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Abstract. Local energy markets allow neighbours to exchange energy
among them. Their traditional implementation using sequential auctions
has proven to be inefficient and even counterproductive in some cases. In
this paper we propose a combinatorial double auction for the exchange
of energy for several time-slots simultaneously. We suppose that partici-
pants have a flexible demand; flexibility being obtained, for example, by
the usage of a battery. We show the benefits of the approach and we pro-
vide an example of how it can improve the utility of all the participants
in the market.
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1 Introduction

Local energy markets (LEMs) have been proposed as a paradigm to better ex-
ploit the benefits of distributed local energy generation [3]. The various proposed
market mechanisms target to encourage neighbours to exchange energy locally
- within the same low voltage distribution grid, for example - in order to reduce
their energy bill or even to generate revenue. In most implementations, the mar-
ket mechanisms consist of a sequence of auctions that allow the participants to
trade energy for the next time-slot (usually 15 or 30 minutes long). For a review
of different proposals and implementations, the reader is referred to [12], [8], [9]
and the references therein. LEMs are usually implemented as double auctions,
with players (households) submitting both buying and selling bids. In particular,
a house with renewable generation can be a buyer or a seller, depending on the
time-slot.

In addition, if households have flexibility in their consumption profiles (for
example, thanks to energy storage systems), they will schedule their load to
obtain the most out of the market. In spite of this, it is known that the system
architecture involving sequential auctions does not fully exploit the available
flexibility and can even be counterproductive in some cases [6]. For example,
when players are subject to Time-of-Use tariffs (ToU), their beliefs about future
market prices can lead them to postpone their demand, only to follow it with
a huge peak in consumption before a change in the price from the cheap ToU
period to the most expensive one [5].



In this paper, we put forward the design of an approach based on a com-
binatorial double auction [7], [11], [13] that improves the utility of all players
and increases the total traded energy. Even though combinatorial auctions have
already been proposed [10], [1] the design presented here is the first to exploit
the structure of flexible demand derived from energy storage.

2 Mathematical model of players

Let N = {1, . . . , N} denote the set of players and T = {1, . . . , T} the set of
time-slots in a given day. Each player can consume energy by using appliances
(water heater, A/C, charging electric vehicules, TV, etc.) and might produce
energy (e.g. photovoltaic generation). Let xit denote the demand of player i at
time-slot t, where a positive value of xit represents excess of consumption while
a negative value stands for a surplus of renewable energy (the definition of x
is independent of possible flows with a battery, those flows will be introduced
through additional variables). The demand profile xi = (xi1, . . . , x

i
T ) of player i

is assumed fixed and known.
To simplify the presentation, we suppose that the flexibility of each player is

introduced only by batteries (for example, the demand of the appliances is not
shifted in time). Let Si denote the total capacity of player i’s battery (possibly 0),
Si0 the initial state of charge and sit the amount of charged (sit ≥ 0) or discharged
(sit < 0) energy at time-slot t. The feasible set of charging/discharging decisions
F i is given by Equation (1).

F i =

{
si : Si0 +

j∑
t=1

sit ∈ [0,Si], ∀j ∈ T ; si ∈ RT
}

(1)

The state of the battery at time-slot t is precisely: Si0 +
∑t
j=1 s

i
j .

Furthermore, we will denote by ni = si + xi, with si ∈ F i, the net consump-
tion of player i as seen from the grid.

In addition to trading in the market, households can trade with their tradi-
tional electricity company (TEC). Each player’s contract with the TEC stipu-
lates a price for buying energy βit and a price for selling energy back to the grid
ζit at time-slot t. Consequently, the cost faced by player’s i at time-slot t when
consuming a load of wit is given by:

Cit(w
i
t) = βit max{wit, 0} − ζit max{−wit, 0}.

As it is with most tariffs that allow for injecting back into the main grid, we
will assume that the price of buying βit > ζij , ∀t, j so that buying and re-selling
to the TEC is never optimal.

2.1 Utility of players trading in the market and with the TEC

We introduce here the definition we use of the utility of any given player when
trading in the local market.



At time-slot t, player i might be able to trade a fraction λit ∈ [0, 1] of her net
load nit in the local market. If player i trades λitn

i
t in the local market, then it will

have to trade the quantity (1−λit)nit with the TEC. Denoting Pi the payment of
player i associated with the total quantity traded in the local market (positive
if buying, negative if selling) among all time-slots, the utility of player i is given
by:

ui(xi, si, λi,Pi) =

{
−Pi −

∑T
t=1 C

i
t((1− λit)nit) if (ni − xi ∈ F i)

−∞ otherwise
(2)

An interpretation of the above is as follows: if players do not manage to
consume their desired energy consumption profile xi, then they are dissatisfied
beyond repair. Otherwise, their utility is simply their total cost, which is given
as the cost associated with the market and the cost associated with trading with
the TEC.

The maximum utility that a player can obtain without participating in the
market and only trading with the TEC is given by:

αi = max
si∈Fi

ui(si + xi, 0, 0) (3)

The optimization problem specified in (3) coincides with the optimal con-
trol of a battery subject to a fixed price tariff and it is equivalent to a linear
programming problem [2].

3 Auction model

We put forward the design of a combinatorial double auction that exploits the
flexibility available for players. Unlike the traditional auctions used for LEMs in
which players bid the quantity they want to buy or sell for a single time-slot,
we allow players express in their bids their desire to acquire specific profiles of
energy spanning multiple periods. We proceed to explain the bidding format,
the allocation and the pricing rules.

3.1 Bidding format and allocation rule

In the proposed auction, each player expresses all her acceptable trading profiles
and the utility associated with each one of them. To do so, each player bids a

feasible set of consumption profiles F̂ i (this can be done by bidding the battery

capacity, initial state of charge and the player’s demand x̂i) and her utility

function ui, such as the one defined in Equation (2). Here, we use the ĥ notation
to emphasize that the bid needs not to be truthful. From the bids, we can obtain

α̂i, the maximum utility that player i can guarantee without trading in the local
market, according to her reported information.



Observe that to bid the utility function ui, it suffices to bid the set of buying
and selling prices βi, ζi.

Regarding the allocation rule, it will be derived from the optimal solution
of optimization problem (4a)-(4e). As the objective function of the allocation
problem, we decided to use Equation (4a), which maximizes the value of all the
local trades. The value is defined as the price that players would have to pay
to the TEC to buy (sell) the same amount of energy. That way, the maximum
amount of profit can be distributed among the market participants. This is
analogous to finding the clearing price in a double auction such as [4].

max
ni,λi,Pi

∑
i∈N

∑
i∈T

Cit
(
λitn

i
t

)
(4a)

subject to:
∑
i∈N
Pi ≥ 0 (4b)

Pi +
∑
t∈T

Cit
[
1− λitnit

]
≤ −α̂i ∀i ∈ N (4c)∑

i∈N
λitn

i
t = 0 ∀t ∈ T (4d)

ni∈ F̂ i + x̂i ∀i ∈ N (4e)

The first constraint (4b) ensures that if the equality holds, all the money is
redistributed among the participants according to the market decisions, while
if the inequality is strict, the market maker obtains a profit. Constraint (4c)
guarantees that the auction is individually rational, i.e., each players is at least
as good as if she had not participated in the local market. It’s important to note
that encoding all of the N constraints (4c) requires a total of NT additional
binary variables. Equalities (4d) ensure that the amount of sold energy is equal
to the energy bought in every time-slot. The last constraint guarantees that only
feasible net consumption profiles are used. Finally, the amount of energy traded
by player i at time-slot t is given by λi∗ni∗, where λi∗ and ni∗ are the optimal
solutions of optimization problem (4a).

3.2 Payment rule

As a payment rule, one alternative is to use the value of Pi∗ in the optimal
solution of (4a). For the cases in which the values of Pi∗ will not be unique, a
predefined rule can be used to choose among the possible values. One such could
be to select the values of Pi∗ that maximize a given fairness criterion.

We proceed to illustrate our proposal with an example.

3.3 A simple example

Consider two players 1 and 2 such that: x1 = (0,−1, 0), x2 = (0, 0, 1), β1 = β2 =
(2, 3, 3), ζ1 = ζ2 = (1, 1, 1), S1 = S2 = 1, S1

0 = S2
0 = 0.



If player 1 does not trade in the market, she will sell all her energy at price
1, for a total utility of α1 = 1, net consumption profile n1 = (0,−1, 0) and no
need to user her battery s1 = (0, 0, 0). Analogously, player’s 2 utility is −2 as
she charges her battery during the first time-slot and discharges it in the last
one (s2 = (1, 0,−1)) to obtain a net consumption profile n2 = (1, 0, 0).

We will now assume that the two players decide to participate in the auction
and they do so truthfully. In the optimal solution of the allocation problem
defined by their bids, it holds that n1 = (0,−1, 0) = −n2, λ1 = λ2 = (0, 1, 0).
Furthermore, the maximum value is attained at: 3× (1) + 1× (−1) = 2

Regarding the payments, we have that for player 1: P1∗ ≤ −1 and for player
2: P2∗ ≤ 2. Consequently, any payment from player 2 to player 1 in the interval
P2∗ ∈ (1, 2) will leave both players better off than before.

3.4 General properties of the solution

First, observe that in (4a), the scenario without trades (Pit = λit = 0,∀i ∈
N , ∀t ∈ T ) is always feasible and therefore, a solution exists. This solution needs
not to be unique, as discussed in subsection 3.2. Secondly, when all players bid
truthfully, the proposed auction obtains the consumption and trading profiles
that maximize the value of the trades. The obtained allocation outperforms the
results obtained when players maximize their individually utility and attempt
to trade later using sequential auctions. An example of this was given in the
previous subsection. There, the total utility of players went from −1, had they
tried to trade in sequential auctions using the net profiles that maximized their
individual utilities, to 0 by trading in the proposed auction.

4 Conclusion

In this paper we introduced a combinatorial double auction to be used in local
energy markets as a replacement to run several sequential auctions in the same
day, one for each time-slot. The proposed model maximizes the value of the trades
in the local market by exploiting the latent flexibility of the players, given that
players bid truthfully. Future lines of research include variations of the proposed
mechanism that are strategy-proof or that require less binary variables.
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