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Abstract—In neuroscience, understanding inter-individual dif-
ferences has recently emerged as a major challenge, for which
functional magnetic resonance imaging (fMRI) has proven in-
valuable. For this, neuroscientists rely on basic methods such as
univariate linear correlations between single brain features and
a score that quantifies either the severity of a disease or the
subject’s performance in a cognitive task. However, to this date,
task-fMRI and resting-state fMRI have been exploited separately
for this question, because of the lack of methods to effectively
combine them. In this paper, we introduce a novel machine
learning method which allows combining the activation- and
connectivity-based information respectively measured through
these two fMRI protocols to identify markers of individual dif-
ferences in the functional organization of the brain. It combines
a multi-view deep autoencoder which is designed to fuse the two
fMRI modalities into a joint representation space within which a
predictive model is trained to guess a scalar score that character-
izes the patient. Our experimental results demonstrate the ability
of the proposed method to outperform competitive approaches
and to produce interpretable and biologically plausible results.

Index Terms—individual differences, multi-view representation
learning, multimodal deep autoencoder, trace regression

I. INTRODUCTION

Since its discovery in the 1990s, functional magnetic reso-
nance imaging (fMRI) has played a critical role in developing
our understanding of the brain and its dysfunctions. The
research based on fMRI has primarily focused on identifying
population-wise principles that emerge from averaging obser-
vations across a group of subjects. In cognitive neuroscience,
fMRI has greatly furthered our knowledge of the organization
of the brain of healthy individuals by mapping brain activity
induced by a set of tasks that the participant performs in
a controlled manner within the scanner (task-fMRI). More
recently, the mapping of functional connectivity from fMRI
recordings of participants lying at rest in the scanner (rest-
fMRI) has complemented our understanding of the functional
architecture of the brain. In particular, because of its ease of
acquisition, rest-fMRI has become a tool of choice in clinical
neuroscience to characterize brain dysfunction in groups of
patients.

Usually, the specificities of the fMRI signatures extracted
in each subject are simply regarded as noise. However, it

is now clear that these specificities carry information that
can be used to characterize individual differences, measured
e.g as the subject’s performance in a cognitive task or on a
clinical scale that quantifies the severity of disease (see [1], and
also the full issue of NeuroImage dedicated to this question
[2]). The standard methods used by neuroscientists to study
individual differences are based on univariate correlational
analysis between a chosen brain feature and such a behavioral
score. While it is now clearly established that the design
of predictive models should be favoured in this context [3],
and that multi-modal data fusion provides a strong added
value [4], the question of fusing features extracted from task-
and rest-fMRI has not been addressed [4] even though their
complementarity is clearly established [5]. In this paper, we
introduce a novel machine learning method that exactly aims at
combining the activation- and connectivity-based information
estimated from different fMRI protocols to build a predictive
model of individual differences.

First, the challenge of combining heterogeneous informa-
tion from task- and rest-fMRI is met for the first time by
capitalizing on the recent advances in unsupervised represen-
tation learning, and more precisely by developing a specific
multi-view deep autoencoder. The main goal of multi-view,
or multi-modal, representation learning is to learn a latent
space which combines the information from different views
available on the same data, where such a latent representation
space is assumed to be informative enough to reconstruct the
corresponding views [6], [7]. According to the literature, the
most common ways of dealing with multiple views consist in
either concatenating the view-specific layers (a direct fusion),
sharing a hidden layer [8], [9], (e.g. using canonical correlation
analysis [10]–[12]) or finding a direct projection from one
view to another [13]. In particular, the concatenation of layers
can provide efficient representations of multi-modal data when
the relationships between modalities are non-linear [8], such
as it may be expected with task- and rest-fMRI data.

Secondly, a trace regression model is estimated in this repre-
sentation space to allow predicting individual characteristics of
new patients, measured as their behavioral performance or the
severity of their pathology. This also yields a mapping of the



brain that makes it possible to identify the nodes of the relevant
macroscopic cortical network(s). The experimental validation
is conducted on a recently published public dataset that aims
at studying individual differences in voice recognition abilities
using multi-modal MRI data [14]. Our experiments quantita-
tively demonstrate the advantages provided by the combination
of task- and rest-fMRI when compared to an equivalent
model learnt on single-view representations. They also show
that our multi-view representation learning frawework yields
interpretable results that are consistent with the most recent
neuroscientific literature.

The remainder of the paper is organized as follows. In
Section II, we detail the proposed approach, including the
multi-view autoencoder that allows fusing task- and rest-fMRI
data, and the trace regression predictive model. In Section III,
we first describe the dataset itself together with the pre-
processing pipeline that yields multi-modal features; then we
detail our experimental protocol, a quantitative evaluation that
demonstrates the superiority of the multi-view autoencoder
and a neuroscientific interpretation that shows the applicative
potential of our method. We conclude in Section IV by
discussing opportunities for future work.

II. METHOD

In this section, we detail the different methodological com-
ponents of the proposed approach. The goal of this study is
to design a model able to predict the behavioral score of a
subject (e.g. the performance in a voice recognition task) from
multi-view fMRI data of this subject. The main aspects of this
setting is the multimodal and high dimensional nature of the
raw data and the very small number of subjects (usually tens).

To tackle such a challenge, we choose to design a mul-
timodal feature extractor that combines task- and rest-fMRI
point wise (it is learned on isolated vertices of the cortical sur-
face) in order to get enough training material. The fusion of the
complementary activation- and connectivity-based information
is performed by a deep multi-view autoencoder operating on
input pairs of low dimensional feature vectors representing
both fMRI modalities for a given vertex. This model is learned
on hundreds of thousands of data points.

This feature extractor is used to project the whole brain
of each subject into a new representation space within which
a predictive model of inter-individual differences (trained to
predict a behavorial score) is learned using a trace regression
model estimated in the matrix-valued space generated by the
bottleneck layer of the autoencoder. This predictive model
operates at the subject level and is then learned on tens of
samples only. Figure 1 provides a general overview of this
approach.

A. Multimodal deep autoencoder for learning brain features
representation

We designed a multimodal autoencoder that aims at extract-
ing high level features from the combination of multiple input
modalities, from which these multiple input modalities may
be reconstructed [8].

We investigated two main autoencoder architectures which
are illustrated in Figure 2. In both cases, the input to the
autoencoder is a pair (xr, xt) of the two MRI modalities
(inputs), xr for rest-fMRI and xt for task-based fMRI.

A first architecture, hereafter simply called autoencoder (and
noted AE) consists in a standard autoencoder which takes as
input the concatenation of inputs x = concat(xr, xt). The
AE includes an encoder noted EAE and a decoder which are
both implemented as dense multi-layer neural networks (with
one to three hidden layers). The encoder non-linearly projects
the concatenated inputs into a new representation space z =
EAE(x) from which the decoder DAE aims to recover x, i.e.
DAE(EAE(x)) ≈ x. The autoencoder is classically trained
using a Mean Squared Error (MSE) criterion:

1

n×m

n∑
i=1

m∑
j=1

‖DAE(EAE(xi,j))− xi,j‖2

where m is the number of vertex of the 3D cortical mesh
(see hereafter) and n is the number of subjects, and xi,j =
concat(xi,jr , x

i,j
s ) is the (i, j)th training sample corresponding

to the concatenation of the two fMRI data feature vectors for
a given vertex i and for subject m, xi,jr and xi,jt .

Alternatively, we investigated a multi-view deep autoen-
coder (MDAE) which includes one specific encoder per modal-
ity (view), noted Er and Et for rest-fMRI and task-based fMRI
inputs. The two encoders project each of the modalities into a
new representation space zr = Er(xr) and zt = Et(xt) where
the representations are concatenated (z = concat(zr, zt)) and
input to two decoders Dr and Dt that aim at recovering the
corresponding inputs xr and xt. Here again all encoders and
decoders are implemented as multi-layer neural networks (we
used one to three hidden layers) and the training is performed
by minimizing a MSE criterion:

1

n×m

n∑
i=1

m∑
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‖Dr(concat(Er(x
i,j
r ), Et(x

i,j
t )))− xi,jr ‖2

+
1

n

n∑
i=1

m∑
j=1

‖Dt(concat(Er(x
i,j
r ), Et(x

i,j
t )))− xi,jt ‖2

After training, the models estimated using these two archi-
tectures may then be used to compute a multi-view encoding
of an input pair (xr, xt) through zAE = EAE(concat(xr, xt))
or zMDAE = concat(Er(xr), Et(xt)).

B. Predictive model of individual differences

We now aim at building a model that is able to predict
a scalar score associated with each subject, e.g a behavioral
score that measures the performance of the subject in a
cognitive task, from the multi-view encoding z available
at all cortical locations / vertices. We therefore frame this
problem as a regression task. Linear regression has a long
history [15], from the least-squares algorithm to the Lasso and
its extensions. Modern methods combine common regression
loss functions with appropriate regularization such as elastic
net [16], (group)-sparsity, manifold [17]. Sparsity constraints



Fig. 1. General overview of the proposed machine learning method

Fig. 2. The two architectures considered for the multimodal representation learning scheme. (A) AE, a standard autoencoder trained on the concatenation of
inputs from different modalities. (b) MDAE, a multimodal deep autoencoder where latent representations from the different modalities are concatenated in
the bottleneck layer (z is the combination of zr and zt).

allow dealing with small sample sizes by seeking for a low
dimensional linear subspace. Manifold constraints enforce the
solution to belong to a given topology (a mesh for example)
encoded by a graph Laplacian. While classical linear regres-
sion models seek to predict a scalar response from a vector-
valued input, several extensions have been proposed to handle
structured inputs such as matrices or tensors [18]. In this case,
regularization based on low-rankness or group sparsity are
used to capture the structure of the data [18], [19].

In neuroimaging, previous studies (e.g. [20]) approach the
behavioral score prediction problem by learning a standard
linear regression model using a training set {(zi, yi)}, i =
1, . . . , n, where zi ∈ Rd is a vector of explanatory variables,
yi ∈ R is the output response (i.e., the behavioral score),
and n is the number of examples (subjects). In contrast, our
approach exploits the specific characteristics of our data. First
the multi-view features computed by the deep autoencoder
form a matrix of explanatory variables Zi ∈ Rm×d, where
m is the number of vertices of each subject and d is the
number of extracted features (size of the multi-view encoding).
In order to handle such matrix-valued inputs, we here consider
a trace regression model. Trace regression is a natural model

for matrix-type input data [18], [21], [22]. It provides a linear
model that maps matrices to real-valued outputs, and is a
generalization of the well-studied linear regression model.
The trace regression model corresponds to re-arranging the
coefficients in the traditional linear model as a matrix. It is
defined as follows

yi = tr(β?>Zi) + εi, i = 1, . . . , n,

where tr(·) denotes the trace, Zi ∈ Rm×d is a matrix-variate
input, β? ∈ Rm×d is the matrix of regression coefficients, yi
is the scalar output and εi is a random noise.

Moreover, we consider a brain mesh as a graph for designing
a specific regularization. Most of previous studies on trace
regression perform estimation of the model parameters via
regularized least squares with a matrix norm regularization:

β̂ = arg min
β∈Rm×d

{
n∑
i=1

(
yi − tr(β>Zi)

)2
+ Ω(β)

}
, (1)

where Ω(β) is a matrix regularizer which may lead to low-rank
or/and structured sparse solutions [18], [19], [22]. In our case,
we want to exploit the knowledge that, ∀i, Zi are related to
vector on a mesh (the brain surface), and it should give some



benefit to link β̂ with the underlying manifold. Following [20],
we use a manifold regularization which forces each vertex
to have feature values close to each other. Formally, given
L the Laplacian of the graph of the underlying manifold,
we define the regularization term as: Ω1(β) = ηtr(β>Lβ).
Furthermore, since we want to obtain interpretable weights β,
we add a sparse prior on the vertices such as only few vertices
should be involved in the regression. This is typically done
via a suitable group-sparsity regularization strategy. We then
consider a second regularization term Ω2(β) = α

∑
j ‖βj‖2,

where βj are the coefficients of the vertex j. Therefore, our
predictive model is based on solving the trace regression
problem (1) with the regularization term

Ω(β) = ηtr(β>Lβ)/2 + α
∑
j

‖βj‖2 . (2)

Since Ω(·) is a convex but non-differentiable function, we use
the FISTA algorithm, an accelerated projected gradient descent
method, to solve problem (1). We use the monotonous version
for stability purpose [23].

Algorithm 1 The main pipeline
Input: {xit}ni=1 ∈ Rn×Dtask , {xir}ni=1 ∈ Rn×Drest : a

database of two-view observations, Y ∈ Rn: the regression
target.
1. Learn a multi-view latent representation z from xr and
xt.
2. From the latent representation built the resulting obser-
vation, {zi}ni=1 ∈ Rnz×D.
3. Apply the trace regression model using {Zi}ni=1 ∈
Rnz×D and y as inputs.

Output: β ∈ Rnz×D map used for prediction.

III. EXPERIMENTS

In this section, we describe the experiments that we per-
formed to assess the relevance and effectiveness of our method.
We first describe the fMRI dataset that was used, before
presenting a thorough quantitative evaluation of both the multi-
view representation learning phase and the predictive model
itself. Finally, we discuss the neuroscientific relevance of our
results. The pipeline used in this section is summarized by
Algorithm 1.

A. Data set and pre-processing

We performed our experiments on the InterTVA dataset
[14], which aims at studying inter-individual differences in
voice perception and voice recognition using multi-modal MRI
data. We targeted this data set because it offers both task- and
rest-fMRI data, as well as a precise behavioral characterization
of the 40 subjects available. More precisely, we exploited: i)
the task-fMRI session during which the participants listened
passively to 144 vocal and non-vocal sounds, ii) the 12mn
long rest-fMRI session, iii) the performance of the subjects in
a voice recognition task, measured as percentage the Glasgow

Voice Memory Test (GVMT) [24], as well as iv) the high-
resolution T1 anatomical image for pre-processing purposes.

Both the task- and rest-fMRI data sets were first corrected
for slice-timing and subject’s motion (using SPM12, www.
fil.ion.ucl.ac.uk/spm), and the physiological noise components
were removed using the Physio Tapas toolbox (www.tnu.ethz.
ch/en/software/tapas.html). The corrected fMRI time-series
were projected on a triangulated mesh representing the surface
of the cortex (comprising 20, 484 vertices), that had been
extracted from the T1 MRI image using the freesurfer software
suite (surfer.nmr.mgh.harvard.edu). Then, two feature vectors
were estimated at each cortical location, i.e. each vertex of
the mesh, one for each fMRI protocol. For task-fMRI, the
feature vector xt ∈ RDtask is the set of amplitudes of the
fMRI responses induced by each of the 144 audio stimuli
presented to the participant, estimated using a general linear
model that included one regressor per stimulus [25] (hence,
Dtask = 144). For rest-fMRI, the feature vector xr ∈ RDrest

contains the correlation coefficients between the time series of
the vertex and each of the 150 average time-series computed
in the regions of the Destrieux atlas, available in freesurfer
(hence, Drest = 150). These two feature vectors are then
used as inputs of the multi-view representation learning al-
gorithms described in Section II.A. With a training set size
of 36 subjects out of the 40 available (see hereafter), the
multimodal autoencoder was trained with 36×20, 484 samples
of dimension Dconcat = Drest + Dtask = 294. The task
addressed in our experiments was to predict the GVMT score
of each participant from the full-brain information carried in
these connectivity and activation feature sets, using the trace
regression model trained on 36 subjects.

B. Deep autoencoders implementations

We used different types of autoencoders: linear and non
linear monomodal (simple) autoencoder (AE), multimodal
deep autoencoder (MDAE). For all the models, we investigated
several encoding dimensions from 2 to 100 (enc ∈ [2, .., 100]).
Table I reports the different architectures of AE and MDAE
models.

For all the network models, we tested different pairs of
activation functions for the hidden layers and output layer,
respectively: (linear, linear), (linear, sigmoid), (relu, linear),
and (relu, sigmoid).

All different autoencoders models were implemented using
the keras toolkit. Training was performed using the Adam
optimizer [26], with a learning rate (lr) equals to 10−3 over
300 epochs and a batch size of 500 samples.

C. Benchmarked representation learning methods

We performed a comparative study between several repre-
sentation learning models, including the two MDAE models
(concatenated inputs, and concatenated latent representations),
standard AE, principal component analysis (PCA) [27], in-
dependent component analysis (ICA) [28], deep canonically
correlated autoencoders (DCCAE) [10].



TABLE I
DETAILS ON ARCHITECTURES OF INVESTIGATED AE/MDAE MODELS.

THE MODELS ARE BUILT BY STACKING FULLY CONNECTED LAYERS
WHOSE DIMENSIONS ARE GIVEN FROM INPUT-LAYER TO OUTPUT LAYER,

WITH enc BEING THE DIMENSION OF THE ENCODING. FOR INSTANCE
[Dconcat , enc, Dconcat] STANDS FOR A ONE HIDDEN LAYER

ARCHITECTURE TAKING AS INPUT (AND LEARNED TO OUTPUT) THE
CONCATENATION OF xr AND xt , WHILE PROJECTING THROUGH A HIDDEN

LAYER OF SIZE enc.

Model (Number of
hidden layers) Architecture

[Dtask , enc, Dtask]
AE (one layer) [Drest, enc, Drest]

[Dconcat, enc, Dconcat]
[Dtask , 120, enc, 120, Dtask]
[Dtask , 130, enc, 130, Dtask]

MDAE/AE (two layers) [Drest, 120, enc, 120, Drest]
[Drest, 130, enc, 130, Drest]
[Dconcat, 150, enc, 150, Dconcat]
[Dconcat, 200, enc, 200, Dconcat]
[Dtask , 140, 120, enc, 120, 140, Dtask]
[Dtask , 140, 130, enc, 130, 140, Dtask]

MDAE/AE (three layers) [Drest, 140, 120, enc, 120, 140, Drest]
[Drest, 140, 130, enc, 130, 140, Drest]
[Dconcat, 250, 150, enc, 150, 250, Dconcat]
[Dconcat, 200, 130, enc, 130, 200, Dconcat]

1) PCA: as baseline, we investigated the use of PCA to re-
duce the dimensionality of multimodal fMRI data. PCA seeks
an optimal linear orthogonal transformation that provides a
new coordinate system, i.e., the latent space, in which basis
vectors follow modes of greatest variance in the original fMRI
data [27].

2) ICA: an extension of PCA technique, which aims to
optimize higher-order statistics such as kurtosis. Usually, it is
used as a computational method for separating a multivariate
signals into additive sub-components [28].

3) DCCAE: the aim is to optimize the combination of
canonical correlation between the learned bottleneck repre-
sentations (latent space) and the reconstruction errors of the
autoencoders [10]. In fact, it consists of two autoencoders on
top of two deep neural networks.

D. Evaluation scheme

In order to train the different models, we perform a 10-fold
cross-validation, i.e., for each fold, we used 36 subjects for
training and 4 subjects for testing. Moreover, we compared all
representation learning methods (AE, MDAE, DCCAE, PCA,
and ICA) based on the prediction error by computing the MSE
between the true behavioral score noted by y and the predicted
behavioral score estimated by the trace regression model noted
by ŷ. Therefore, we tested all methods on 10-fold cross-
validation, and we reported the average MSE for each method.
Moreover, we computed the average R-squared (coefficient of
determination) noted by R2, which is the fraction by which the
variance of the errors is less than the variance of the dependent
variable. It can be defined as follows:

R2 = 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(3)

where ŷi is the predicted behavioral score and the ȳi is the
mean of behavioral scores. The R2 indicates how well the
model predictions approximate the true values.

Fig. 3. Average MSE versus encoding dimension across 10-fold cross
validation using task-based fMRI data

E. Results: quantitative evaluation of the predictive model
In this section, we present the results obtained by our

predictive model. The trace regression model (II-B) is esti-
mated on the latent representation Z ∈ Rn×d. For the spatial
constraints, we use the Laplacian matrix of the graph given
by the triangulated cortical mesh. Indeed, we use the null
vector as initialization in order to catch only useful features.
This spatial regularization makes it possible to favor the nodes
having the same value as their neighbors. We empirically
found by cross-validation α and η respectively equals to 5e−4

and 1e−3 are the best hyper-parameters values. Moreover, in
order to benchmark our approach, we also applied the trace
regression model on the raw fMRI data. Hence, we perform
two main experimentation for the evaluation of the predictive
model, using unimodal and multimodal fMRI data.

1) Prediction performances using monomodal fMRI data:
In order to study individual differences from such a dataset, a
neuroscientist would classically use the single data modality
that relates the most closely to nature of the task used to mea-
sure the behavioral performance, hence task-fMRI (listening to
voices in task-fMRI, recognizing voices in the GVMT behav-
ioral score). We therefore provide a comparative study between
representation learning methods, including PCA, ICA, linear
AE, and non-linear AE with different pairs activation functions
using monomodal task-fMRI data. The aim, is to study the
influence of the nature of the representation learning models on
the regression task. Figure 3 reports the average MSE versus
encoding dimension using task-fMRI data. We can notice that
the best MSE for task-fMRI is obtained using the AE(relu,
linear) model, which is equal to 0.09, with an encoding
dimension of 10. We can also observe that all AE models
are effective with few dimensions (enc is between 10 and 20
features), while the other models require using many more
dimensions to reach their best performance, which demon-
strates the efficiency of the AE models at compressing the



TABLE II
BEST AVERAGE MSE AND R2 (± STANDARD ERROR) USING MONOMODAL FMRI DATA ESTIMATED ON TRACE REGRESSION MODEL AFTER

REGULARIZATION WITH SPATIAL CONSTRAINT (L1) AND PARSIMONY (L2) BASED ON PCA, ICA, AND DIFFERENT AE MODELS (3 LAYERS IS THE BEST
ARCHITECTURE: [Dtask , 140, 120, enc, 120, 140, Dtask ] AND [Drest , 140, 120, enc, 120, 140, Drest]).

task-fMRI rest-fMRI
Average MSE Average R2 Average MSE Average R2

PCA 0.152 (± 0.0035) 0.129 (± 0.0051) 0.345 (± 0.0082) 0.071 (± 0.0047)
ICA 0.137 (± 0.0094) 0.162 (± 0.0085) 0.345 (± 0.0032) 0.073 (± 0.0124)
AE (linear, linear) 0.091 (± 0.0071) 0.239 (± 0.0023) 0.340 (± 0.0195) 0.094 (± 0.0025)
AE (linear, sigmoid) 0.093 (± 0.0026) 0.201 (± 0.0096) 0.344 (± 0.0088) 0.081 (± 0.0040)
AE (relu, linear) 0.082 (± 0.0088) 0.259 (± 0.0075) 0.344 (± 0.0163) 0.086 (± 0.0019)
AE (relu, sigmoid) 0.102 (± 0.0053) 0.112 (± 0.0029) 0.342 (± 0.0179) 0.089 (± 0.0201)
Raw fMRI data 0.632 (± 0.0289) -2.703 (± 0.3055) 0.905 (± 0.0179) -8.384 (± 0.4241)

TABLE III
BEST AVERAGE MSE AND R2 (± STANDARD ERROR) USING MULTIMODAL FMRI DATA ESTIMATED ON TRACE REGRESSION MODEL AFTER

REGULARIZATION WITH SPATIAL CONSTRAINT (L1) AND PARSIMONY (L2) BASED ON PCA, ICA, DCCAE, AND DIFFERENT AE/MDAE MODELS (3
LAYERS IS THE BEST ARCHITECTURE: [Dconcat , 200, 130, enc, 130, 200, Dconcat]).

Concatenated inputs (task+rest-fMRI) Concatenated latent representations (zt + zr)
Average MSE Average R2 Average MSE Average R2

PCA 0.091 (± 0.0021) 0.239 (± 0.0048) N/A N/A
ICA 0.092 (± 0.0109) 0.223 (± 0.0090) N/A N/A
AE/MDAE (linear, linear) 0.083 (± 0.0067) 0.254 (± 0.0104) 0.065 (± 0.0058) 0.273 (± 0.0033)
AE/MDAE (linear, sigmoid) 0.083 (± 0.0089) 0.249 (± 0.0036) 0.079 (± 0.0124) 0.249 (± 0.0204)
AE/MDAE (relu, linear) 0.080 (± 0.0032) 0.262 (± 0.0136) 0.062 (± 0.0095) 0.282 (± 0.0044)
AE/MDAE (relu, sigmoid) 0.080 (± 0.0074) 0.260 (± 0.0281) 0.073 (± 0.0086) 0.254 (± 0.0051)
DCCAE N/A N/A 0.126 (±0.0075) 0.183 (±0.0093)
Raw fMRI data (xt + xr) N/A N/A - -

Fig. 4. Comparison of the average MSE (over the 10-fold cross-validation) for different relative sizes given to the task- and rest-fMRI modalities in the
bottleneck layer of the MDAE (larger size for rest-fMRI: zr > zt; larger size for task-fMRI: zt > zr ; equal sizes: zt = zr (A). MDAE (linear, linear), (B).
MDAE (linear, sigmoid), (C). MDAE (relu, linear), (D). MDAE (relu, sigmoid). Overall, the performances are higher when zt > zr .

data efficiently in this context. For the sake of exhaustivity, we
also compare the performances of the models estimated from
monomodal task-fMRI data and from monomodal rest-fMRI
data: Table II includes the best (across encoding dimension)
average MSE and R2 over the 10-fold cross validation, for
all representation learning models. The performances obtained
from monomodal rest-fMRI data are far worst than the ones
obtained for monomodal task-fMRI data. This was to be
expected since the task-fMRI data involved a cognitive task
that was very close to the one performed during the behavioral
GVMT test, while the rest-fMRI data only contains non-
specific information of the whole-brain functional connectiv-
ity. Moreover, the performances were also a lot better when
using a representation learning method than when using the
raw data (last row of Table II), both in terms of MSE and R2.
This demonstrates the added value of using such representation

learning approach for this task.

2) Multimodal representation learning: combining task-
and rest-fMRI: In this section, we compare the different im-
plementations of the two multimodal autoencoder introduced
in Section II.A, i.e. when the task- and rest-fMRI inputs are
combined to learn a multi-view representation. We compare
them, again, using MSE and R2. Hence, we report in Table III
the best (across encoding dimensions) average MSE and R2

over 10-fold cross validation using combined fMRI data for
each method. The best performances obtained using the first
architecture (AE, concatenation of the inputs, left part of
Table III) are MSE = 0.080 and R2 = 0.262 for the AE(relu,
linear) model, which are barely better than the performances
obtained from the monomodal model based on task-fMRI.
However, we obtain an important gain of performances with
our second multi-view architecture (MDAE, concatenation



Fig. 5. Average weight maps estimated using our task+rest fMRI-based predictive model of individual differences, thresholded after a test for statistical
significance (t > 2.45, p < 0.005). Regions of non zero average weight appear in color. (A) With the model using concatenated inputs in the MDAE (relu,
sigmoid), only small scattered regions are detected. (B) When using the concatenated latent representations in the MDAE (relu, sigmoid), several larger regions
are detected: regions tagged 3 and 4 are along the superior temporal gyrus bilaterally, region 1 is located in the fundus of the right superior temporal sulcus,
regions 2 and 5 are in the inferior frontal gyrus. All these regions perfectly match the neuroscientific literature [29]–[31].

of the latent representations): all MDAE models actually
outperform the monomodal models, the multimodal models
based on concatenated inputs, as well as the deep canonically
correlated autoencoder multimodal model (DCCAE). The best
model is the MDAE(relu, linear) model, with a MSE = 0.062
and R2 = 0.282. This clearly demonstrates the added value of
fusing task- and rest-fMRI in order to study inter-individual
differences, and that a multimodal autoencoder that operates
a concatenation of the latent representation is an efficient
representation learning scheme for this objective.

3) Influence of the relative size of the rest- and task-fMRI
in the bottleneck layer of the MDAE: Having demonstrated
the effectiveness of our approach, the objective of this section
is to attempt to differentially weight the two modalities in
order to further improve the performances obtained using our
MDAE with concatenated latent representations. To do so, we
vary the sizes of the latent representations zt and zr of each
modality for a given total encoding dimension. We present
three configurations where each configuration corresponds to
different sizes of the bottleneck layers zt and zr. Thereby,
in the first configuration, the size of zr > zt. In the second
configuration, the size of zr < zt, and in the last configuration
the sizes of zr and zt are equal (zr = zt). Figure 4 reports
the average MSE computed over the 10-fold cross-validation
using the four MDAE models with different pairs of activation
functions, which are the four best models identified previously
(see Table III). Using these three configurations, we aim
here at evaluating the importance of each modality for the
regression task. Overall, the best MSEs are obtained for the
second configuration, i.e. when zt > zr, showing that the task-
fMRI provides more information than the rest-fMRI data. For
instance, the best MSE is equal to 0.050 with MDAE(relu,
sigmoid) and the R2 is of 0.294 (±0.0048), where 8 features
extracted from task-fMRI and 2 features extracted from rest-
fMRI. Furthermore, for the MDAE(linear, linear) model, the
best average MSE and R2 are obtained with an encoding

dimension of 10, where again zt > zr. For the MDAE(relu,
linear) model, 20 features allow to get a higher prediction with
15 features from task-fMRI and 5 features from rest-fMRI. For
the MDAE (linear, sigmoid) model, the best MSE is equal
to 0.052 where 12 features extracted from task-fMRI and 8
features from rest-fMRI (20 features). We can conclude then
that the task-fMRI contributes more than the rest-fMRI, where
the MSE is very low and the prediction accuracy is sufficient.
Moreover, we have demonstrated that the concatenation of
bottleneck layer is more suitable than the concatenation of
inputs.

F. Neuroscientific relevance of the model

We now examine the neuroscientific relevance of our results.
Lacking a ground truth, we compare our results qualitatively
with state of the art knowledge extracted from the neuroscien-
tific literature [29]–[31]: knowing the task performed by the
subject (i.e the passive listening of vocal sounds), we can
expect to see a very focal network of brain regions located
bilaterally in the temporal lobe (along the superior temporal
gyrus and sulcus [29], [30]), as well as regions in the frontal
lobe (in the pre-central and inferior frontal gyri [31]). For this,
we present on Fig. 5 the average β̂ weight maps estimated
using the trace regression, for the multi-modal representations
obtained with either concatenated inputs or concatenated latent
representations. To ease the interpretation, these maps are
presented overlayed on the three-dimensional cortical mesh,
after performing a statistical test to extract significant clusters
of non-zero average weights (t-test, performed in SPM12;
thresholded at p < 0.005, i.e t > 2.45). The weight maps
estimated using the concatenation of the inputs (on the left)
present very few regions of small sizes where the average
weight is significantly non zero, scattered all over the cortex.
In contrast, the multi-view autoencoder based on concatenated
latent representations (on the right) yields several larger sig-
nificant regions which closely correspond to the expectations
described previously (see arrows on Fig. 5). Remarkably,



it allows detecting significant regions in the frontal lobe
bilaterally, regions that are known to be hard to detect (e.g.
92 subjects were used in [31] whereas only 39 were available
in the present study). This might reflect a gain in statistical
power that could be induced by an improved robustness of the
information present in the latent representation of the fused
task- and rest-fMRI data. Further experimental validation on
other datasets should be conducted to confirm this potential
gain in statistical power.

IV. CONCLUSION

In this paper, we introduced a novel machine learning
method which aims at mapping individual differences in
cortical architecture using multi-view representation learning.
Our method seeks to fuse task- and rest-fMRI in order to
exploit the complementary information they offer about brain
activation and connectivity respectively. To do so, a deep
multi-view autoencoder was designed to fuse the two fMRI
modalities, yielding a compressed joint representation space
within which a trace regression model is developed. This
model allows predicting the behavioral performances of new
patients. Our experimental results demonstrate the ability of
the proposed method to outperform competitive approaches
and produce interpretable and biologically plausible results
with a potential gain in statistical power. In the future, the
proposed method can be extended by introducing a graph
convolutional network model incorporating the 3-D cortical
mesh in order to preserve the spatial structure, but also by
adding extra data modalities that can characterize structural
connectivity or the local folding pattern of the cortex.
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