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Abstract

Background: Microbiome biomarker discovery for patient diagnosis, prognosis, and risk evaluation is attracting broad
interest. Selected groups of microbial features provide signatures that characterize host disease states such as cancer or
cardio-metabolic diseases. Yet, the current predictive models stemming from machine learning still behave as black boxes
and seldom generalize well. Their interpretation is challenging for physicians and biologists, which makes them difficult to
trust and use routinely in the physician–patient decision-making process. Novel methods that provide interpretability and
biological insight are needed. Here, we introduce “predomics”, an original machine learning approach inspired by microbial
ecosystem interactions that is tailored for metagenomics data. It discovers accurate predictive signatures and provides
unprecedented interpretability. The decision provided by the predictive model is based on a simple, yet powerful score
computed by adding, subtracting, or dividing cumulative abundance of microbiome measurements. Results: Tested on >100
datasets, we demonstrate that predomics models are simple and highly interpretable. Even with such simplicity, they are at
least as accurate as state-of-the-art methods. The family of best models, discovered during the learning process, offers the
ability to distil biological information and to decipher the predictability signatures of the studied condition. In a
proof-of-concept experiment, we successfully predicted body corpulence and metabolic improvement after bariatric
surgery using pre-surgery microbiome data. Conclusions: Predomics is a new algorithm that helps in providing reliable and
trustworthy diagnostic decisions in the microbiome field. Predomics is in accord with societal and legal requirements that
plead for an explainable artificial intelligence approach in the medical field.

Keywords: prediction; interpretable models; metagenomics biomarkers; microbial ecosystems

Received: 17 May 2019; Revised: 12 September 2019; Accepted: 27 January 2020

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0002-5597-7922
mailto:edi.prifti@ird.fr
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0001-8861-1305
mailto:jean-daniel.zucker@ird.fr
http://orcid.org/0000-0002-5597-7922
http://orcid.org/0000-0002-5597-7922
http://creativecommons.org/licenses/by/4.0/


2 Interpretable and accurate prediction models for metagenomics data

Background

An increasing wealth of data from high-throughput molecular
and imaging technologies is connecting biomedical sciences and
machine learning (ML). The latter is affecting numerous areas of
medicine, including disease diagnosis and prognosis [1–3]. It is
now argued that ML, and more globally artificial intelligence (AI),
will dramatically improve prognosis within the coming years [4].

Simultaneously, progress made in high-throughput tech-
nologies has contributed to developing new fields such as
metagenomics. The association of the gut microbiota with hu-
man health and disease has been widely discussed [5], and links
with numerous diseases are described [6–13]. Specifically, eco-
logical relationships among bacterial species such as mutual-
ism, parasitism, and competition [14] may change along with
a shift in microbial equilibrium. Although these signatures al-
low predicting disease onset and states, many of these find-
ings are only correlative and require controlling for confounding
factors—a task that remains challenging [15].

Metagenomics data must be interpreted carefully because
they are often analyzed in a small number of samples (N) com-
pared to a very large number of variables (p). Current microbial
catalogues, which are composed of millions of genes [16] and
thousands of bacterial species and functional profiles [17], allow
the characterization and comparison of sampled ecosystems.
Consequently, most models tend to overfit the training data and
result in predictions arising from random sampling fluctuations
[18, 19]. To reduce overfitting and allow for better generaliza-
tion in unseen data, some authors use learning algorithms that
include a dimension reduction or regularization methods, e.g.,
logistic regression with elastic-net regularization (ENET) [13] or
Support Vector Machine (SVM) [15]. While these algorithms are
more straightforward than others, they generate complex mod-
els that are difficult to interpret. ML research has focused on
building accurate models for large data collections, often at the
expense of interpretability.

Providing an explanation of the prediction process is increas-
ingly requested [20] when not mandatory [21], especially in pre-
cision medicine [20, 21]. Interpretable models have 2 desirable
properties: conciseness and readability by non-experts. They
should contain simple operations and be limited in size [22–24].

Causality, as the holy grail of modern biology, is beyond the
scope of the interpretability property of a predictive model. Here,
we investigated whether models inspired by ecosystem relation-
ships and sparse microbial signatures can be both accurate and
more interpretable than more complex well-established state-
of-the-art (SOTA) models, including logistic regression with
ENET and SVM.

Data Description

We used public datasets to test the ”predomics” algorithm and
compare it with SOTA methods. For the classification tasks we
used curated metagenomic datasets from ExperimentHub [25]
(see Supplementary Table S1 for more information). The code
used to query and process the data is provided in the sup-
porting dataset of this article doi:10.55.24/100698. In total, 54
datasets were derived (i.e., 6 different cohorts and for each 6 tax-
onomic levels, a marker gene, and a pathway table along with a
fused taxonomic dataset). Moreover, these datasets were trans-
formed as ”presence/absence” for additional experiments (n =
54). Baseline microbiome data were also used to predict the clin-

Figure 1: The 3 balance concepts depicting the BTR models. Top: The binary

model tests whether the cumulated abundance of a set of species is below or
above a certain threshold. Middle: The ternary model tests whether the cumu-
lated abundance of a first set of species is below or above the cumulated abun-
dance of a second set of species plus a certain threshold. Bottom: The ratio model

tests whether the cumulated abundance of a first set of species over the cumu-
lated abundance of a second set of species is above a given threshold.

ical outcome of bariatric surgery on morbidly obese patients [26].
Their microbiome was sequenced at baseline and at 1, 3, and 12
months after surgery (see original paper for methods).

Analyses
A new family of models for metagenomics data

We propose a new family of models, named BTR for bi-
nary/ternary/ratio, which are a simplification of linear models
aiming at making their output even more interpretable. For each
ecosystem y1 . . . yn, the abundance or presence of genes, tax-
onomy levels, functions, or other microbial qualities are repre-
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Figure 2: Model performance across different model size. Left: Training accuracy of the best models (on the y-axis) in the Cirrhosis Stage-2 dataset for different model
size k (indicated k # on the x-axis). Right: Testing accuracy of the best models for each model size as the average of 10-times, 10-fold cross-validation (CV) sets ±
standard error of the mean. Dashed line indicates the majority class (i.e., the accuracy obtained when simply predicting the majority class through chance alone).

sented by X1 . . . Xp predictor variables. In a linear model, a pa-
tient is predicted in a disease group with a probability of p > 0.5
if β0 + ∑p

j=1 β j Xj > 0, where β0 . . . βp ∈ R are real coefficients.
The biological assumption is that the contribution of each bac-
terial species to the prediction is proportional to its abundance
and that only a limited number of species is sufficient to support
the prediction. BTR models are much simpler and are inspired
by 3 hypotheses emphasizing relationships between species and
associated ecosystem (Fig. 1).

Hypothesis 1: The unweighted cumulative abundance of a
group of species can predict disease states. We define ”binary
models” (Bin) as linear models with the additional constraint
that each coefficient β1 . . . βp (omitting the intercept β0) must be
binary—{0, 1} (Fig. 1 top). An example is in (1) and is interpreted
as “if the cumulative abundance of s Veillonella unclassified and
s Lachnospiraceae bacterium 3 1 57FAA CT1 is <9.7% of the to-
tal microbial abundance, then the individual is classified as
healthy.” These species may share the same ecological niche or
interact directly with one another [27, 28].

(1) If s Veillonella unclassified + s Lachnospiraceae bacterium 3 1
57FAA CT1 < 0.097 then class = healthy

Hypothesis 2: The difference of unweighted cumulative
abundance of 2 groups of species can predict disease state.
This assumption is implemented by ”ternary models” (Ter),
also linear models with the constraint that each coefficient
β1 . . . βp (omitting the intercept β0) be limited to the values {−1,
0, 1} (Fig. 1 middle). An example of a ternary model in (2)
can be interpreted as follows: “if the cumulative abundance of
s Streptococcus anginosus and s Veillonella unclassified minus the
abundance of s Alistipes indistinctus is ≥8.3% of the total micro-
bial abundance, then the patient is classified as healthy.”

(2) If (s Streptococcus anginosus + s Veillonella unclassified)/
s Alistipes indistinctus ≤ 0.083 then class = healthy

Hypothesis 3: The ratio of unweighted cumulative abun-
dance of 2 groups of species can predict disease state. This as-
sumption is implemented by ”ratio models” (Ratio), also linear
models with an additional constraint: each coefficient β1 . . . βp

is limited to a value of −θ , 0, or 1, where θ is a positive real
number, and the intercept β0 is set to zero (Fig. 1 bottom). An
example in (3) can be interpreted as follows: “if the abundance
of s Subdoligranulum unclassified is θ = 81 times greater than
the cumulative abundance of s Megasphaera micronuciformis +
s Streptococcus anginosus then the individual is classified as
healthy.”

(3) If s Subdoligranulum unclassified > 81 ∗ (s Megasphaera
micronuciformis + s Streptococcus anginosus) then class =
healthy

Biologically, both Ter and Ratio models can correspond to in-
teractions of different types of species, including cooperation
and competition among species. BTR models can be illustrated
as balances, where species abundance is symbolized by the cu-
mulative weights (Fig. 1). The concept of balance is not new in
ecology and was first proposed to address the compositional-
ity problem in microbiome data. A balance-based representa-
tion can bypass this issue and reveal pertinent biological pat-
terns [29]. Recently, other authors have applied the balance rep-
resentation in the classification context [30]. Here, we propose
a more general framework of models that encompass such bal-
ances. Indeed, they would correspond to our Ter models when
applied to log-transformed data—named TerLog (see Supple-
mentary Fig. S14). Learning linear models on log-transformed
relative abundance data corresponds to identifying balances of
multiplicative relationships. However, which characterizes best
microbial ecosystems (i.e., multiplicative or additive) remains an
open question. We propose here different types of models that
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Figure 3: BTR (i.e. Bin/Ter/Ratio) models vs SOTA (i.e. State-of-the-art: ENET= ElasticNet; RF=Random Forrests; SVMLIN=Support Vector Machines with linear kernel)

models performance across different diseases and taxonomic levels. A: Accuracy measured in the test datasets at the species level across 6 different datasets. The
stars on top indicate whether the corresponding BTR or SOTA algorithms are significantly better than others (i.e., without stars). B: Accuracy measured in the test
datasets in different taxonomic levels of gut microbiome quantification (species, genus, family, order, class, and phylum, whole taxonomy) as well as in marker gene
and pathway abundance tables. Dashed bars indicate the majority class and k # indicates the model-size. The 10-times 10-fold validation test values are summarized

as mean ± standard errors.

could be useful in tackling such questions. The predomics algo-
rithm was developed to specifically learn BTR models.

BTR models are sparse and accurate and improve with
taxonomic specificity

We tested our approach on 6 different public metagenomic
datasets (Table S1) and 9 derived types of variables (6 differ-
ent taxonomic levels, a merged multi-taxonomic level, marker
genes, and a functional MetaCyc pathway table, i.e., a total of
54 datasets; see Methods). We trained and tested models with
different numbers of features (i.e., model size, k #) and noticed
an effect on accuracy. As expected, the testing performance on
unseen data was lower compared to training performance. How-

ever, this difference was more pronounced for the SOTA, indicat-
ing a significant overfitting effect, compared with BTR models as
discussed previously [19]. The simplicity and sparsity of the BTR
models reduces overfitting on studied datasets (Fig. 2). Because
BTR models come with an embedded feature selection strategy,
we used a Mann-Whitney test to select the k # most correlated
features for random forest (RF) and SVM to allow comparison.
For ENET we used the embedded regularization path and se-
lected the first k # from it.

We applied a model size penalization technique on the em-
pirical (training) accuracy to select the best model. BTR mod-
els performed at least as well as the SOTA in 46 of 54 (85%) of
the cases. They outperformed SOTA in 19 of 54 (35%) and were
outperformed in 8 of 54 (15%) (Fig. 3; Fig. S1A–C). Similar results
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Figure 4: BTR models are interpretable compared to state of the art. A–C left: Barcode graphical representations indicating the coefficients (1 or −1) of the BTR model
features sorted by decreased correlation strength with the class to predict. A–C middle: Mean decrease accuracy (MDA) plots indicating feature importance computed
during the cross-validation process. Blue and red colours indicate enrichment in patients and controls, respectively. A–C right: Receiver operator characteristic (ROC)

plots for the same BTR models. The red cross indicates the specificity and sensitivity of the model. D–F: A visualisation attempt of the SOTA models with barcode
plots indicating the coefficients (values in [−1, 1]) for ENET and SVMLIN, and only 1 tree out of the 500 used in the RF model. AUC: area under the curve; CI: confidence
interval.

were observed even when all the variables in the dataset were
used (no penalization) for the SOTA (Fig. S2A–C) or when fixing
the same model size for all the compared models (Fig. S3A–C).
Similar results are obtained for additional performance scores
including recall, precision, and f1 score (Figs S6 and S7).

When learning from the different types of variables based
on taxonomic levels (Cirrhosis Stage 1), the performance of the
models varies accordingly. Higher performance is obtained at
the gene marker, species, and genus levels and decreases with
higher taxonomic levels. Similar results are reported elsewhere
[31]. Moreover, when applied to a multi-taxonomic level dataset
(from strain to phylum as generated by Pasolli et al. [25] with dif-

ferent specificity levels mixed together; i.e., ”whole tax”), mod-
els displayed surprisingly good performance (Fig. 3B). Indeed, in
this space, models can be powerful because they can summarize
more complex rules such as: “if (abundance of all Firmicutes −
abundance of all Clostridiales order) > threshold then disease.”

We tested the generalization of Bin, Ter, Ratio and also Ter-
Log models trained in Cirrhosis Stage 1, in a second, indepen-
dent dataset (i.e., Cirrhosis Stage 2). Results illustrated in Fig. S5
indicate very good external validation with an average training
accuracy = 0.89 (SD = 0.02) and testing accuracy = 0.85 (SD =
0.04). Ter and Ratio models generalized better compared to Bin
and TerLog.
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In addition to the abundance datasets described above, we
trained and tested similar models on presence/absence binary
data derived from the previous 54 abundance datasets. Overall
results are similar, indicating that the detection of species alone
can be powerful enough in some prediction tasks (see Supple-
mentary Figs S1D–F, S2D–F, S3D–F, and S4). It is noteworthy that,
when applied to presence data, BTR models indicate relation-
ships between sub-ecosystem complexity or richness. These can
be useful to detect switch-like mechanisms in the microbiome.

BTR models generate straightforward interpretations in
contrast to state-of-the-art models

A graphical barcode representation illustrates the simplicity of
BTR models. In Fig. 4A–C left, the models are represented by red
and blue horizontal lines, corresponding, respectively, to pos-
itive and negative coefficients (either 1 or −1). The same rep-
resentation is used to visualize the normalized coefficients of
ENET and SVMLIN models (the line length is proportional to the
coefficient in the interval [−1, 1]) (Fig. 4D–E). For the RF model
only 1 of the 500 decision trees used in the model is illustrated
(Fig. 4F). Additionally, for each variable selected by BTR models,
we assessed their importance in prediction, using a variant of
the well-known mean decrease accuracy (MDA) (Fig. 4A–C, mid-
dle). The feature importance (FI) score of BTR models correlates
strongly with the FI of the well-established but more complex RF
model (respectively, R = 0.68, R = 0.81, R = 0.7, with Bin, Ter, and
Ratio models; Figs S11 and S12). This information allows prior-
itizing further exploration of the features in the context of the
predicted phenomenon.

Predomics generates a family of BTR models with equivalent
predictive power in a given model size range (i.e., family of best
models [FBM]; Fig. S8; see methods and supplementary mate-
rial). The FBM is analyzed to identify the common features that
are found in the models. For instance, in the Cirrhosis Stage 1
(species) dataset, the 268 models in the FBM with model size <

6 rely on only 67 features (i.e., 16% of the whole dataset), which
can be used to infer a ”feature co-presence network in models”
(Fig. 5A). An emerging property of this network is the clustering
of phylogenetically related species, such as Firmicutes enriched
in patients (blue tones) and Proteobacteria and Actinobacteria
enriched in controls (green tones). Co-presence of the features
indicate complementarity in prediction (red edges), while re-
placement of the features by one another indicate redundancy
(blue edges). This can also be observed with the inverse rela-
tion of feature pairs in the data and in the models (Fig. 5C)—the
most correlated pairs in the dataset are those that do not occur
together in the models. This network provides precious informa-
tion to decipher the sub-ecosystem that is associated with the
disease (Figs S8–S10).

BTR models provide biological insights

We focused on the liver cirrhosis dataset [11], where major pa-
tient dysbiosis was observed with decreased microbial richness,
depletion of gut commensals, and an invasion of oral bacteria.
Several markers at taxonomic and functional levels were asso-
ciated with the disease.

Some authors have modelled liver cirrhosis–associated mi-
crobiome features using curated information from the literature,
such as the ratio of autochthonous (butyrate-producer bacteria)
to non-autochthonous (oral bacteria, opportunistic pathogens).
They used these taxa to build a cirrhosis dysbiosis ratio (CDR)
score [32]. On the basis of their description we built 3 redun-

dant ratio models using family taxonomic features to reproduce
their score and applied them in the Liver Cirrhosis Stage 1 (fam-
ily) dataset [11] (Fig. 6B–D). We searched the same family-level
dataset for Ratio models. The models that were identified pro-
vided superior performance (accuracy = 0.86; Fig. 6A) compared
with CDR-based models (i.e. mod1, mod2, mod3; accuracy = 0.56
in average; Fig. 6F). The reason for the CDR lower performance
can be explained by the inclusion of the Bacteroidaceae family in
the liver cirrhosis group by the authors, while we observe the op-
posite association in the current dataset. Bacteroidetes-related
features are enriched in the control group, and this is consistent
for different taxonomic levels (Fig. 6E, see supplementary mate-
rial).

At the phylum level, the Ratio model (S6) points at a mutual
exclusion between Bacteroidetes and the combination of Pro-
teobacteria and Viruses, which is also picked up by the Bin model
(S4). These models are in line with a decrease in Bacteroides and
an increase in Proteobacteria and Fusobacteria in the liver cir-
rhosis group, reported in the original study. The decrease in Bac-
teroidetes indicates a decrease in highly prevalent gut bacteria,
whereas the increase of Proteobacteria has been repeatedly re-
ported in dysbiotic microbiomes of patients and has been associ-
ated with chronic inflammation and serum lipopolysaccharides
[33, 34]. The Virus prevalence in the liver cirrhosis group may
reflect the oral microbiome signature or increased incidence of
viral infections together with opportunistic pathogens.

The potential competition between oral and gut microbes re-
ported in previous studies [35] is best reflected by Ter and Ratio
models with genus abundance data, which combine Veillonella
(oral bacteria; opportunistic pathogen) enriched in liver cirrho-
sis at 1 side and Bacteroides plus Eubacterium (S9) or Coprococcus
(S8) enriched in controls. The latter represent butyrate produc-
ers (Coprococcus and Eubacterium) and complex polysaccharide
degraders (Bacteroides genus) [36]. Among the most important
genera in the FBM we find Veillonella, Streptococcus, Haemophilus,
Coprococcus, and Lactobacillus, all more abundant/prevalent in pa-
tients.

The best Ratio and Ter models (1–3) include oral bacterial
species of the genus Veillonella (Veillonella unclassified), Strep-
tococcus (S. parasanguinis and S. anginosus), and opportunis-
tic pathogens like Megasphaera micronuciformis that prolifer-
ate in patients with liver cirrhosis, whereas butyrate produc-
ers of the genus Subdoligranilum (Subdoligranilum unclassified)
closely related to Faecalibacterium prausnitzii [37] and complex
polysaccharide-degrading species like Bacteroides cellulosilyticus
[38] characterize control subjects. M. micronuciformis was pre-
viously associated with primary biliary cirrhosis on the basis
of 16S ribosomal RNA quantification [39]. A more in-depth ex-
ploration of the FBM (Figs S8–S10) and the feature-model co-
occurrence network (Fig. 5) delineates detailed relations of the
predictive sub-ecosystem.

At the functional level, predictive models (S10–S12) from
MetaCyc pathway abundance data include pathways that sug-
gest an increased aerobic metabolism (HEMESYN2−PWY: heme
biosynthesis II [anaerobic], essential for cytochromes and heme-
containing globins; PWY−922: mevalonate pathway I, needed for
the biosynthesis of ubiquinone and menaquinone complexes
of respiratory chains). Interestingly, increase in aerobic respira-
tion profiles has also been identified as a metabolic signature
of inflammation-associated dysbiosis in models of colitis [40].
Moreover, we observe the presence of modules related to bac-
terial peptidoglycan biosynthesis in the FBM (PWY−6470: pepti-
doglycan biosynthesis V). It has been described as an elicitor of
inflammatory response associated with the progression of liver
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Figure 5: Feature co-occurrence network in the family of best models. A: This network displays feature co-occurrence patterns in FBM models. Only the top 5% strongest
edges inferred using the ScaleNet network reconstruction approach (parameterized with bayes hc and aracne algorithms; see Methods) are shown. The size of the
nodes is proportional to the average importance (MDA) in the Bin, Ter, and Ratio experiments. The colours of the nodes indicate the taxonomic family assignation

as indicated in the legend. The red and blue edges indicate co-presence and co-absence in the models, respectively. B: For each feature present in the network we
show (left) the prevalence of the features in the whole dataset (grey bar) and in the prediction classes (disease, healthy) depicted as blue and red dots, respectively, and
(right) the feature abundance distribution in the prediction classes (disease, healthy) depicted as blue and red box plots, respectively. Grey stars indicate significant
differences. C: A scatter-plot indicating for each edge of the network the correlation between the 2 features in the data and FBM, respectively, in the y- and x-axis. The

colour is the same as for the edges in the network, while the shape indicates the direction of the edges in the network.

cirrhosis [41], in agreement with a more inflammatory profile of
cirrhotic patients.

Altogether, these results indicate that BTR models discover
important features with relevant biological information. BTR
models are more accurate than literature-based ones and have
the ability to distil and capture the predictive biological infor-
mation embedded in the data.

Discussion

Here, we introduced “predomics,” an original ML approach, in-
spired by microbial ecosystem interactions. We have demon-
strated that it discovers not only accurate predictive signatures
that generalize well, but also provides unprecedented inter-
pretability. Moreover, the FBM offers the ability to distil biological
information and to decipher the predictability signatures of the
studied condition.

In principle, BTR models could be applied to any type of data.
However, they are best suited to commensurable measurements
(i.e., variables measurable by the same standard or measure). In
the growing field of metagenomics, issues related to composi-
tionality and data processing still remain to be solved. An ad-
vantage of the Ratio models that we proposed is that they are
scale-invariant given they do not depend on absolute measure-
ments, thus avoiding compositionality issues.

Other issues related to data quantification can affect predic-
tive models. Recent work has shown the importance of data ac-
quisition in subsequent analytical inferences. In particular, mi-
crobial loads differ significantly between individuals and are as-
sociated with specific types of microbial ecosystems [42]. More-
over, varying sequencing depth can over- or under-estimate less
abundant taxa that may be selected by the models. It is thus ad-
visable to pre-filter rare taxa from the dataset before training the
models. However, the sparsity constraint in our approach will
force important taxa to be selected by the models, improving
their generalization.

The simplicity of BTR models may come with the risk of over-
interpretation. The existence of k species in a model may cor-
respond to different explanations ranging from simple corre-
lation to causal relation. They may or may not interact, as in
the case of a niche differentiation [30]. For instance, the oral-
originated species found in the gut of patients with liver cir-
rhosis [11] along with the absence of usual commensals may
reflect a global difference in the environment where they live
rather than direct interaction [11]. Explicit identification of co-
varying species provides important knowledge that can be used
to propose functional interactions between species or between
the species of interest and the host. Yet, even if BTR models rep-
resent real interactions between species, it is not recommended
to propose a causal interpretation without further experimental
validation.
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Figure 6: Cirrhosis Dysbiosis Ratio (CDR) index compared to predomics ratio model. A–D: Barcode plots indicating the coefficients of the Ratio models (S13–S15) built
with features from the CDR index and predomics discovered model (S16). Red and blue colours indicate, respectively, the numerator and denominator of the ratio
model and are, respectively, enriched in the controls and patients with liver cirrhosis. The length of the lines is proportional to the ratio factor optimized in the model.
E left: Box plots indicating the abundance distribution by class for all features used in these models (red is enriched in controls and blue in the liver cirrhosis group).

Right: For the same features the prevalences of non-zero values are depicted in grey for the whole cohort and red and blue dots, respectively, in the control and patient
groups. Grey stars indicate significant difference. F: Receiver operating characteristic (ROC) curves for the 4 models (S13–S16).

We also stress that the quality of reference datasets used
in establishing predictive models is crucial for model inter-
pretability. The propagation of errors and inaccuracies in ge-
nomic datasets is a well-known issue that negatively affects the
outcome of automated methods used for functional annotation
[43]. Moreover, orphan enzymatic activities, by definition, can-
not be associated with gene sequences while the number of se-
quences with unknown functions is extremely large and keeps
increasing, making error percolation a widespread feature [44]
(see supplementary material).

Another important issue that plagues microbiome studies
is the influence of potential confounders modulating microbial
ecosystems. For instance, it has been shown that metformin can
alter the bacterial ecosystem in such a way that some bacterial
species (e.g., Escherichia coli) are increased in abundance while
others are depleted [15]. In this context, we advise users to fil-
ter out confounder-related species from the data or to discard
models that are sensitive to confounders.

Finally, besides quantifying taxa abundance through whole
shotgun or 16S ribosomal RNA sequencing, BTR models can be
used to develop specific acquisition technologies such as mi-
croarray DNA chips or qPCR-based tests, built with primers that
are specific to the species/taxa found in the models [45]. From a
clinical perspective, because BTR models rely on a small num-
ber of variables, quantifying a relatively small subset of variables
(genes, species, pathways, operational taxonomic units, etc.) can
be sufficient to simultaneously predict multiple tasks, and this

can be developed for a limited cost. Such applications, after be-
ing properly validated, will be important to the medical commu-
nity in their translational quest in improving patient care. Our
approach brings us a step closer towards useful clinical predic-
tions while preserving interpretability.

Potential implications

In our article, we propose an original ML method, called pre-
domics, which is tailored for metagenomics data. Because it is
generic, it can be applied to other fields as well. We strongly be-
lieve that this original approach will have significant impact on
both the development of predictive models based on metage-
nomics data as well as their applications to medical conditions.
This approach will support clinical decisions in the context of
precision medicine. The interpretability of the models will ease
acceptability and suggest candidates for microbiome targeted
treatments. Moreover, it will serve as a bridge to further develop
cross-fertilization between AI, biology, and precision medicine.

Methods
The predomics optimization algorithm

Here, we propose a new family of models, named ”BTR” for Bi-
nary/Ternary/Ratio. Learning optimal BTR models is computa-
tionally difficult. Because weights are discrete, usual techniques
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coming from convex optimization do not apply. A naive way
would be to perform an exhaustive search through the whole
space of models. Unfortunately, this is not practically feasible
because the computation time would increase exponentially
with the number of features. The BTR learning problem is known
as NP-Hard, which means that no algorithm can solve this prob-
lem exactly in polynomial time [46].

We can nevertheless apply heuristics that provide good mod-
els without guarantee on their optimality. Genetic algorithm is
a stochastic optimization technique that can be of great use
in such context. It adopts concepts from evolutionary biology—
populations, reproduction, mutation, and generations. The out-
line of the algorithm is described in the supplementary materi-
als section. After the evolution process, a final population of pre-
dictive models is provided. The best model is obtained by apply-
ing a so-called ”model size penalization” (accuracypenalized = ac-
curacy − ƛ k), where k is the number of features in the model (i.e.,
parsimony) and ƛ is a hyperparameter controlling the penaliza-
tion of the accuracy. Here, we used ƛ = 1%, which means that a
model that is using 1 additional feature will only be preferred if
it improves the accuracy by >1%.

For classification, predomics may be set to optimize different
parameters such as the accuracy (default), AUC, F1, precision, or
recall, while for regression it can optimize R2 (default), Spearman
ρ, or the standard error of the regression.

Experimental design

The experimental pipeline proceeds as follows:

1. Feature normalization: frequency tables are used as pro-
cessed by Pasolli et al [25].

2. Features with low standard deviation are filtered out. The
threshold corresponds to the maximum second derivative
of the distribution of the feature’s standard deviation.

3. The generalized performance of each method is estimated
by 10-times 10-fold cross-validation for the classification
tasks and a 20-times 5-fold cross-validation for the regres-
sion tasks.

4. The feature selection is embedded for the BTR models and
Elastic Net (ENET). For SVM and RF, feature selection is
based on the Mann-Whitney score as introduced in Aron-
Wisnewsky et al. [26].

5. Algorithm performances are compared with a paired t-test
using the 100 CV estimations. Those that are not signifi-
cantly different (P < 0.05) are considered equivalent.

The BTR models are tested on 109 different datasets (see Ta-
ble S1) and compared with the methods from the SOTA algo-
rithms: SVM with linear and Gaussian kernel (data not shown),
random forest, and ENET (an improvement of Lasso, α = 0.5).
All algorithms were evaluated by measuring test accuracy in
a cross-validation setting and compared among them using
paired t-tests. A specific comparison between TerLog models
(i.e., Ter model with log-transformed data) and the geometric
mean balance algorithm is provided in the supplementary ma-
terial.

Family of best models

An FBM is defined as the set of models returned by the algorithm,
whose accuracy is within a statistically equivalent window, de-
fined by a threshold assuming a binomial distribution (P < 0.05).
An FBM can be analyzed in detail to distil biological information
in the predictive context (see supplementary material).

Feature importance

Similar to RF, ”feature importance” is defined as the usefulness
of features to be predictive, given all other features and best
models of the FBM. During each cross-validation fold, the out-
of-bag error on each model of the FBM is computed. The impor-
tance of the jth feature is measured by permuting all features
within the out-of-bag data. The out-of-bag error is computed
on these perturbed data for each FBM model. The overall fea-
ture importance for the jth feature is obtained by averaging over
all FBM models the difference in out-of-bag error before and af-
ter the permutation. This is performed on all the features of the
dataset that are found in the FBM models, on which errors be-
fore and after permutations are computed. Finally, the MDA is
computed as the average of these values over all the folds and is
displayed along with the standard error of the mean.

Threshold optimization

The threshold used in the model is optimized to maximize the
performance in the training set. This approach consists in com-
puting the model’s score for each observation in the training set.
The observations are ordered on the basis of this score. Next,
the cumulative error is computed following the same order—
each time an example is misclassified, the cumulative error is
increased when sliding through the score. The index example
on which the cumulative error minimizes will provide the value
of the score, which will be used as a threshold in the final model.

Regression models

Predomics can learn regression models, which are evaluated by
maximizing either Spearman ρ or Spearman R2 or minimizing
the scaled standard error of regression. The model’s score at this
stage reflects the cumulative/difference/ratio of relative abun-
dance of the species and needs to be scaled in the range of the
variable to predict. Two additional parameters α (i.e., multiplica-
tion factor) and β (i.e., intercept) are estimated.

Network reconstruction

We used Scalenet [47] to reconstruct the feature co-presence
network in model selection data. Here we used the top 5%
strongest edges inferred by bayes hc and aracne methods in the
FBM-presence table. ScaleNet first reduces the reconstruction
problem to a number of simpler reconstruction problems, then
uses SOTA reconstruction methods to solve them. Finally, a con-
sensual voting strategy between the methods is adopted to iden-
tify accurate subgraphs, which are then overlapped together.

Availability of Source Code and Requirements

Supplementary information and source data files are available
online and the predomics package in https://github.com/eprif
ti/predomics. The software is registered in the scicrunch.org
repository under the RRID:SCR 017415.

� Project name: Predomics
� Project home page: e.g., https://github.com/eprifti/predomics
� Operating system(s): Platform independent
� Programming language: R
� Other requirements: R (version ≥2.15.0). Predomics imports

the following R packages: reshape2, plyr, BioQC, foreach,
snow, doRNG, yaml, ggplot2, gridExtra, grid, gtools, RColor-
Brewer, glmnet, pROC, viridis, kernlab, randomForest.

https://git.integromics.fr/published/predomics
https://scicrunch.org/resolver/RRID:SCR_017415
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� License: GNU General Public License v3.0
� RRID:SCR 017415

Availability of Supporting Data and Materials

The supplementary material includes additional experiments
and results. The datasets used here are public in respective
repositories. For the classification tasks we downloaded 5 cu-
rated metagenomic datasets from the ExperimentHub [25]. The
raw data were generated in independent studies using shot-
gun metagenomics (Table S1) and were processed bioinformat-
ically and curated by Pasolli et al. [25]. For the regression ex-
periments, we used shotgun metagenomics data from a re-
cently published study, where morbidly obese patients under-
went bariatric surgery [26]. The code for processing the data is
made available in the project’s home repository. Snapshots of
our code and other data further supporting this work are openly
available in the GigaScience repository, GigaDB [48].

Additional Files

Table S1: Summary of the datasets considered in the experi-
ments.
Figure S1: Best model performance across all experiments (pe-
nalization strategy).
Figure S2: Best model performance across all experiments (no-
penalization for SOTA).
Figure S3: Best model performance across all experiments (fixed
k = 5 for BTR and SOTA).
Figure S4: BTR and SOTA performance across different disease
and taxonomic levels in presence/absence data.
Figure S5: Validation of BTR models in an external dataset.
Figure S6: Best model performance across all experiments (pe-
nalization strategy) different measurements.
Figure S7: BTR and SOTA performance across different taxo-
nomic levels in Cirrhosis Stage 1 species normalized abundance
data.
Figure S8: Performance of the family of best models (FBM) across
model size and model type.
Figure S9: Feature composition and feature importance of the
family of best models for the Cirrhosis Stage 1 dataset.
Figure S10: Feature abundance and prevalence of the family of
best models for the Cirrhosis Stage 1 dataset.
Figure S11: Comparison of feature importance between BTR
models and RF as well as statistical ranking.
Figure S12: Comparison of feature importance between TER
models and RF.
Figure S13: Quantitative prediction of phenotypic outcome after
bypass surgery.
Figure S14: Comparison of selbal balances with TerLog pre-
domics models.
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