes

du

ds
+ u = w,

dw

ds
+ τw = τλg(u),

and its limit as τ → 0+ is formally given by

du

ds
+ u = w,

dw

ds
≈ 0. (11)

The second equation in (11) does trivially express the fact that w is, at

first glance, indipendent of s (i.e., constant). Therefore, the corresponding

approximated solutions to (11) are

du

ds
+ u ≈ w0, w ≈ w0,

and, by applying classical results on explicit solutions to linear ODEs [51],

one ultimately obtains

u(s) ≈ w0 + (u0 − w0)e−s, w(s) ≈ w0,

for some initial conditions u(0) = u0 and w(0) = w0. Finally, in a fast time-

scale (s→ +∞ or, equivalently, τ → 0+) the solution gets closer and closer

to the straight line w = u. The “fate” of the system is not yet decided, but it

appears to be dictated only by the variable u, whose dynamics is determined

at a slower time-scale. Coming back to equations (7) and putting formally

τ = 0, we deduce that the slow dynamics is described by the reduced system

u = w,
dw

dt
+ w = λg(u), (12)

which corresponds to the scalar equation

du

dt
+ u− λg(u) = 0. (13)
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The characterization of the equilibria for (12)–(13) and their stability anal-

ysis is precisely what has been performed above, recalling that h(u;λ) =

u− λg(u).

A remarkable fact is that system (7) possesses an alternative represen-

tation consisting of a single second-order differential equation, which can be

obtained by differentiating the first equation of (7) with respect to time t

and taking advantage of the second equation, so that

τ
d2u

dt2
+
du

dt
=
dw

dt
= λg(u)− w,

and then first equation is used again to obtain

τ
d2u

dt2
+ (1 + τ)

du

dt
+ u− λg(u) = 0, (14)

which is known as the one-field equation. Multiplying equation (14) by the

first order derivative
du

dt
and applying the chain rule give

τ
d2u

dt2
du

dt︸ ︷︷ ︸
d
dt

{
τ
2 ( dudt )

2
}

+(1 + τ)

(
du

dt

)2

+
{
u− λg(u)

}du
dt︸ ︷︷ ︸

d
dt{ 1

2
u2−λG(u)}

= 0, (15)

where G denotes a primitive of g (i.e., a function such that
dG

du
(u) = g(u)

for any u). Equation (15) shows the dissipative structure of the dynamics:

indeed, this can be rewritten as

d

dt

{
τ

2

(
du

dt

)2

+
1

2
u2 − λG(u)

}
= −(1 + τ)

(
du

dt

)2

, (16)

where the quantity under the time-derivative has a negative variation, and

thus decreases in time. Therefore, the term

τ

2

(
du

dt

)2

+
1

2
u2 − λG(u)

is a Lyapunov functional for the equation (14), and thus it is designated for

being an intrinsic entropy for the dynamical process (refer to Section 3.1).

4 Notes

• Order parameters. In principle, we could have chosen different molecu-

lar parameters in the place of E-cadherin. However, besides the specific
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relevance of E-cadherin during EMT, most of these parameters can-

not be considered as being independent with respect to the E-cadherin.

For example, the N-cadherin – a paradigmatic marker of mesenchymal

transformation – increases or decreases exactly in opposite way to E-

cadherin. Similarly, the Focal Adhesion Kinases (FAK) or β-catenin

membrane density, are, in some way, related to the E-cadherin. By in-

cluding these parameters, no eloquent “information” would be further

added to the model.

• Cell culture protocols. Currently, a number of artifacts frequently bi-

ases cell culture models. For instance, cells are typically stressed by

high concentrations of growth factors, which are added to the cul-

ture medium to promote sustained proliferation. As a matter of fact,

this “accelerated” growth regimen could likely overcome regulatory

loops by introducing into the system an additional, unwarranted and

usually overlooked, control parameter (i.e., external stimulus). There-

fore, we conditioned MCF10A cells growing in a medium supplemented

with low FBS levels (1%) to avoid undue metabolic and proliferative

consequences. Moreover, low-FBS regimen – without impairing cell

viability – kept cell density in a quasi-stationary state for at least

24-48 hours, with minimal change in cell population count (refer to

Section 2.3).

• Numerical algorithms. Especially to reproduce the outcome of in vitro

experiments, it is pertinent to have recourse to scalar-valued equations

settled on a two-dimensional domain Ω ⊂ R2 with regular boundary

(see Fig. 6), although the approach developed in this report straight-

forwardly extends to systems in the three-dimensional space. In or-

der to perform numerical simulations for comparison with the experi-

mental data, time-discrete approximations have to be developed, and

spatial finite differences on staggered grids can be applied for deal-

ing with the space dependency [52, 53]. The Runge-Kutta method

is particularly suitable for the numerical simulation of time-evolution

differential equations [45]. In general, time-implicit schemes are quite

computationally inefficient for complex problems and, indeed, high-

order Runge-Kutta time-integration solvers are important tools for

improving the resolution of explicit simulations. On the other hand,

the importance of designing spatially compact difference operators is
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motivated by the requirement of an optimal implementation in parallel

computers [54, 55]. in fact, since the nearest-neighbor communica-

tion standard is extremely fast with the need of small amounts of local

storage in the sub-processors (as only few values are involved to up-

date the numerical solution at each grid point), even very large models

becomes feasible, thanks to the massive number of threads especially

in GPU-based computing devices [56]. For the sake of completeness,

we mention that a modern C++ library for numerically solving ODEs

is available at www.odeint.com – which is compatible with running on

CUDA GPUs programming architecture through the Thrust interface

available at http://thrust.github.io

• Linearized operator and spectral analysis. The dynamical system (7)

is nonlinear because of the presence of the nonlinear term g(u) inside

the second equation, which is responsible for the existence of multiple

non-trivial equilibria (refer to Section 3.2). The linearization at an

equilibrium point (u,w) gives a system for the first order perturbation

(ξ, η) that is

dξ

dt
=

1

τ
(−ξ + η) ,

dη

dt
= λ

dg

du
(u)ξ − η,

or, in vectorial form,

d

dt

(
ξ

η

)
= A

(
ξ

η

)
where the matrix

A =


−1

τ

1

τ

λ
dg

du
(u) −1


is known as the jacobian matrix. Spectral analysis is based on the

computation of the eigenvalues (and, specifically, on their sign) of A,

which are the roots of the characteristic polynomial given by

p(µ) := det(A− µI) =

(
−1

τ
− µ

)
(−1− µ)− λ

τ

dg

du
(u)

= µ2 +

(
1 +

1

τ

)
µ+

1

τ

(
1− λdg

du
(u)

)
.

(17)

Denoting by µ1 and µ2 the zeros of the above polynomial, the following

representation holds

p(µ) = (µ− µ1)(µ− µ2) = µ2 − (µ1 + µ2)µ+ µ1µ2,
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and therefore, comparing with (17), we deduce that

µ1 + µ2 = −
(

1 +
1

τ

)
, µ1µ2 =

1

τ

(
1− λdg

du
(u)

)
.

Recalling that
dh

du
(u;λ) = 1−λdg

du
(u) from (10), if

dh

du
(u;λ) is positive,

the product µ1µ2 of the two roots is positive – indicating that they

have the same sign – and their sum µ1 + µ2 is negative – indicating

that they are both negative – so that the equilibrium state (u,w) is

stable. Complementarily, if
dh

du
(u;λ) is negative, one root is positive

and the other is negative, consistently with the appearance of a saddle

point, or, in other words, a metastable equilibrium. The above fact is

a special form of the more general Routh–Hurwitz criterion [57].

5 Conclusions and perspectives

Reproducibility of the results presented in this report has been assessed by

means of triplicate, independent experiments. Indeed, Tgf-β induced EMT

is always obtained after 5 days of treatment, involving up to 90% of cells

as recorded by molecular and morphological analyses. Similarly, myo-Ins

induced MET occurs after 24 hours by involving up to 85% of transformed

cells. In addition, the analysis of the mathematical models may suggest

new features for the experimental setting, also by means of numerical sim-

ulations for enlarged models obtained by adding terms, factors and mech-

anisms which are further developments of the biological experiments. One

could also postulate auxiliary order parameters, for example mathematical

derivatives of the principal functions, to earlier predict phase transitions

with the ultimate target of designing external controls to prevent such tran-

sitions.

It is extremely important that mathematical models capture the emer-

gence of dynamics at higher levels, since the behaviour of the system is

not merely the result of the collective evolution of its isolate components,

but it proceeds from the effect of (global) constraints. This emphasizes the

intrinsic limits of studying biological phenomena on the basis of purely mi-

croscopic experiments (indeterminateness of measurements, instantaneous

time,...) and, therefore, a multi-scale model (with some parameters derived

from the microscopic analysis) is better suited from a methodological point

of view. In that context, the so-called emerging properties are interpreted
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as systemic averages of microscopic behaviours (for example, the effects of

the inositol on the density of breast tissues has been measured before un-

derstanding its microscopical chemical reactions).
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