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Low bit-rate Speech Codec
based on a Long Term Harmonic plus Noise Mode

F. Ben Ali*, S. Djaziri-Larbi, L. Girin,

Abstract

The long-term harmonic plus noise model (LT-HNM) for speetfows an interesting data compression, since it exploits
the smooth evolution of the time trajectories of the shertat harmonic plus noise model parameters, by applying aaléesc
cosine model (DCM). In this paper, we extend the LT-HNM to anptete low bit-rate speech coder. A Normalized Split Vector
Quantization (NSVQ) is proposed to quantize the variabteedision LT-DCM vectors. The NSVQ is designed according & th
properties of the DCM vectors obtained from a standard $pdatabase. The obtained LT-HNM coder reaches an averagatéit
of 2.7kbps for wideband speech. The proposed coder is aedliraterms of modeling and coding errors, bit-rate, listgrguality
and intelligibility.

Index Terms
Low bit-rate, speech coding, long term modeling, harmonits moise model, variable dimension vector quantization.

I. INTRODUCTION

In speech/music coders and analysis/synthesis systeewralpmodeling is generally made on a short-term (ST) friame
frame basis: every 20ms or so. This is the case for most gppentrdels, including the linear prediction (LP) model [1}dan
the sinusoidal model [2], [3]. The main justification of th& Srocessing is that the signal is only locally (quasi-) istzdry
and in interactive applications, the segmentation is resogsfor quasi-real-time processing.

For speech signals, the evolution of the vocal tract condijom and glottal source activity is quite smooth and regfda
many speech sequences. Therefore, high correlation betsumeessive ST spectral parameters has been evidencedrahd c
exploited, especially in coding applications. For exampiger-frame LSF correlation is exploited in the LP codirghemes
of [4] and in matrix quantization [5]. In parallel, some siegl have attempted to explicitly take into account the simoess
of LP spectral parameters evolution in speech coding teciesi [6].

In all those studies, the interframe correlation has beemsidered “locally”, that is, between only two (or three for
matrix quantization) consecutive frames. This is mainlgéaese full-duplex telecommunications require limiting ttoding
delay. This constraint can be relaxed in many other appdieatin half-duplex communication, storage, or transfdram
and synthesis. These applications include archiving,-f@8peech modificatin/synthesis, telephony surveikadata, digital
answering machines, electronic voice mail, digital voiegding, electronic toys and video games [7]-[9].

In particular, transformation and synthesis of speechéndégcoder is an important application with relaxed delaystramts.
Transformation systems need an efficient and flexible reptaton of signals and a flexible access to the parameters fo
easy manipulation of the signal in the decoder. In MPEG-4iRatric Audio Coding, audio signals (speech and music) are
represented by object-based models (harmonic tones,ido@divtones and noise). This representation of signals éguency
and amplitude parameters permits simple and independient @nd playback speed modifications at the decoding stdjje [1
[12].

In such applications, the analysis-modeling-coding{sgsis process can be considered on larger signal windosvson.
what is referred to as a long-term (LT) section of signal ia tollowing. In that vein, the Temporal Decomposition teicjue
[13], [14] consists of decomposing the trajectory of spEditP) parameters into “target vectors” which are spardaiributed
in time and linked by interpolative functions. This methagsbeen applied to speech coding [15], and it remains a polwerf
tool for modeling the temporal structure of speech sigriatdlowing another idea, the authors of [16] proposed to c@sp
matrices of LSF parameters using a two-dimension (2D) foans e.g. a 2D Discrete Cosine Transform (DCT), similady t
block-based image compression. They provided interestsglts for different temporal sizes, up to 20 (10ms-sppt&#
vectors. A major point of this kind of method is that it jointkxploits the time and frequency correlation of LSF values.

More recently, Dusan el. have proposed in [17] to model the trajectories of ten camsex L SF parameters by a fourth-
order polynomial model. In addition, they implemented ayview bit rate speech coder exploiting this idea. At the same
time, it was proposed in [18] to model the LT trajectory ofusnidal speech parameters (the phase and the amplitude of
each harmonic) with a Discrete Cosine Model (DCM). In costtta [17], where the length of parameter trajectories amd th
order of the model were fixed, in [18] the long-term frames @watinuously voiced sections of speech, which exhibit very
variable size and “shape”; such a section can contain depbomemes or syllables. Therefore, the LT-DCM is adjusted t
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the characteristics of the modeled speech section, neguilti a variable trajectory size and model order, compareth¢o
ten-to-four conversion of [17]. In [19], this adaptive soiewas extended to the LT-modeling of spectral envelopenpetexs,
leading to a so-called 2D-cepstrum. Again, only voiced sphesections were processed, and they were considered dg pure
harmonic. The LT-DCM modeling has also been extended to L&®&rpeters in [20], including quantization aspects and the
processing of both voiced and unvoiced sections.

An important extension of the LT-modeling within the sinigad framework has been proposed in [21], [22] based on the
two-band Harmonic+Noise model (HNM) of [23]. Such HNM is pewlarly appropriate for modeling mixed voiced/unvoiced
speech signals. In [21], [22], the DCM has been applied tdrtjectories of the two-band HNM model parameters: thetsplec
envelope that here encompasses both harmonic and noiséuatedarameters, the fundamental frequehgyand the voicing
cut-off frequencyFy, that separates the low-frequency harmonic band and theffréghency noise band. The results of [21],
[22] have thus generalized the modeling of the spectrallepeeto any harmonic/noise combination, and has introdulced
LT modeling of theFy parameter.

In the present paper, we extend the LT-HNM presented in [2H] to a complete low bit-rate LT-HNM speech coder by
addressing quantization issues. Before entering intonieahchoices and details, it can be noted that, althougtsithesoidal
model and its different variants (including the HNM) havewh good performance in various speech processing applicat
such as speech transformation and synthesis [23]-[26],aféw works have attempted to implement a speech codec based
the ST sinusoidal model. This can be due to the difficulty afieg variable-size sets of amplitudes, and possibly fragiss
and phases, especially if no harmonicity is assumed.

In [27], spectral amplitudes and corresponding frequermsitipns are gathered in pair-vectors and coded using awect
guantization, while phases are scalar quantized. Thersgtaspeech codec provides bit-rates in the range of 3.75-Kbfs
for narrowband speech. A low bit-rate narrowband 2.4/408képeech codec based on the ST sinusoidal model is presented
in [28]. To reduce the parameter set, the sinusoidal comusenare forced to fit a harmonic model for voiced speech as
well as for unvoiced speech (a low fundamental frequencyhasen for noise representation). Harmonic amplitudestee t
transformed to a fixed length cepstral parameters set angftmmed back to frequency domain for DPCM (Differentialdeu
Code Modulation) quantization.

The objective of this paper is to present a methodology ferdésign of a (very) low-bitrate long-term speech coder dbase
on the Harmonic + Noise Model, and using existing ST-HNM gsialsynthesis methods and our previous work on long-term
spectral modeling. In the present paper we thus focus ontigasion aspects.

More specifically, the novelty lies in the vector quantieatof the LT-DCM vectors that model the time trajectories lué t
ST-HNM parameters. A main challenge is to cope with the dsimanvariability of the LT-DCM vectors across LT-sections
(in addition to the dynamic variability). Therefore, theoposed LT-HNM coder focuses on the design of a vector quatidiz
stage directly fitted to the properties of the LT-DCM coe#ittis, especially their dimension variability and their dgmcs.

In the literature, different quantization methods are ps#al, taking into consideration these two properties: i)eamrgain-
shape approach [29] is used when the coefficient values htarg@ dynamic, and ii) a split vector quantization techeids
proposed to face the variable vector dimension [30]. Weotolthis general line, and we propose to apply a normalizeid spl
vector quantization (NSVQ) technique to quantize the LTND@ectors corresponding to the LT time-trajectories of $pc
amplitudes, fundamental frequency and voicing cut-offjfrency. In the core of the paper, we motivate the choice fiar th
technique, w.r.t. other possible solutions.

Importantly, it must be made clear that the objective of glaper is not to design and thoroughly evaluate the bestlgessi
long-term coder, nor it is even to show that the HNM is the twsirt-term model candidate to be integrated in the LT
framework for such a task. Rather, it is to show the feagjbdind potential efficiency of the long-term approach to spee
coding in the HNM framework, i.e. we want to show that the ldagn approach can lead to a LT-HNM coder that is more
efficient than the ST-HNM (with similar ST parameterizadiam terms of quality/bitrate ratio (postulating that thdajeis not
an issue in the targeted applications).

The paper is organized as follows. In Section Il, a summarthef ST-HNM is given to introduce the parameters to be
LT-modeled. An overview of the LT-HNM, relying on previouwk, is presented in Section Ill. In Section 1V, we presemt th
proposed NSVQ approach for the LT-DCM vectors. StatisticsTeDCM vectors properties and the design of the quantirati
stage are presented and discussed in Section V. Experimmestdts related to coding errors, listening quality, iigéility
measure and obtained bit-rates are presented and disdasSedtion VI.

Il. SHORT TERM HARMONIC PLUSNOISE MODEL (ST-HNM)

The HNM concept has been first proposed in [31] as the mufidbaxcitation model: it splits the frequency band into
voiced and unvoiced sub-bands, where voiced sub-bands @deled by harmonic components, whereas unvoiced bands are
modeled by (colored) noise. This model is dedicated to sspresounds with a mixed harmonic/noise structure, suchixedm
voiced/unvoiced sounds of speech. This model inspired wltebiand HNM and the residual error HNM, both proposed by
Stylianouet al. in [23], [32].

In this study, we used the two-band ST-HNM presented in [f23], based on the generic two-band HNM of [23]. The
frequency band is split into two sub-bands, as illustratgdrig. 1: a harmonic sub-band containing harmonics of thedpe
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Fig. 1: Two-band HNM: harmonic lower sub-band containingnhanics of F; and noise upper sub-band.
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Fig. 2: Example of temporal segmentation of speech intoawi/) and unvoiced (UV) LT-sections.

signal (low frequencies), and a noise sub-band containigh fiequency noise components. These two bands are segarat
by a time-varying voicing cut-off frequencyy , which is the last harmonic frequency in the harmonic bandhis model,
the speech signal is segmented into short-term frames wiltwration of 30ms and a fixed hop-size of 20ms, as in [22]. The
ST-HNM parameters are extracted from each ST-frame, aflatbia [22]. For each ST-frame, these parameters are:

« Fundamental frequency Fy: Fy is obtained for each ST-frame using the autocorrelatisetianethod of [33].

« Voicing cut-off (VCO) frequency Fy: Fy is computed only for voiced ST-frames using the techniquergin [34].
For unvoiced framesk'y, is set to zero. Sincéy is the frequency of the last harmonic in a ST-frame, we ha&ygk) =
I Fy(k), wherel;, andFy (k) are respectively the number of harmonics and the fundarfeat@ency in the:** ST-frame.

« Harmonic parameters. For eachkt" ST-frame, a harmonic amplitude vector with sieis obtained by the iterative
analysis-by-synthesis method described in [3]. The cpmeding harmonic frequencies are obtained by multiplyiggk)
by the harmonic order.

« Noise parameters. The noise band is modeled by the sum of sinusoids at differeise frequencies. For each ST-frame,
noise amplitudes and frequencies are obtained by a peélagitechnique, similar to that used in [2].

I1l. LONG TERM HARMONIC PLUSNOISEMODEL (LT-HNM)

The aim of the LT-modeling of ST-parameter time-trajeasris to capture the temporal correlation between suceessiv
ST-parameters. This has the advantage to reduce significhetsize of the model data. The implementation of the LTANHN
is detailed in [21], [22]. We summarize in the following th& Imodeling steps.

A. Segmentation of the speech signal into LT-sections

The speech signal is first segmented, accordinfitealues, into LT-sections, i.e. blocks of ST-frames of Valéaduration,
based on voiced/unvoiced decision. Each LT-section ise#intirely voiced £y # 0 for all successive frames) either entirely



unvoiced ¢, = 0 for all successive frames). Typically, the duration of addarm section can be several hundreds of
milliseconds, and may contain up to ca. 60 ST-frames. Thigptwal segmentation is illustrated in Fig.2. The LT-model i
then applied to the trajectories of ST-parameters alon eaecsection.

B. Discrete Cosine Model (DCM) for the LT-modeling of theF8NM parameters trajectories

This study is based on the DCM to model the time-trajectasiethe ST-HNM parameters within a LT section. The DCM
approaches the data by a discrete sum of cosine functioms nfddel was first used for cepstral modeling in [28], [35]emh
it was applied to the LT modeling of harmonic parameters ],[119] and LP parameters in [20]. The DCM is defined as
follows:

P
X(n) = ZC(p) COS(p?T%), n=1,---,N, (1)

p=0

where the vectoX = [X(1),---, X (N)]” is the DCM model of the data vectd, both of lengthN and indexed byn.

C = [C(0),---,C(P)]T is the DCM vector of P + 1 coefficients, whereP is the DCM order. In cepstral modeling
represents the log-spectrum amplitudes and a frequency index [35]. In LT-modeling& contains the time-trajectory of a
parameter and is a time index. In a general manner, the DCM exhibits a goadarical stability compared to other models,
especially the polynomial model wheh becomes large.

In [21], [22], a detailed description of the application bfst model to the trajectories of the ST-HNM parameters igigiv
The LT-DCM coefficientsC are computed by minimizing a Weighted Mean Square Error éetwmodel and data. Two
iterative algorithms are proposed in [22] to determine tp&noal model order. A first “1D” iterative algorithm is appd to
the trajectory ofFy on each LT (voiced) section, to provide the optimal LT-DCMeffwient vectorCy,. This algorithm is
also applied to the trajectory of the voicing cut-off (VC@gduencyFy, to provideCg,,. For the LT modeling of the spectral
amplitudes, harmonic and noise amplitudes in a ST-framdimtegathered in a unique vector. Then a two-dimension DCM
is applied. The first DCM is applied within each ST-frame gdhe frequency axis (the same model order is used for all
ST-frames in a LT-section). The second DCM is a time-dimem&CM along a LT-section, applied to the time-trajectory of
each coefficient obtained from the first frequency-domaiVDE€or each LT section, we obtain a LT-DCM coefficient matrix
denotedC 4 . The first dimension of the matrix, is the frequency DCM ordlers 1, and the second dimension, is the temporal
DCM order plusl. Both orders are determined by the iterative algorithm gmeed in [22]. This 2D-DCM can be seen as an
extension of the 2D-cepstrum of [19] to the HNM model.

C. LT-HNM speech synthesis

The time-trajectories of the LT-modeled ST-HNM parametaes obtained from the LT-DCM coefficientSg,, Cr,, and
Ca by applying (1)! The mathematical details are given in [21]. The HNM synthesispeech signal is the summation of a
purely harmonic signal and a noise-like signal as detaitef@1]. Harmonic amplitudes are obtained by sampling the etexd
spectrum at harmonic frequencies (multiples of the modéigd while a regular sampling of the noise sub-band is used to
obtain the noise amplitudes and noise frequencies. Hamamplitudes are linearly interpolated across frames, antléative
instantaneous phases are approached by a continuous somwiaharmonic frequencies (multiplied B) with null initial
phases for each harmonic trajectory. The noise-like signsynthesized using an overlap-add technique, with rangloases,
similar to [3].

IV. LT-DCM COEFFICIENTS CODING

In this section, we present the core contribution of the gmepaper, i.e. the coding techniques that we applied to ®ur L
HNM in order to derive a complete LT-speech coder. The patarsa¢o be coded and sent to the receiver for each LT-section
are: i) the LT-DCM coefficients of the HNM parameters trageis Cr,, Cr,, and C,a), and ii) the LT-section lengthi
(the numer of ST-frames in a LT-section), which is requireddynthesis. For simplicity, and when appropriate, we usthé
following a common and simplified notatidd for all DCM vectors, i.eCg,, Cr,, and the rows ofC . We propose to apply
a mean-gain-shape vector quantization (VQ) to the LT-DCMffident vectorsC, while a binary representation is used for
the LT-section lengthi. Note that the Discrete Cosine Transform (DCT), which isseldo DCM, has been widely used in
image and video coding [36] and a modified DCT (MDCT) is usedome high quality audio coders as the MPEG-2 AAC
standard [37]. However, to our knowledge, no previous siidiealt with the quantization of DCM coefficients for speech
applications.

A. Scalar quantization of mean LT-DCM coefficient

To guide our choices for the design of the LT-DCM quantizers, first observed the distribution of the LT-DCM vector
coefficients. For this aim, we applied the LT-HNM on the tiaghspeech material described in Section V-A. This resuited

IFor spectral amplitudes, (1) is first applied on the time ,aaisl then on the frequency axis for each ST-frame.
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a database of LT-DCM coefficients composed, for each trgihifirsection, of two LT-DCM vectorsCr, andCp,,, and one
LT-DCM matrix C4 . Fig. 3 shows the histograms of the first LT-DCM coefficient@#, (a), of Cr,, (c) and of the rows of
Ca (e), compared with the histograms of the remaining coefiisi®f the LT-DCM vectors (Fig. 3 (b), (d) and (f)). The first
coefficient of each LT-DCM vecto€r, and Cr,,, denotedC(0), is significantly higher than the other values of the vector,
since it represents the mean value of the modeled datattrajedVe note that this property is not noticeable in the ocafse
Ca coefficients. We can see for example that the first coefficignt0) of Cr, exhibits a bimodal distribution with modes
at typical averager, values for male and female speech. Consequently, the fieffidents C(0) are discarded from the
vector quantization in order to increase its efficiency. ustdenote the new coefficient vectors and matrix rows (withioe
first coefficientC/(0)) by Cr,, Cr, andCa (C in generic form). Applying the mean-shape principle of weajuantization,
the first coefficientC'(0) of each LT-DCM vector is coded separately using scalar dzetitn (the “shape” coding ot

is presented in the next subsection). Optimal scalar qzenstiadapted to the statistical properties of €1®) database are
designed by applying the Lloyd-Max algorithm [30].

B. Dimension variability of the remaining LT-DCM vectors

The LT-DCM vectorsC (be it Cp,, Cr,, or a row of C,) have variable dimension, due to the variable duration of LT
sections and to the dynamics of the time trajectories of tN&Hparameters. Therefore, variable LT-DCM orders are oletdi
to reach the target LT-modeling errors. Fig. 4 shows thetlergriability of the LT-DCM vectors: The LT-model order i€ry
scattered within the rang@, 30]. We thus deal with a variable dimension vector quantizaposblem, with possibly long
vectors.

In the literature, some studies address the quantizatiora@@ble dimension vectors and propose some solutionstediap
to each case of study. A non square transform vector quaintizéNSTVQ) is proposed in [38], [39] to code harmonic
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amplitudes of the excitation in a LP codec: a non square Hitreaasform is applied to the variable dimension vectorsriheo

to obtain fixed length vectors which are then submitted to ¥Qother solution used for coding variable dimension harimon
amplitude vectors, and called Variable Dimension VectoaQization (VDVQ), consists in designing a single univéfsaed
length codebook and using a binary selector vector thattpoin the non zero components of the harmonic amplitude k&ecto
[40], [41]. In [42], the frequency scale is transformed fratertz to Mel scale to obtain fixed-length harmonic amplitude
vectors. The latter solution cannot be used in the case of THENM as it solves the dimension variability problem only
on the frequency scale. The limit of the VDVQ is that the maximvector length must be fixed, while in our case the
maximum discrete cosine model order is controlled by thdyaisasynthesis fitting of the model to the data. Concerniray
NSTVQ, the proposed LT-HNM incorporates already one (twodse of spectral amplitudes) non square transform (the DCM)
applied to each parameter leading to “decorrelated” an@rggrconcentrated” coefficients: adding an additional sqnare
transform prior to quantization may dangerously increaseitformation loss. In the following section, we developasiable
dimension vector quantization fitted to the particular ¢rmists of the LT-HNM and to the particular characteristafsthe
DCM coefficients, referred to by the Normalized Split Vec@uantization (NSVQ).

C. Proposed Normalized Split Vector Quantization

The proposed NSVQ quantizer for the remaining DCM vect6rss summarized in Fig. 5. As the LT-DCM vectors
corresponding tdFy, Fy and spectral amplitude& have similar characteristics, the same type of quantizepied to all
of them, although a code-book is designed for each of there. tbuhe shape and length variability of the DCM vectors, the
proposed quantization technique is based on mean-gapeshsantization and split vector quantization. The mean-ghape
technigue implies that we work with normalized coefficiertsd the splitting technique consists in splitting a longtee into
several sub-vectors [43], as shown on Fig. 5.

1) Normalization of the LT-DCM coefficient§the amplitude envelope of the coefficients within a givenD@M vector
C typically decreases with the coefficient rank. This resirtsn important variation of the DCM coefficient values asros
successive sub-vectors when splitting a DCM vector for tjmation. In order to optimize the efficiency of the quantiaa
codebook, we propose to normalize the LT-DCM vectors, shet &ll DCM coefficients vary in the same range, here in
[—1, 1]. The purpose of the shape normalization is to facilitatedbding of all sub-vectors with the same codebook. In other
words, the normalization enables to reduce the size of tldelmmok for a similar coding efficiency. We propose to apply th
following vector normalization:
Ci(d) — ny

Bi

where C; and P; refer respectively to the LT-DCM vector indexed byand the corresponding model ordgs. and 3; are
respectively the mean value and the maximum (absolute reght@alue of all DCM coefficients of rank in the training
database, given fof = 1 to max{P,;} by:

Ct(]) = J=1... miaX{Pi}v (2)

1 .
Ky = Wi;j\;{.a(ﬂ% 3

Bi = max{|G0) = il 4)
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where M is the set of LT-DCM vectors indiceswith C;(j) # 0 and card{.M;} is the cardinality ofM;. Fig. 6 gives
an example to explain the calculation pf (and §;): for a given rankj, u; is the mean of all coefficients of rankin the
LT-DCM vectors indexed inM ;. Note thaty; and ; are calculated from a training database and then saved ioatier
and the decoder, i.e. they are not concerned with quardiza@emember that the first coefficief{0) is not concerned by
this normalization, since it is quantized separately (¢fA). Note that (2) is inspired from the mean-gain-shape WQ29],
except that in our case the normalization is carried outsscedl vectors of the training database, while in [29] it isoaal
normalization of each vector.

2) Splitting the normalized DCM vectors into equal-lengtibh-sectors: The LT-DCM vectors have a variable and possibly
large dimension, as shown on Fig. 4. To avoid the use of a laajging database and to reduce the size of the codebook, we
propose to split the normalized vect@r into B smaller equal-length sub-vectors, deno@®, b = 1,--- , B. Since the size
of C is not necessarily a multiple of the fixed sub-vector size, list sub-vector of each vector is zero padded. Note Bhat
is variable: it depends on the length of the correspondingpCM vector.

3) Two-stage Vector Quantizatio two-stage vector quantization is applied to the fixed-tarig-DCM sub-vectors. The
two cascaded vector quantizers, illustrated on Fig. 7,idea higher quantization accuracy when using a trainingluete with
limited size, and much lower computational complexity camgal to single-stage VQ [43]. Thélbstage quantizer is applied
to CP while the resulting error vector is quantized by th¥-8tage quantizer. The total quantization error corresjmntb
sub-vectorCP is given in the sub-vectdEP.

4) Coded streamfor each LT-section, the parameters sent to the receivaharel-section length and the quantization
indices ofC(0) and CP for each HNM parameter. The number of sub-vectBréor each DCM vector must also be sent for
each HNM parameter. The ordét of the DCM applied to the spectral amplitudes on the frequemds is also needed to
determine the first dimension of the matix

D. The LT-DCM decoding

The decoding of the LT-DCM vectors is carried out by invegtithe quantization and normalization steps given in 1V-C.
The decoded sub-vectors are represented by the codewalelseth byi-.» in the codebook. We first concatenate the coded
sub-vectors of each LT-DCM vector. Then, we apply the derdimation corresponding to (2):

Cq(j)zﬁjéq(j)+uja ]:157PI7 (5)

where P; is the order of the LT-DCM vector being decoded. Remind thatrormalization coefficientg; andg; are stored
in the receiver and the exponeptefers to the coded data. The obtained DCM vector is finallycatenated to the decoded
first coefficientC?(0) leading to the final coded LT-DCM vectd&gq.

V. CODEBOOKS DESIGN BIT ALLOCATIONS AND BIT-RATES

In this section, we describe the experimental procedur¢hfrdesign and the test of the proposed LT-HNM speech codec.
We first describe the speech databases that we used fongrand testing the codec. We then detail the design of thewrect
and scalar quantizers codebooks and we discuss differeatid¢ation configurations and the resulting bit-rates.
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A. Speech material

In this study, we used the American TIMIT database [44], dathpt 16kHz.2,720 items of this database, each consisting
of a complete sentence, were used for the training of thetteas (38% female and 6% male speakers, with a total duration
of about 122min). The segmentation of the training speeafpes into voiced and unvoiced LT-sections yieldeid122 LT-
sections:49% voiced (ca. 69min) and1% unvoiced (ca. 53min). The mean duration of a voiced LT-secis about 195ms
and about 145ms for unvoiced LT-sections. The test datalsasemposed of 300 items (150 female and 150 male speakers)
with a total duration of about 14min. It is composed4gd69 LT-sections,49% voiced and51% unvoiced. Statistics about the
duration of LT-sections are given in Fig. 8.

In parallel, a French speech database was used for suljdistigning quality and intelligibility assessment witheRch
speaking subjects. This database was developed for vocibraatry for the Hearing in Noise Test (HINT) [45] and is
composed of 20 phonetically balanced sentences (only rpalakers) sampled at 16kHz, with a total duration of 63see. Th
segmentation in LT-sections yieldéd6 voiced LT-sections (6% of the total duration) and74 unvoiced LT-sections (34 of
the total duration). The statistics of the LT-section diorad for HINT are displayed on Fig. 8.

B. Design of the VQ Codebooks

A VQ codebook is designed for each type of LT-DCM parametetar i.e. for Fy, Fy and the rows ofA.

A two-stage VQ is used, as detailed in Section I1V-C3. Eachebodk is optimized using the Linde-Buzo-Gray (LBG)
algorithm [30], [43]. 50 iterations are run to obtain the ebdok for each stage. This iteration number shows a goocecgence
of the optimization algorithm for each codebook.



C. Design of the scalar quantizers f6r(0)

An optimal scalar quantization codebook is designed foffitisé coefficientC(0) of each HNM parametet(, Fy and A).
The scalar quantizers are optimized according to the bligtan of these coefficients on Fig. 3. The histograms of tiative
Root Mean Squared Errors (rRMSE) for each LT-DCM vectoregiby equation (6), resulting from an 8-bit optimal scalar
guantization, are shown in Fig.9: The results show that tiiing errors lie around 0% for F, and Fy,, and around % for

spectral amplitudesl.
—(Cla 2
Ec(()) = \/%a (6)

whereC?(0) is the coded value of’(0).

D. Bit allocation and bit-rates

A different bit allocation is assigned to each codebook. Waade byN, the bit allocation of the coefficients'(0) and
by N1 and N, the bit allocations of the first and the second stage VQ resedc A different bit allocation( Ny, N1, No) is
assigned for each HNM parametdiy( £y and A). We discuss in the following the results for two configuvas of the bit
allocation, given in Table |. The first configuration corresgds to the largest codebook size we could generate, whérgtak
into consideration database size, complexity and comguiime limits, while the second configuration is a trade-affviieen
low bit-rate and listening quality.

For each bit-allocation, the obtained average bit-r&te is the summation of four basic average bit-rates for the HNM
parametersRy,, Rr, and R4 and Ry for the LT-section lengthk:

Rr = RFU + RFV + Ra+ Rk. (7)

For each LT-section, leB and P be the number of sub-vectors in a DCM-vectdand the first dimension oA respectively.
The obtained average bit-rates for each LT-section arendive

1
Rp, .\, = T[NO + Np + B(Ny + Na)l, (8)
1
1
Rk = ?NK, (10)

whereRFm,V] can beRpg, or Rr,, Ng, Nk, Np represent the number of bits used for the binary representaspectively
for the number of sub-vectoB for a DCM-vector, the number of ST-framés in a LT-section and the frequency-dimension
DCM order P (first dimension ofA) and T is the duration of the LT-section. Note that the number of-gettorsB is the
same for all rows of the matriA in a LT-section, since the same DCM order is used for the teatmbmension.

In Table |, we show the obtained average bit-rates over akddtions of the test database. Here a sub-vector length was
set to 5 coefficients and the bit allocation was fixedg; = 7, Np = 6 and Ng = 2. The first bit allocation configuration
yields an average bit-rate 8685 bps, while the second bit allocation configuration yieldsazarage bit-rate o2,721bps.

Note that an important part of the bit-rate (88%) is dedicated to the coding of spectral amplitudes.
The coding errors corresponding to both considered bitatlons are evaluated in the following section.

VI. EVALUATION OF THE COMPLETELT-HNM SPEECH CODEC

The evaluation of the LT-HNM speech codec is carried out gu¢ire test speech database described in Section V-A. We
first provide illustrative examples of LT-modeled and queed parameter trajectories. Then we present quantitatzasures
of LT-modeling/coding errors for each HNM parameter. Hingberceptual listening quality of the coded speech is uatad
with the objective quality assessment algorithm PESQ [@#5]] (we used here WB-PESQ for wide-band speech) and with
subjective mean opinion score (MOS) tests. Additional escibje tests are processed to assess the intelligibilithefcoded
speech.

First Allocation Second Allocation
No Ny No Bit-rate No Ny No Bit-rate
(bps) (bps)
Fo 8 9 6 179 6 7 5 143
Fy 8 9 6 181 6 7 5 144
A 8 7 7 3284 6 5 5 2721
K - - 41 - - - 41
Total - - - 3685 - - - 2721

TABLE |: Two configurations of bit allocation and correspamgl average bit-rates for the quantization of the LT-DCM
coefficients of each HNM parameter.
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A. Examples of LT-modeled/quantized parameter trajeesori

Fig. 10 illustrates an example of the reconstruction of tiéMHparameters, after modeling with the LT-DCM and after
LT-coding (LT-DCM + guantization) aRRr ~ 3.6 kbps. The time trajectories dfy and Fy, are displayed in the left and right
figure, respectively. Globally the trajectories of the Lddeled parameters and of the LT-modeled and quantized p#eesn
follow well the original (i.e. ST) trajectories. We note drig example that the reconstruction &f is more accurate than that
of Fy, i.e. closer to the ST parameter trajectories.

Fig. 11 displays an example of reconstructed spectral amagls vector in a voiced ST-frame, after LT-modeling anéraft
LT-modeling + quantization. We see in this figure that glbjdahe spectral shape is well modeled and coded by the peapos
technique. In this example, the effect of the quantizat®®mbderate compared to the effect of the LT-modeling. In taaidi
the LT-modeling is less accurate in the noise-band compargide harmonic band.

B. Measure of the coding and modeling errors

— Analyzed amplitudes
““““ LT modeled amplitudes
60- = =Coded and Lt modeled amplituge:

4

Amplitudes (dB)
w P
e 2

[NY
@

—
<?

! ! ! ! ! “‘-ﬁ" ! -
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

Fig. 11: Example of analyzed, LT modeled and both LT modeled eoded spectral amplitudes in a voiced ST-frame.
(Rr ~ 3.6 kbps)

Three errors are considered for each HNM parameter, astddpin Fig. 12: i)e’”, the LT-modeling error, ii)e,, the
guantization error and iii)eqLT, the total coding error resulting from both LT-modeling agdantization. These errors are
evaluated for each LT-section indexed by For the frequencie$, and Fy,, we compute the error rate ifh (rRMSE) as:

1K (F(k) — F(R))?
rRMSE = = kz TERE (11)

=1
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(a) rRMSE for F0 - DT=3.6kbps
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Fig. 13: The obtained rRMSE foFy (a and b) andFy (c and d), and SNR for amplitudes (e and f); (a), (c) and (e):
Rr =~ 3.6 kbps; (b), (d) and (f):Ry = 2.7 kbps. Scores on the plots indicate the mean values of thebdata

where F refers toF, or Fy, and F is the modeled and/or coded version®f andk and K are respectively the index and
the number of ST-frames in the LT-section. For the spectrgdlaudesA, a signal-to-noise ratio (SNR) is evaluated in dB for

each LT section according to:

K SopEy Ag(k)?

Kk R (Ag (k) = Ap(k))?

where N}, is the number of frequency components in #i& ST-frame, and4; is the modeled and/or coded version 4f.
Fig. 13 displays the statistics of the errors of the threeap@tersF,, Fy and A. Both bit-allocations of Table | are
considered. Comparing the results of Fig. 13 (a) and (b) Yad (d), we may note that the errors ép are smaller than
those onFy, . This is in part due to the dynamic behavior of the time trimjges of Fy, compared to the smoother time trajectory
of Fy, as illustrated in Fig. 10. Another reason is the roundinghef modeledry, values to a multiple of the modelefy,
which induces cumulative errors. In a general manner, niogie€rror and quantization error cumulate to yield the tetabr
(see the related discussion in [48]). Fbg, the LT-modeling error is significantly lower than the quaation error, hence
the quantization error is much closer to the total error. lmeeo words the total error is mostly due to the quantizatifms
confirms the observation made in Fig. 10. Hgr, the contributions of the LT-modeling and of the quantiaatto the total
error are more balanced. In contrast, Fig. 13 (e) and (f) sthaty at Ry ~ 3.6kbps, the distortion due to the LT-modeling of
the amplitudes is higher than that caused by the quantizatimeed, the mean SNR due to LT-modeling is arouddB,
while it reachesl5.7dB for the quantization. The resulting average SNR for th@mglete LT-coding process is abogi3dB.
This confirms the observation made in Fig. 11.
Rt =~ 2.7kbps is a configuration with a better balance between LT-fimagland quantization: the corresponding average SNRs
are closer (about0.7dB and11.7dB respectively). The total average erro6i9dB. As expected, the overall results of Fig. 13
confirm thate,, and thuseZ”, are higher at the lower bit-rate.

SNR= 10log;, , (12)



12

mean=2.9 27
_ mean=2.
3.5 30=0.2 020
] - mean=2.4
! ! 0=0.3
3 ] ! e mean=2:1
— ' 0=0.3
1
25 i . :
+ 1 1
—r
t 1
1
i 1
+ 1 1
—_ !
15 : i :
¥ —_
*

(a) ST-HNM (b) LT-HNM (c) D=3.6kbps (d) D=2.7kbps

Fig. 14: Listening quality: PESQ scores of TIMIT test datsdna

The way the modeling error and the quantization error cbute to the total error is not easy to characterize and is not
expected to be linear. The optimal control of the total ebhyan automatic “weighting” of the LT-modeling and quantiaa
processes remains out of the scope of the present study, isuthus a very interesting perspective to improve the psego
LT-HNM codec.

C. Listening quality assessment

We first assess the perceptual listening quality of the ®sitled speech using the ITU-T standard Perceptual Evatuati
of Speech Quality (PESQ) algorithm [47]. PESQ is an intreigiveasure, i.e. it compares the degraded speech to theabrigin
sample and delivers a score in the range from -Bdsi(quality - very annoyingo 4.5 excellent quality-imperceptibjeFig. 14
shows the PESQ scores obtained for all the test databaset alifteeent steps of the LT-HNM coder: Fig. 14(a) correspsnd
to the PESQ scores of the ST-HNM modeled speech, while Fifh)1ghows the scores of the LT-HNM speech (LT-DCM
modeling of HNM parameters without quantization). Fromstheesults, it is clear that the main quality degradatioruis
the first step, i.e. the ST-HNM, where the mean PESQ scoredjswhich indicates alightly annoying impairmentwhereas
the LT-HNM speech displays a score of 2.7, which is in the sgodity range glightly annoying.

Fig. 14(c) and Fig.14(d) show the mean and standard demiatfothe PESQ scores of the coded LT-HNM speech for
both considered bit-rates. The PESQ scores corresponadliig-t=~ 3.6kbps indicate a mean score degradation of about 0.3
compared with the LT-HNM results, which seems reasonablel, /as expected, Fig. 14(d) shows that the speech quality
decreases with the bit-rate: & ~ 2.7kbps, the mean PESQ score reaches 2.1, which correspoaasioyingquality.

Note that the overall average PESQ scores degradation fieRN®/ to coded LT-HNM speechK = 2.7kbps) is about 0.8
(from 2.9 to 2.1), which emphasizes again that the overstittiing quality loss is to a large extent due to the initialF8IM
representation of the speech signal, and not only to LT-timmgl@nd quantization. We believe that a series of improv@me
can be conducted, not only on the proposed LT-coding teci@sigbut also on the initial ST-HNM on which these LT-coding
techniques were applied.

To confirm the objective ratings, subjective listeningtestre also carried out in-lab with 12 nave male and femalecfre
speaking listeners, aged within 23-30 years, using the HifdBabase (in French) [45]. Subjects listened (with highlityu
headphones) to randomly played speech samples, composgdiofal, ST- and LT-HNM synthesized samples without and
with coding (atRy ~ 2.7 kbps). Listeners were asked to rate the listening qualitthefheard sentences according to the
ITU-T P.800 recommendation [49], using Absolute Categoayi®) (see Table Il). For comparison, the PESQ scores for the
French HINT database were also computed.

The obtained MOS and PESQ scores for the French test databmshown on Fig. 15. We first note that, in the case of
the LT-HNM (with and without coding), the average PESQ and3/&2ores are similar (about 2.5 for the LT-modeled speech
and 1.9 for the coded speech & = 2.7kbps), which proves a high correlation between objectiMES®) and subjective

MOS | Quality Impairment
5 Excellent | Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

TABLE II: Mean Opinion Score (MOS).
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Fig. 15: PESQ and MOS scores for HINT speech samples: (a)[VLHb) LT-HNM only, (¢) Coded speech &t =~ 2.7kbps.

(MOS) quality scores when applying the LT-model. Howevkis is not true for the ST-HNM synthesized samples, where the
mean PESQ score is equal to 3.1, while the mean MOS scoree®&ch. We also note that the average PESQ and MOS
scores of the LT-modeled and the coded HINT samples (2.5 @hdegpectively), are lower than the average scores of TIMIT
samples (2.7 and 2.1 respectively) (cf. Fig. 14). This maylbe to the presence of longer LT-sections in French, as ob&der
on Fig. 8, where the average duration of TIMIT voiced LT-g&tis 195ms, while it reache806ms for the French database.
In addition, the quantizers were designed using trainimysas from TIMIT and not from HINT (since this latter databds

not large enough). Also, note that some studies have repartenguage dependency of PESQ assessment tool [50] [5]1] [52

D. Intelligibility measure

Subijective intelligibility tests have also been condudie@ssess the intelligibility of the LT-HNM modeled/codgzksch.
The Hearing in Noise Test measures a person’s ability to sigaech in quiet and in noise, it has been developed for medica
use to measure the sentence Speech Reception ThresholtPY§58, but this test is nowadays widely used to evaluate the
speech intelligibility of enhanced and coded speech [54.0afried out the HINT test with 12 French speaking subjetts w
listened (with high-quality headphones) to 12 differeneérith speech samples from the French database: 6 LT-HNM and 6
coded LT-HNM at2.7 kbps. They were asked to repeat each sample after listeniitg The intelligibility is measured by
the rate of correct words from all listened words over alt &mples [54]. We obtained an intelligibility rate 9.7% for
the LT-HNM synthesized speech, afdd.5% for the coded LT-HNM speech, which indicates that the codédHNM speech
provides a good intelligibility even if the listening qugliwas rated as annoying.

E. Discussion

Although the results presented above show that the proposéddr provides a good intelligibility at low bit-rates, the
enhancement of the global listening quality remains an iamb issue for the comfort of the user.

It seems too early to compare the performance of the proposger with thoroughly optimized commercial coders, as the
NB-HVXC or the WB-EVS (wide-band enhanced voice servicedar) for example, which provides a good quality (MEEE5)
at 5.9kbps [55]. We emphasize that the results of sectionr&felated to the coding of wide-band speech at such lowalbétsr
as2.7kbps. However, it is worth to note that the MPEG-4 paramettidio coders HVXC (Harmonic Vector Excitation Coder)
[56] and HILN (Harmonic and Individual Lines plus Noise) [53rovide listening quality of the coded narrow-band signal
at 2 and 6kbps, respectively, which lies in the same rangeSNg) as the results of Fig. 14c).

According to the quality ratings of Fig. 14 and Fig. 15, it Isar that the listening quality degradation is mainly duehte
modeling part of the coder (i.e. ST-HNM and LT-HNM) ratheathto the quantization part. To reduce the speech distoition
would be interesting to strengthen the modeling conssaintthe ST- and LT-HNM (higher modeling order, lower modglin
errors, etc.) to reach higher quality ratings prior to queation. In addition, the impact of each parameter (fregies¥;, Fy
and amplitudesA) on the listening quality needs to be analyzed separatelyrdier to recognize which of them has to be
modeled more accurately. The quantization stage can thesvddeated at lower (and different) bit allocatioi¥y, N1, N2)
to achieve a trade-off between the target bit-rate and gtenling quality.

2sSRT: in speech audiometry, it is the decibel level at whigbb5f heard words can be repeated correctly by the subject.
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VIl. CONCLUSION

The objective of this paper is to evaluate the feasibilitg &fficiency of the LT approach to speech coding in the HNM
framework. We thus presented the design of a complete lowahst speech coder based on the long-term harmonic plus
noise model (LT-HNM) [22] by adding a variable-dimensiorctig quantization stage. To our knowledge, no previousistud
addressed the quantization of DCM coefficients obtainethftbe LT-modeling of speech signals. Hence we carried out a
statistical study of these coefficients to design an appatgruantization technique. The proposed Normalizedt $plitor
Quantization (NSVQ) is adjusted to the properties of the@MDcoefficients. We presented first experiments to evaluste t
proposed LT-HNM speech coder with two bit allocations, aelrig the average bit-rates 3.6kbps and 2.7kbps for widetba
speech. Although the proposed coder achieved good iribeliig at both tested bit-rates, the global signal quatign still be
improved. The results of section V indicate that the modegning quality is mainly due to the ST- and LT-modelingtpar
of the coder, with mean PESQ scores of 2.9 and 2.7 respeactiveleed, the quantization stage reduces the mean ligtenin
quality score by 0.3 and 0.6 respectively at 3.6kbps andupgk

The LT-HNM coder that we propose in this paper can still berimepd to make it good candidate for commercial applications
These improvements will be addressed in future work. Rdatity, the ST and LT target modeling errors can be adjusted t
achieve a given quality score prior to quantization. Thenpapromise between target bit-rate and global quality baset
achieved, for example by optimizing the bit allocation te ttifferent HNM parameters according to their impact on the
achieved quality. Besides, in order to decrease the hit-va¢ think about introducing perceptual criteria to redtieeshort-
term data-rate prior to quantization, as proposed in [58k the auditory masking is exploited to discard inauditdgquency
components from coding.
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