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Low bit-rate Speech Codec
based on a Long Term Harmonic plus Noise Model

F. Ben Ali∗, S. Djaziri-Larbi, L. Girin,

Abstract

The long-term harmonic plus noise model (LT-HNM) for speechshows an interesting data compression, since it exploits
the smooth evolution of the time trajectories of the short-term harmonic plus noise model parameters, by applying a discrete
cosine model (DCM). In this paper, we extend the LT-HNM to a complete low bit-rate speech coder. A Normalized Split Vector
Quantization (NSVQ) is proposed to quantize the variable dimension LT-DCM vectors. The NSVQ is designed according to the
properties of the DCM vectors obtained from a standard speech database. The obtained LT-HNM coder reaches an average bit-rate
of 2.7kbps for wideband speech. The proposed coder is evaluated in terms of modeling and coding errors, bit-rate, listening quality
and intelligibility.

Index Terms

Low bit-rate, speech coding, long term modeling, harmonic plus noise model, variable dimension vector quantization.

I. I NTRODUCTION

In speech/music coders and analysis/synthesis systems, spectral modeling is generally made on a short-term (ST) frame-by-
frame basis: every 20ms or so. This is the case for most spectral models, including the linear prediction (LP) model [1] and
the sinusoidal model [2], [3]. The main justification of the ST processing is that the signal is only locally (quasi-) stationary
and in interactive applications, the segmentation is necessary for quasi-real-time processing.

For speech signals, the evolution of the vocal tract configuration and glottal source activity is quite smooth and regular for
many speech sequences. Therefore, high correlation between successive ST spectral parameters has been evidenced and can be
exploited, especially in coding applications. For example, inter-frame LSF correlation is exploited in the LP coding schemes
of [4] and in matrix quantization [5]. In parallel, some studies have attempted to explicitly take into account the smoothness
of LP spectral parameters evolution in speech coding techniques [6].

In all those studies, the interframe correlation has been considered “locally”, that is, between only two (or three for
matrix quantization) consecutive frames. This is mainly because full-duplex telecommunications require limiting the coding
delay. This constraint can be relaxed in many other applications in half-duplex communication, storage, or transformation
and synthesis. These applications include archiving, Text-to-Speech modificatin/synthesis, telephony surveillance data, digital
answering machines, electronic voice mail, digital voice logging, electronic toys and video games [7]–[9].

In particular, transformation and synthesis of speech in the decoder is an important application with relaxed delay constraints.
Transformation systems need an efficient and flexible representation of signals and a flexible access to the parameters for
easy manipulation of the signal in the decoder. In MPEG-4 Parametric Audio Coding, audio signals (speech and music) are
represented by object-based models (harmonic tones, individual tones and noise). This representation of signals by frequency
and amplitude parameters permits simple and independent pitch and playback speed modifications at the decoding stage [10]–
[12].

In such applications, the analysis-modeling-coding-synthesis process can be considered on larger signal windows, i.e. on
what is referred to as a long-term (LT) section of signal in the following. In that vein, the Temporal Decomposition technique
[13], [14] consists of decomposing the trajectory of spectral (LP) parameters into “target vectors” which are sparselydistributed
in time and linked by interpolative functions. This method has been applied to speech coding [15], and it remains a powerful
tool for modeling the temporal structure of speech signals.Following another idea, the authors of [16] proposed to compress
matrices of LSF parameters using a two-dimension (2D) transform, e.g. a 2D Discrete Cosine Transform (DCT), similarly to
block-based image compression. They provided interestingresults for different temporal sizes, up to 20 (10ms-spaced) LSF
vectors. A major point of this kind of method is that it jointly exploits the time and frequency correlation of LSF values.

More recently, Dusan etal. have proposed in [17] to model the trajectories of ten consecutive LSF parameters by a fourth-
order polynomial model. In addition, they implemented a very low bit rate speech coder exploiting this idea. At the same
time, it was proposed in [18] to model the LT trajectory of sinusoidal speech parameters (the phase and the amplitude of
each harmonic) with a Discrete Cosine Model (DCM). In contrast to [17], where the length of parameter trajectories and the
order of the model were fixed, in [18] the long-term frames arecontinuously voiced sections of speech, which exhibit very
variable size and “shape”: such a section can contain several phonemes or syllables. Therefore, the LT-DCM is adjusted to
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the characteristics of the modeled speech section, resulting in a variable trajectory size and model order, compared tothe
ten-to-four conversion of [17]. In [19], this adaptive scheme was extended to the LT-modeling of spectral envelope parameters,
leading to a so-called 2D-cepstrum. Again, only voiced speech sections were processed, and they were considered as purely
harmonic. The LT-DCM modeling has also been extended to LSF parameters in [20], including quantization aspects and the
processing of both voiced and unvoiced sections.

An important extension of the LT-modeling within the sinusoidal framework has been proposed in [21], [22] based on the
two-band Harmonic+Noise model (HNM) of [23]. Such HNM is particularly appropriate for modeling mixed voiced/unvoiced
speech signals. In [21], [22], the DCM has been applied to thetrajectories of the two-band HNM model parameters: the spectral
envelope that here encompasses both harmonic and noise amplitude parameters, the fundamental frequencyF0, and the voicing
cut-off frequencyFV that separates the low-frequency harmonic band and the high-frequency noise band. The results of [21],
[22] have thus generalized the modeling of the spectral envelope to any harmonic/noise combination, and has introducedthe
LT modeling of theFV parameter.

In the present paper, we extend the LT-HNM presented in [21],[22] to a complete low bit-rate LT-HNM speech coder by
addressing quantization issues. Before entering into technical choices and details, it can be noted that, although thesinusoidal
model and its different variants (including the HNM) have shown good performance in various speech processing applications
such as speech transformation and synthesis [23]–[26], only a few works have attempted to implement a speech codec basedon
the ST sinusoidal model. This can be due to the difficulty of coding variable-size sets of amplitudes, and possibly frequencies
and phases, especially if no harmonicity is assumed.

In [27], spectral amplitudes and corresponding frequency positions are gathered in pair-vectors and coded using a vector
quantization, while phases are scalar quantized. The obtained speech codec provides bit-rates in the range of 3.75–7.75 kbps
for narrowband speech. A low bit-rate narrowband 2.4/4.8kbps speech codec based on the ST sinusoidal model is presented
in [28]. To reduce the parameter set, the sinusoidal components are forced to fit a harmonic model for voiced speech as
well as for unvoiced speech (a low fundamental frequency is chosen for noise representation). Harmonic amplitudes are then
transformed to a fixed length cepstral parameters set and transformed back to frequency domain for DPCM (Differential Pulse
Code Modulation) quantization.

The objective of this paper is to present a methodology for the design of a (very) low-bitrate long-term speech coder based
on the Harmonic + Noise Model, and using existing ST-HNM analysis-synthesis methods and our previous work on long-term
spectral modeling. In the present paper we thus focus on quantization aspects.

More specifically, the novelty lies in the vector quantization of the LT-DCM vectors that model the time trajectories of the
ST-HNM parameters. A main challenge is to cope with the dimension variability of the LT-DCM vectors across LT-sections
(in addition to the dynamic variability). Therefore, the proposed LT-HNM coder focuses on the design of a vector quantization
stage directly fitted to the properties of the LT-DCM coefficients, especially their dimension variability and their dynamics.
In the literature, different quantization methods are proposed, taking into consideration these two properties: i) a mean-gain-
shape approach [29] is used when the coefficient values have alarge dynamic, and ii) a split vector quantization technique is
proposed to face the variable vector dimension [30]. We follow this general line, and we propose to apply a normalized split
vector quantization (NSVQ) technique to quantize the LT-DCM vectors corresponding to the LT time-trajectories of spectral
amplitudes, fundamental frequency and voicing cut-off frequency. In the core of the paper, we motivate the choice for this
technique, w.r.t. other possible solutions.

Importantly, it must be made clear that the objective of thispaper is not to design and thoroughly evaluate the best possible
long-term coder, nor it is even to show that the HNM is the bestshort-term model candidate to be integrated in the LT
framework for such a task. Rather, it is to show the feasibility and potential efficiency of the long-term approach to speech
coding in the HNM framework, i.e. we want to show that the long-term approach can lead to a LT-HNM coder that is more
efficient than the ST-HNM (with similar ST parameterization) in terms of quality/bitrate ratio (postulating that the delay is not
an issue in the targeted applications).

The paper is organized as follows. In Section II, a summary ofthe ST-HNM is given to introduce the parameters to be
LT-modeled. An overview of the LT-HNM, relying on previous work, is presented in Section III. In Section IV, we present the
proposed NSVQ approach for the LT-DCM vectors. Statistics of LT-DCM vectors properties and the design of the quantization
stage are presented and discussed in Section V. Experimental results related to coding errors, listening quality, intelligibility
measure and obtained bit-rates are presented and discussedin Section VI.

II. SHORT TERM HARMONIC PLUS NOISE MODEL (ST-HNM)

The HNM concept has been first proposed in [31] as the multi-band excitation model: it splits the frequency band into
voiced and unvoiced sub-bands, where voiced sub-bands are modeled by harmonic components, whereas unvoiced bands are
modeled by (colored) noise. This model is dedicated to represent sounds with a mixed harmonic/noise structure, such as mixed
voiced/unvoiced sounds of speech. This model inspired the two-band HNM and the residual error HNM, both proposed by
Stylianouet al. in [23], [32].

In this study, we used the two-band ST-HNM presented in [21],[22], based on the generic two-band HNM of [23]. The
frequency band is split into two sub-bands, as illustrated by Fig. 1: a harmonic sub-band containing harmonics of the speech
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Fig. 1: Two-band HNM: harmonic lower sub-band containing harmonics ofF0 and noise upper sub-band.
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Fig. 2: Example of temporal segmentation of speech into voiced (V) and unvoiced (UV) LT-sections.

signal (low frequencies), and a noise sub-band containing high frequency noise components. These two bands are separated
by a time-varying voicing cut-off frequencyFV , which is the last harmonic frequency in the harmonic band. In this model,
the speech signal is segmented into short-term frames with aduration of 30ms and a fixed hop-size of 20ms, as in [22]. The
ST-HNM parameters are extracted from each ST-frame, as detailed in [22]. For each ST-frame, these parameters are:

• Fundamental frequency F0: F0 is obtained for each ST-frame using the autocorrelation-based method of [33].
• Voicing cut-off (VCO) frequency FV : FV is computed only for voiced ST-frames using the technique given in [34].

For unvoiced frames,FV is set to zero. SinceFV is the frequency of the last harmonic in a ST-frame, we have:FV (k) =
IkF0(k), whereIk andF0(k) are respectively the number of harmonics and the fundamental frequency in thekth ST-frame.

• Harmonic parameters: For eachkth ST-frame, a harmonic amplitude vector with sizeIk is obtained by the iterative
analysis-by-synthesis method described in [3]. The corresponding harmonic frequencies are obtained by multiplyingF0(k)
by the harmonic order.

• Noise parameters: The noise band is modeled by the sum of sinusoids at differentnoise frequencies. For each ST-frame,
noise amplitudes and frequencies are obtained by a peak-picking technique, similar to that used in [2].

III. L ONG TERM HARMONIC PLUS NOISE MODEL (LT-HNM)

The aim of the LT-modeling of ST-parameter time-trajectories is to capture the temporal correlation between successive
ST-parameters. This has the advantage to reduce significantly the size of the model data. The implementation of the LT-HNM
is detailed in [21], [22]. We summarize in the following the LT modeling steps.

A. Segmentation of the speech signal into LT-sections

The speech signal is first segmented, according toF0 values, into LT-sections, i.e. blocks of ST-frames of variable duration,
based on voiced/unvoiced decision. Each LT-section is either entirely voiced (F0 6= 0 for all successive frames) either entirely
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unvoiced (F0 = 0 for all successive frames). Typically, the duration of a long-term section can be several hundreds of
milliseconds, and may contain up to ca. 60 ST-frames. This temporal segmentation is illustrated in Fig.2. The LT-model is
then applied to the trajectories of ST-parameters along each LT-section.

B. Discrete Cosine Model (DCM) for the LT-modeling of the ST-HNM parameters trajectories

This study is based on the DCM to model the time-trajectoriesof the ST-HNM parameters within a LT section. The DCM
approaches the data by a discrete sum of cosine functions. This model was first used for cepstral modeling in [28], [35]. Then
it was applied to the LT modeling of harmonic parameters in [18], [19] and LP parameters in [20]. The DCM is defined as
follows:

X̃(n) =
P∑

p=0

C(p) cos(pπ
n

N
), n = 1, · · · , N, (1)

where the vector̃X = [X̃(1), · · · , X̃(N)]T is the DCM model of the data vectorX, both of lengthN and indexed byn.
C = [C(0), · · · , C(P )]T is the DCM vector ofP + 1 coefficients, whereP is the DCM order. In cepstral modeling,X
represents the log-spectrum amplitudes andn is a frequency index [35]. In LT-modeling,X contains the time-trajectory of a
parameter andn is a time index. In a general manner, the DCM exhibits a good numerical stability compared to other models,
especially the polynomial model whenP becomes large.

In [21], [22], a detailed description of the application of this model to the trajectories of the ST-HNM parameters is given.
The LT-DCM coefficientsC are computed by minimizing a Weighted Mean Square Error between model and data. Two
iterative algorithms are proposed in [22] to determine the optimal model order. A first “1D” iterative algorithm is applied to
the trajectory ofF0 on each LT (voiced) section, to provide the optimal LT-DCM coefficient vectorCF0

. This algorithm is
also applied to the trajectory of the voicing cut-off (VCO) frequencyFV to provideCFV

. For the LT modeling of the spectral
amplitudes, harmonic and noise amplitudes in a ST-frame arefirst gathered in a unique vector. Then a two-dimension DCM
is applied. The first DCM is applied within each ST-frame along the frequency axis (the same model order is used for all
ST-frames in a LT-section). The second DCM is a time-dimension DCM along a LT-section, applied to the time-trajectory of
each coefficient obtained from the first frequency-domain DCM. For each LT section, we obtain a LT-DCM coefficient matrix
denotedCA. The first dimension of the matrix, is the frequency DCM orderplus1, and the second dimension, is the temporal
DCM order plus1. Both orders are determined by the iterative algorithm presented in [22]. This 2D-DCM can be seen as an
extension of the 2D-cepstrum of [19] to the HNM model.

C. LT-HNM speech synthesis

The time-trajectories of the LT-modeled ST-HNM parametersare obtained from the LT-DCM coefficientsCF0
, CFV

and
CA by applying (1).1 The mathematical details are given in [21]. The HNM synthesized speech signal is the summation of a
purely harmonic signal and a noise-like signal as detailed in [21]. Harmonic amplitudes are obtained by sampling the modeled
spectrum at harmonic frequencies (multiples of the modeledF0), while a regular sampling of the noise sub-band is used to
obtain the noise amplitudes and noise frequencies. Harmonic amplitudes are linearly interpolated across frames, and cumulative
instantaneous phases are approached by a continuous summation of harmonic frequencies (multiplied by2π) with null initial
phases for each harmonic trajectory. The noise-like signalis synthesized using an overlap-add technique, with randomphases,
similar to [3].

IV. LT-DCM COEFFICIENTS CODING

In this section, we present the core contribution of the present paper, i.e. the coding techniques that we applied to our LT-
HNM in order to derive a complete LT-speech coder. The parameters to be coded and sent to the receiver for each LT-section
are: i) the LT-DCM coefficients of the HNM parameters trajectories (CF0

, CFV
andCA), and ii) the LT-section lengthK

(the numer of ST-frames in a LT-section), which is required for synthesis. For simplicity, and when appropriate, we use in the
following a common and simplified notationC for all DCM vectors, i.e.CF0

, CFV
and the rows ofCA. We propose to apply

a mean-gain-shape vector quantization (VQ) to the LT-DCM coefficient vectorsC, while a binary representation is used for
the LT-section lengthK. Note that the Discrete Cosine Transform (DCT), which is close to DCM, has been widely used in
image and video coding [36] and a modified DCT (MDCT) is used insome high quality audio coders as the MPEG-2 AAC
standard [37]. However, to our knowledge, no previous studies dealt with the quantization of DCM coefficients for speech
applications.

A. Scalar quantization of mean LT-DCM coefficient

To guide our choices for the design of the LT-DCM quantizers,we first observed the distribution of the LT-DCM vector
coefficients. For this aim, we applied the LT-HNM on the training speech material described in Section V-A. This resultedin

1For spectral amplitudes, (1) is first applied on the time axis, and then on the frequency axis for each ST-frame.
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a database of LT-DCM coefficients composed, for each training LT-section, of two LT-DCM vectors,CF0
andCFV

, and one
LT-DCM matrix CA. Fig. 3 shows the histograms of the first LT-DCM coefficient ofCF0

(a), ofCFV
(c) and of the rows of

CA (e), compared with the histograms of the remaining coefficients of the LT-DCM vectors (Fig. 3 (b), (d) and (f)). The first
coefficient of each LT-DCM vectorCF0

andCFV
, denotedC(0), is significantly higher than the other values of the vector,

since it represents the mean value of the modeled data trajectory. We note that this property is not noticeable in the caseof
CA coefficients. We can see for example that the first coefficientCF0(0) of CF0

exhibits a bimodal distribution with modes
at typical averageF0 values for male and female speech. Consequently, the first coefficientsC(0) are discarded from the
vector quantization in order to increase its efficiency. Letus denote the new coefficient vectors and matrix rows (without the
first coefficientC(0)) by ĊF0

, ĊFV
andĊA (Ċ in generic form). Applying the mean-shape principle of vector quantization,

the first coefficientC(0) of each LT-DCM vector is coded separately using scalar quantization (the “shape” coding oḟC
is presented in the next subsection). Optimal scalar quantizers adapted to the statistical properties of theC(0) database are
designed by applying the Lloyd-Max algorithm [30].

B. Dimension variability of the remaining LT-DCM vectors

The LT-DCM vectorsĊ (be it ĊF0
, ĊFV

or a row of ĊA) have variable dimension, due to the variable duration of LT-
sections and to the dynamics of the time trajectories of the HNM parameters. Therefore, variable LT-DCM orders are obtained
to reach the target LT-modeling errors. Fig. 4 shows the length variability of the LT-DCM vectors: The LT-model order is very
scattered within the range[1, 30]. We thus deal with a variable dimension vector quantizationproblem, with possibly long
vectors.

In the literature, some studies address the quantization ofvariable dimension vectors and propose some solutions adapted
to each case of study. A non square transform vector quantization (NSTVQ) is proposed in [38], [39] to code harmonic
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amplitudes of the excitation in a LP codec: a non square linear transform is applied to the variable dimension vectors in order
to obtain fixed length vectors which are then submitted to VQ.Another solution used for coding variable dimension harmonic
amplitude vectors, and called Variable Dimension Vector Quantization (VDVQ), consists in designing a single universal fixed
length codebook and using a binary selector vector that points on the non zero components of the harmonic amplitude vectors
[40], [41]. In [42], the frequency scale is transformed fromHertz to Mel scale to obtain fixed-length harmonic amplitude
vectors. The latter solution cannot be used in the case of theLT-HNM as it solves the dimension variability problem only
on the frequency scale. The limit of the VDVQ is that the maximum vector length must be fixed, while in our case the
maximum discrete cosine model order is controlled by the analysis-synthesis fitting of the model to the data. Concerningthe
NSTVQ, the proposed LT-HNM incorporates already one (two incase of spectral amplitudes) non square transform (the DCM)
applied to each parameter leading to “decorrelated” and “energy-concentrated” coefficients: adding an additional nonsquare
transform prior to quantization may dangerously increase the information loss. In the following section, we develop a variable
dimension vector quantization fitted to the particular constraints of the LT-HNM and to the particular characteristicsof the
DCM coefficients, referred to by the Normalized Split VectorQuantization (NSVQ).

C. Proposed Normalized Split Vector Quantization

The proposed NSVQ quantizer for the remaining DCM vectorsĊ is summarized in Fig. 5. As the LT-DCM vectors
corresponding toF0, FV and spectral amplitudesA have similar characteristics, the same type of quantizer isapplied to all
of them, although a code-book is designed for each of them. Due to the shape and length variability of the DCM vectors, the
proposed quantization technique is based on mean-gain-shape quantization and split vector quantization. The mean-gain-shape
technique implies that we work with normalized coefficients, and the splitting technique consists in splitting a long vector into
several sub-vectors [43], as shown on Fig. 5.

1) Normalization of the LT-DCM coefficients:The amplitude envelope of the coefficients within a given LT-DCM vector
Ċ typically decreases with the coefficient rank. This resultsin an important variation of the DCM coefficient values across
successive sub-vectors when splitting a DCM vector for quantization. In order to optimize the efficiency of the quantization
codebook, we propose to normalize the LT-DCM vectors, such that all DCM coefficients vary in the same range, here in
[−1, 1]. The purpose of the shape normalization is to facilitate thecoding of all sub-vectors with the same codebook. In other
words, the normalization enables to reduce the size of the codebook for a similar coding efficiency. We propose to apply the
following vector normalization:

C̄i(j) =
Ċi(j)− µj

βj

, j = 1, . . . , max
i

{Pi}, (2)

where Ċi andPi refer respectively to the LT-DCM vector indexed byi and the corresponding model order.µj and βj are
respectively the mean value and the maximum (absolute centered) value of all DCM coefficients of rankj in the training
database, given forj = 1 to max

i
{Pi} by:

µj =
1

card{Mj}

∑

i∈Mj

Ci(j), (3)

βj = max
i∈Mj

{|Ci(j)− µj |}, (4)
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whereMj is the set of LT-DCM vectors indicesi with Ci(j) 6= 0 and card{Mj} is the cardinality ofMj . Fig. 6 gives
an example to explain the calculation ofµj (andβj): for a given rankj, µj is the mean of all coefficients of rankj in the
LT-DCM vectors indexed inMj. Note thatµj and βj are calculated from a training database and then saved in thecoder
and the decoder, i.e. they are not concerned with quantization. Remember that the first coefficientC(0) is not concerned by
this normalization, since it is quantized separately (cf. IV-A). Note that (2) is inspired from the mean-gain-shape VQ in [29],
except that in our case the normalization is carried out across all vectors of the training database, while in [29] it is a local
normalization of each vector.

2) Splitting the normalized DCM vectors into equal-length sub-vectors:The LT-DCM vectors have a variable and possibly
large dimension, as shown on Fig. 4. To avoid the use of a largetraining database and to reduce the size of the codebook, we
propose to split the normalized vectorC̄ into B smaller equal-length sub-vectors, denotedC̄

b, b = 1, · · · , B. Since the size
of C̄ is not necessarily a multiple of the fixed sub-vector size, the last sub-vector of each vector is zero padded. Note thatB

is variable: it depends on the length of the corresponding LT-DCM vector.
3) Two-stage Vector Quantization:A two-stage vector quantization is applied to the fixed-length LT-DCM sub-vectors. The

two cascaded vector quantizers, illustrated on Fig. 7, provide a higher quantization accuracy when using a training database with
limited size, and much lower computational complexity compared to single-stage VQ [43]. The 1st-stage quantizer is applied
to C̄

b while the resulting error vector is quantized by the 2nd-stage quantizer. The total quantization error corresponding to
sub-vectorC̄b is given in the sub-vectorEb.

4) Coded stream:For each LT-section, the parameters sent to the receiver arethe LT-section lengthK and the quantization
indices ofC(0) andC̄b for each HNM parameter. The number of sub-vectorsB for each DCM vector must also be sent for
each HNM parameter. The orderP of the DCM applied to the spectral amplitudes on the frequency axis is also needed to
determine the first dimension of the matrixA.

D. The LT-DCM decoding

The decoding of the LT-DCM vectors is carried out by inverting the quantization and normalization steps given in IV-C.
The decoded sub-vectors are represented by the codewords indexed byiCb in the codebook. We first concatenate the coded
sub-vectors of each LT-DCM vector. Then, we apply the denormalization corresponding to (2):

Cq(j) = βjC̄
q(j) + µj , j = 1, · · · , Pi, (5)

wherePi is the order of the LT-DCM vector being decoded. Remind that the normalization coefficientsµj andβj are stored
in the receiver and the exponentq refers to the coded data. The obtained DCM vector is finally concatenated to the decoded
first coefficientCq(0) leading to the final coded LT-DCM vectorCq.

V. CODEBOOKS DESIGN, BIT ALLOCATIONS AND BIT-RATES

In this section, we describe the experimental procedure forthe design and the test of the proposed LT-HNM speech codec.
We first describe the speech databases that we used for training and testing the codec. We then detail the design of the vector
and scalar quantizers codebooks and we discuss different bit allocation configurations and the resulting bit-rates.
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Fig. 9: Histograms of the coding rRMSE ofC(0) with an 8-bit optimal scalar quantization.

A. Speech material

In this study, we used the American TIMIT database [44], sampled at 16kHz.2,720 items of this database, each consisting
of a complete sentence, were used for the training of the quantizers (38% female and 62% male speakers, with a total duration
of about 122min). The segmentation of the training speech samples into voiced and unvoiced LT-sections yielded44,122 LT-
sections:49% voiced (ca. 69min) and51% unvoiced (ca. 53min). The mean duration of a voiced LT-section is about 195ms
and about 145ms for unvoiced LT-sections. The test databaseis composed of 300 items (150 female and 150 male speakers)
with a total duration of about 14min. It is composed of4,969 LT-sections,49% voiced and51% unvoiced. Statistics about the
duration of LT-sections are given in Fig. 8.

In parallel, a French speech database was used for subjective listening quality and intelligibility assessment with French
speaking subjects. This database was developed for vocal audiometry for the Hearing in Noise Test (HINT) [45] and is
composed of 20 phonetically balanced sentences (only male speakers) sampled at 16kHz, with a total duration of 63sec. The
segmentation in LT-sections yielded136 voiced LT-sections (66% of the total duration) and174 unvoiced LT-sections (34% of
the total duration). The statistics of the LT-section durations for HINT are displayed on Fig. 8.

B. Design of the VQ Codebooks

A VQ codebook is designed for each type of LT-DCM parameter vector, i.e. forF0, FV and the rows ofA.
A two-stage VQ is used, as detailed in Section IV-C3. Each codebook is optimized using the Linde-Buzo-Gray (LBG)

algorithm [30], [43]. 50 iterations are run to obtain the codebook for each stage. This iteration number shows a good convergence
of the optimization algorithm for each codebook.
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C. Design of the scalar quantizers forC(0)

An optimal scalar quantization codebook is designed for thefirst coefficientC(0) of each HNM parameter (F0, FV andA).
The scalar quantizers are optimized according to the distribution of these coefficients on Fig. 3. The histograms of the relative
Root Mean Squared Errors (rRMSE) for each LT-DCM vector, given by equation (6), resulting from an 8-bit optimal scalar
quantization, are shown in Fig.9: The results show that the coding errors lie around 0.1% for F0 andFV , and around 1% for
spectral amplitudesA.

EC(0) =

√
(C(0)− Cq(0))2

C(0)2
, (6)

whereCq(0) is the coded value ofC(0).

D. Bit allocation and bit-rates

A different bit allocation is assigned to each codebook. We denote byN0 the bit allocation of the coefficientsC(0) and
by N1 andN2 the bit allocations of the first and the second stage VQ respectively. A different bit allocation(N0, N1, N2) is
assigned for each HNM parameter (F0, FV andA). We discuss in the following the results for two configurations of the bit
allocation, given in Table I. The first configuration corresponds to the largest codebook size we could generate, when taking
into consideration database size, complexity and computing time limits, while the second configuration is a trade-off between
low bit-rate and listening quality.

For each bit-allocation, the obtained average bit-rateRT is the summation of four basic average bit-rates for the HNM
parameters:RF0 , RFV

andRA andRK for the LT-section lengthK:

RT = RF0 +RFV
+RA +RK . (7)

For each LT-section, letB andP be the number of sub-vectors in a DCM-vectorĊ and the first dimension ofA respectively.
The obtained average bit-rates for each LT-section are given by:

RF[0,V ]
=

1

T
[N0 +NB +B(N1 +N2)], (8)

RA =
1

T
[NP +NB + (P + 1)[N0 +B(N1 +N2)]], (9)

RK =
1

T
NK , (10)

whereRF[0,V ]
can beRF0 or RFV

, NB, NK , NP represent the number of bits used for the binary representation respectively
for the number of sub-vectorsB for a DCM-vector, the number of ST-framesK in a LT-section and the frequency-dimension
DCM orderP (first dimension ofA) andT is the duration of the LT-section. Note that the number of sub-vectorsB is the
same for all rows of the matrixA in a LT-section, since the same DCM order is used for the temporal dimension.

In Table I, we show the obtained average bit-rates over all LT-sections of the test database. Here a sub-vector length was
set to 5 coefficients and the bit allocation was fixed to:NK = 7, NP = 6 andNB = 2. The first bit allocation configuration
yields an average bit-rate of3,685 bps, while the second bit allocation configuration yields anaverage bit-rate of2,721bps.
Note that an important part of the bit-rate (ca.88%) is dedicated to the coding of spectral amplitudes.
The coding errors corresponding to both considered bit allocations are evaluated in the following section.

VI. EVALUATION OF THE COMPLETE LT-HNM SPEECH CODEC

The evaluation of the LT-HNM speech codec is carried out using the test speech database described in Section V-A. We
first provide illustrative examples of LT-modeled and quantized parameter trajectories. Then we present quantitativemeasures
of LT-modeling/coding errors for each HNM parameter. Finally, perceptual listening quality of the coded speech is evaluated
with the objective quality assessment algorithm PESQ [46],[47] (we used here WB-PESQ for wide-band speech) and with
subjective mean opinion score (MOS) tests. Additional subjective tests are processed to assess the intelligibility ofthe coded
speech.

First Allocation Second Allocation
N0 N1 N2 Bit-rate N0 N1 N2 Bit-rate

(bps) (bps)
F0 8 9 6 179 6 7 5 143
FV 8 9 6 181 6 7 5 144
A 8 7 7 3284 6 5 5 2721
K - - - 41 - - - 41

Total - - - 3685 - - - 2721

TABLE I: Two configurations of bit allocation and corresponding average bit-rates for the quantization of the LT-DCM
coefficients of each HNM parameter.
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Fig. 10: Example of time trajectory of analyzed, LT modeled and both LT modeled and codedF0 (top) andFV (bottom)
(RT ≈ 3.6 kbps). The LT-modeled trajectories fit better the analyzed values than the coded ones.

A. Examples of LT-modeled/quantized parameter trajectories

Fig. 10 illustrates an example of the reconstruction of the HNM parameters, after modeling with the LT-DCM and after
LT-coding (LT-DCM + quantization) atRT ≈ 3.6 kbps. The time trajectories ofF0 andFV are displayed in the left and right
figure, respectively. Globally the trajectories of the LT-modeled parameters and of the LT-modeled and quantized parameters
follow well the original (i.e. ST) trajectories. We note on this example that the reconstruction ofF0 is more accurate than that
of FV , i.e. closer to the ST parameter trajectories.

Fig. 11 displays an example of reconstructed spectral amplitudes vector in a voiced ST-frame, after LT-modeling and after
LT-modeling + quantization. We see in this figure that globally, the spectral shape is well modeled and coded by the proposed
technique. In this example, the effect of the quantization is moderate compared to the effect of the LT-modeling. In addition,
the LT-modeling is less accurate in the noise-band comparedto the harmonic band.

B. Measure of the coding and modeling errors
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Fig. 11: Example of analyzed, LT modeled and both LT modeled and coded spectral amplitudes in a voiced ST-frame.
(RT ≈ 3.6 kbps)

Three errors are considered for each HNM parameter, as depicted on Fig. 12: i)eLT , the LT-modeling error, ii)eq, the
quantization error and iii)eLT

q , the total coding error resulting from both LT-modeling andquantization. These errors are
evaluated for each LT-section indexed bym. For the frequenciesF0 andFV , we compute the error rate in% (rRMSE) as:

rRMSE =

√√√√ 1

K

K∑

k=1

(F (k) − F̃ (k))2

F (k)2
, (11)
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whereF refers toF0 or FV and F̃ is the modeled and/or coded version ofF , andk andK are respectively the index and
the number of ST-frames in the LT-section. For the spectral amplitudesA, a signal-to-noise ratio (SNR) is evaluated in dB for
each LT section according to:

SNR= 10 log10

[
1

K

K∑

k=1

∑Nk

f=1 Af (k)
2

∑Nk

f=1(Af (k)− Ãf (k))2

]
, (12)

whereNk is the number of frequency components in thekth ST-frame, andÃf is the modeled and/or coded version ofAf .
Fig. 13 displays the statistics of the errors of the three parametersF0, FV and A. Both bit-allocations of Table I are

considered. Comparing the results of Fig. 13 (a) and (b) to (c) and (d), we may note that the errors onF0 are smaller than
those onFV . This is in part due to the dynamic behavior of the time trajectories ofFV compared to the smoother time trajectory
of F0, as illustrated in Fig. 10. Another reason is the rounding ofthe modeledFV values to a multiple of the modeledF0,
which induces cumulative errors. In a general manner, modeling error and quantization error cumulate to yield the totalerror
(see the related discussion in [48]). ForF0, the LT-modeling error is significantly lower than the quantization error, hence
the quantization error is much closer to the total error. In other words the total error is mostly due to the quantization.This
confirms the observation made in Fig. 10. ForFV , the contributions of the LT-modeling and of the quantization to the total
error are more balanced. In contrast, Fig. 13 (e) and (f) showthat, atRT ≈ 3.6kbps, the distortion due to the LT-modeling of
the amplitudes is higher than that caused by the quantization. Indeed, the mean SNR due to LT-modeling is around10.7dB,
while it reaches15.7dB for the quantization. The resulting average SNR for the complete LT-coding process is about8.3dB.
This confirms the observation made in Fig. 11.
RT ≈ 2.7kbps is a configuration with a better balance between LT-modeling and quantization: the corresponding average SNRs
are closer (about10.7dB and11.7dB respectively). The total average error is6.9dB. As expected, the overall results of Fig. 13
confirm thateq, and thuseLT

q , are higher at the lower bit-rate.
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Fig. 14: Listening quality: PESQ scores of TIMIT test database.

The way the modeling error and the quantization error contribute to the total error is not easy to characterize and is not
expected to be linear. The optimal control of the total errorby an automatic “weighting” of the LT-modeling and quantization
processes remains out of the scope of the present study, but it is thus a very interesting perspective to improve the proposed
LT-HNM codec.

C. Listening quality assessment

We first assess the perceptual listening quality of the synthesized speech using the ITU-T standard Perceptual Evaluation
of Speech Quality (PESQ) algorithm [47]. PESQ is an intrusive measure, i.e. it compares the degraded speech to the original
sample and delivers a score in the range from -0.5 (bad quality - very annoying) to 4.5 (excellent quality-imperceptible). Fig. 14
shows the PESQ scores obtained for all the test database and at different steps of the LT-HNM coder: Fig. 14(a) corresponds
to the PESQ scores of the ST-HNM modeled speech, while Fig. 14(b) shows the scores of the LT-HNM speech (LT-DCM
modeling of HNM parameters without quantization). From these results, it is clear that the main quality degradation is due to
the first step, i.e. the ST-HNM, where the mean PESQ score is 2.9, which indicates aslightly annoying impairment, whereas
the LT-HNM speech displays a score of 2.7, which is in the samequality range (slightly annoying).

Fig. 14(c) and Fig.14(d) show the mean and standard deviation of the PESQ scores of the coded LT-HNM speech for
both considered bit-rates. The PESQ scores corresponding to RT ≈ 3.6kbps indicate a mean score degradation of about 0.3
compared with the LT-HNM results, which seems reasonable. And, as expected, Fig. 14(d) shows that the speech quality
decreases with the bit-rate: atRT ≈ 2.7kbps, the mean PESQ score reaches 2.1, which corresponds toannoyingquality.

Note that the overall average PESQ scores degradation from ST-HNM to coded LT-HNM speech (RT = 2.7kbps) is about 0.8
(from 2.9 to 2.1), which emphasizes again that the overall listening quality loss is to a large extent due to the initial ST-HNM
representation of the speech signal, and not only to LT-modeling and quantization. We believe that a series of improvement
can be conducted, not only on the proposed LT-coding techniques, but also on the initial ST-HNM on which these LT-coding
techniques were applied.

To confirm the objective ratings, subjective listening tests were also carried out in-lab with 12 nave male and female french
speaking listeners, aged within 23-30 years, using the HINTdatabase (in French) [45]. Subjects listened (with high-quality
headphones) to randomly played speech samples, composed oforiginal, ST- and LT-HNM synthesized samples without and
with coding (atRT ≈ 2.7 kbps). Listeners were asked to rate the listening quality ofthe heard sentences according to the
ITU-T P.800 recommendation [49], using Absolute Category Rating (see Table II). For comparison, the PESQ scores for the
French HINT database were also computed.

The obtained MOS and PESQ scores for the French test databaseare shown on Fig. 15. We first note that, in the case of
the LT-HNM (with and without coding), the average PESQ and MOS scores are similar (about 2.5 for the LT-modeled speech
and 1.9 for the coded speech atRT = 2.7kbps), which proves a high correlation between objective (PESQ) and subjective

MOS Quality Impairment
5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

TABLE II: Mean Opinion Score (MOS).
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(MOS) quality scores when applying the LT-model. However, this is not true for the ST-HNM synthesized samples, where the
mean PESQ score is equal to 3.1, while the mean MOS score reaches 3.6. We also note that the average PESQ and MOS
scores of the LT-modeled and the coded HINT samples (2.5 and 1.9 respectively), are lower than the average scores of TIMIT
samples (2.7 and 2.1 respectively) (cf. Fig. 14). This may bedue to the presence of longer LT-sections in French, as observed
on Fig. 8, where the average duration of TIMIT voiced LT-section is 195ms, while it reaches306ms for the French database.
In addition, the quantizers were designed using training samples from TIMIT and not from HINT (since this latter database is
not large enough). Also, note that some studies have reported a language dependency of PESQ assessment tool [50] [51] [52].

D. Intelligibility measure

Subjective intelligibility tests have also been conductedto assess the intelligibility of the LT-HNM modeled/coded speech.
The Hearing in Noise Test measures a person’s ability to hearspeech in quiet and in noise, it has been developed for medical
use to measure the sentence Speech Reception Threshold (sSRT2) [53], but this test is nowadays widely used to evaluate the
speech intelligibility of enhanced and coded speech [54]. We carried out the HINT test with 12 French speaking subjects who
listened (with high-quality headphones) to 12 different French speech samples from the French database: 6 LT-HNM and 6
coded LT-HNM at2.7 kbps. They were asked to repeat each sample after listening to it. The intelligibility is measured by
the rate of correct words from all listened words over all test samples [54]. We obtained an intelligibility rate of99.7% for
the LT-HNM synthesized speech, and94.5% for the coded LT-HNM speech, which indicates that the coded LT-HNM speech
provides a good intelligibility even if the listening quality was rated as annoying.

E. Discussion

Although the results presented above show that the proposedcoder provides a good intelligibility at low bit-rates, the
enhancement of the global listening quality remains an important issue for the comfort of the user.

It seems too early to compare the performance of the proposedcoder with thoroughly optimized commercial coders, as the
NB-HVXC or the WB-EVS (wide-band enhanced voice services codec) for example, which provides a good quality (MOS≈3.5)
at 5.9kbps [55]. We emphasize that the results of section VI are related to the coding of wide-band speech at such low bit-rates
as2.7kbps. However, it is worth to note that the MPEG-4 parametricaudio coders HVXC (Harmonic Vector Excitation Coder)
[56] and HILN (Harmonic and Individual Lines plus Noise) [57] provide listening quality of the coded narrow-band signals
at 2 and 6kbps, respectively, which lies in the same range (MOS<3) as the results of Fig. 14c).

According to the quality ratings of Fig. 14 and Fig. 15, it is clear that the listening quality degradation is mainly due tothe
modeling part of the coder (i.e. ST-HNM and LT-HNM) rather than to the quantization part. To reduce the speech distortion, it
would be interesting to strengthen the modeling constraints on the ST- and LT-HNM (higher modeling order, lower modeling
errors, etc.) to reach higher quality ratings prior to quantization. In addition, the impact of each parameter (frequenciesF0, FV

and amplitudesA) on the listening quality needs to be analyzed separately inorder to recognize which of them has to be
modeled more accurately. The quantization stage can then beevaluated at lower (and different) bit allocations(N0, N1, N2)
to achieve a trade-off between the target bit-rate and the listening quality.

2sSRT: in speech audiometry, it is the decibel level at which 50% of heard words can be repeated correctly by the subject.
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VII. C ONCLUSION

The objective of this paper is to evaluate the feasibility and efficiency of the LT approach to speech coding in the HNM
framework. We thus presented the design of a complete low bit-rate speech coder based on the long-term harmonic plus
noise model (LT-HNM) [22] by adding a variable-dimension vector quantization stage. To our knowledge, no previous studies
addressed the quantization of DCM coefficients obtained from the LT-modeling of speech signals. Hence we carried out a
statistical study of these coefficients to design an appropriate quantization technique. The proposed Normalized Split Vector
Quantization (NSVQ) is adjusted to the properties of these DCM coefficients. We presented first experiments to evaluate the
proposed LT-HNM speech coder with two bit allocations, achieving the average bit-rates 3.6kbps and 2.7kbps for wide-band
speech. Although the proposed coder achieved good intelligibility at both tested bit-rates, the global signal qualitycan still be
improved. The results of section V indicate that the modest listening quality is mainly due to the ST- and LT-modeling part
of the coder, with mean PESQ scores of 2.9 and 2.7 respectively. Indeed, the quantization stage reduces the mean listening
quality score by 0.3 and 0.6 respectively at 3.6kbps and 2.7kbps.

The LT-HNM coder that we propose in this paper can still be improved to make it good candidate for commercial applications.
These improvements will be addressed in future work. Particularly, the ST and LT target modeling errors can be adjusted to
achieve a given quality score prior to quantization. Then, acompromise between target bit-rate and global quality has to be
achieved, for example by optimizing the bit allocation to the different HNM parameters according to their impact on the
achieved quality. Besides, in order to decrease the bit-rate, we think about introducing perceptual criteria to reducethe short-
term data-rate prior to quantization, as proposed in [58], where the auditory masking is exploited to discard inaudiblefrequency
components from coding.

REFERENCES

[1] B. Atal and S. Hanauer, “Speech analysis and synthesis bylinear prediction of the speech wave,”The Journal of the Acoustical Society of America,
vol. 50, 1971.

[2] R. McAulay and T.F. Quatieri, “Speech analysis/synthesis based on a sinusoidal representation,”IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 34, no. 4, 1986.

[3] E.B. George and M.J.T. Smith, “Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model,” IEEE
Transactions on Speech and Audio Processing, vol. 5, no. 5, 1997.

[4] F.-R. Jean and H.-C. Wang, “Transparent quantization ofspeech LSP parameters based on KLT and 2-D-prediction,”IEEE Transactions on Speech and
Audio Processing, vol. 4, no. 1, 1996.

[5] C.S. Xydeas and C. Papanastasiou, “Split matrix quantization of LPC parameters,”IEEE Transactions on Speech and Audio Processing, vol. 7, no. 2,
1999.

[6] F. Norden and T. Eriksson, “Time evolution in LPC spectrum coding,” IEEE Transactions on Speech and Audio Processing, vol. 12, no. 3, 2004.
[7] V. Ramasubramanian and H. Doddala,Ultra Low Bit-Rate Speech Coding, Springer, 2015.
[8] H. Hassanein, A. Brind’Amour, S. Dery, and K. Bryden, “Frequency selective harmonic coding at 2400 bps,” in37th Midwest Symposium on Circuits

and Systems, 1994.
[9] M. Hasegawa-Johnson and A. Alwan, “Speech coding: Fundamentals and applications,”Encyclopedia of Telecommunications, 2003.

[10] B. Edler and H. Purnhagen, “Concepts for hybrid audio coding schemes based on parametric techniques,” in105th Audio Engineering Society Convention,
1998.

[11] H. Purnhagen, B. Edler, and C. Ferekidis, “Object-based analysis/synthesis audio coder for very low bit rates,” in104th Audio Engineering Society
Convention, 1998.

[12] H. Purnhagen, “An overview of MPEG-4 audio version 2,” in Audio Engineering Society Conference: High-Quality AudioCoding, 1999.
[13] B.S. Atal, “Efficient coding of LPC parameters by temporal decomposition,” inIEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 1983.
[14] A. M. L. Van Dijk-Kappers and S.M. Marcus, “Temporal decomposition of speech,”Speech Communication, vol. 8, 1989.
[15] Y.M. Cheng and D. O’Shaughnessy, “On 450-600 b/s natural sounding speech coding,”IEEE Transactions on Speech and Audio Processing, vol. 1, no.

2, 1993.
[16] N. Farvardin and R. Laroia, “Efficient encoding of speech LSP parameters using the discrete cosine transformation,” in International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 1989.
[17] S. Dusan, J.L. Flanagan, A. Karve, and M. Balaraman, “Speech compression by polynomial approximation,”IEEE Transactions on Audio, Speech, and

Language Processing, vol. 15, no. 2, 2007.
[18] L. Girin, M. Firouzmand, and S. Marchand, “Perceptual long-term variable-rate sinusoidal modeling of speech,”IEEE Transactions on Audio, Speech,

and Language Processing, vol. 15, no. 3, 2007.
[19] M. Firouzmand and L. Girin, “Long-term flexible 2D cepstral modeling of speech spectral amplitudes,” inIEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2008.
[20] L. Girin, “Adaptive long-term coding of LSF parameterstrajectories for large-delay/very- to ultra-low bit-ratespeech coding,”EURASIP Journal on

Audio, Speech, and Music Processing, , no. 1, 2010.
[21] F. Ben Ali, L. Girin, and S. Djaziri-Larbi, “Long-term modelling of parameters trajectories for the harmonic plus noise model of speech signals,” in

International Congress on Acoustics (ICA), 2010.
[22] F. Ben Ali, L. Girin, and S. Djaziri-Larbi, “A long-termharmonic plus noise model for speech signals,” inConference of the International Speech

Communication Association (Interspeech), 2011.
[23] Y. Stylianou, “Applying the harmonic plus noise model in concatenative speech synthesis,”IEEE Transactions on Speech and Audio Processing, vol.

9, no. 1, 2001.
[24] T. Quatieri and R.J. Mcaulay, “Speech transformationsbased on a sinusoidal representation,” inIEEE International Conference Acoustics, Speech, and

Signal Processing (ICASSP), 1985.
[25] T.F. Quatieri and R. McAulay, “Shape invariant time-scale and pitch modification of speech,”IEEE Transactions on Signal Processing, vol. 40, no. 3,

1992.
[26] Y. Stylianou, J. Laroche, and E. Moulines, “High-quality speech modification based on a harmonic+ noise model,” inEuropean Conference on Speech

Communication and Technology (EUROSPEECH), 1995.



15

[27] D. S. Likhachov and A. Petrovsky, “Parameters quantization in sinusoidal speech coder on basis of human auditory model,” in International Conference
on Speech and Computer (SPECOM), 2004.

[28] R. McAulay and F. Quatieri,Advances in speech signal processing, chapter Low-rate speech coding based on the sinusoidal model, CRC Press, 1992.
[29] K.L. Oehler and R.M. Gray, “Mean-gain-shape vector quantization,” in IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 1993.
[30] A. Kondoz, Digital speech-coding for low bit rate communication systems, John Wiley & Sons Ltd, 2004.
[31] D.W. Griffin and J.S. Lim, “Multiband excitation vocoder,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, no. 8, 1988.
[32] Y. Stylianou, “Decomposition of speech signals into a deterministic and a stochastic part,” inInternational Conference on Spoken Language (ICSLP),

1996.
[33] P. Boersma, “Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound,” inProceedings of the

institute of phonetic sciences, 1993.
[34] K. Hermus, L. Girin, H. Van Hamme, and S. Irhimeh, “Estimation of the voicing cut-off frequency contour of natural speech based on harmonic and

aperiodic energies,” inIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008.
[35] O. Cappe, J. Laroche, and E. Moulines, “Regularized estimation of cepstrum envelope from discrete frequency points,” in IEEE ASSP Workshop on

Applications of Signal Processing to Audio and Acoustics, 1995.
[36] J. Albert and J. Kari,Handbook of Weighted Automata, chapter Digital Image Compression, Springer, 2009.
[37] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proceedings of the IEEE, vol. 88, no. 4, 2000.
[38] P. Lupini and V. Cuperman, “Vector quantization of harmonic magnitudes for low-rate speech coders,” inGlobal Telecommunications Conference

(GLOBECOM), 1994.
[39] C. Li, P. Lupini, E. Shlomot, and V. Cuperman, “Coding ofvariable dimension speech spectral vectors using weightednonsquare transform vector

quantization,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 6, 2001.
[40] A. Das, A.V. Rao, and A. Gersho, “Variable-dimension vector quantization of speech spectra for low-rate vocoders,” in IEEE Data Compression

Conference (DCC), 1994.
[41] A. Das, A.V. Rao, and A. Gersho, “Variable-dimension vector quantization,”IEEE Signal Processing Letters, vol. 3, no. 7, 1996.
[42] C. Li and V. Cuperman, “Analysis-by-synthesis multimode harmonic speech coding at 4 kb/s,” inIEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2000.
[43] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression, Springer Science & Business Media, 2012.
[44] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D.S. Pallett, N. L. Dahlgren, and V. Zue, “TIMIT Acoustic-Phonetic Continuous Speech Corpus,

Linguistic Data Consortium,” 1993.
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