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Estimation of coherent scattering in dynamic random media

C. J. Roussela∗, A. Coatanhaya, A. Baussarda

aENSTA Bretagne, Lab-STICC (UMR CNRS 6285), 2 rue François Verny, 29806 Brest

Cedex 9, France

(submitted October 2018)

We address the question of estimating coherent scattering (weak scattering or coher-
ent scatterer) by a time-evolving random medium. We consider two models of coherent
scattering: homodyned K (HK) and generalized K (GK), and in both cases we derive
stochastic differential equations for the scattered field. Approximate transition proba-
bilities are computed using Euler-Maruyama scheme and the parameters for coherent
scattering are estimated by maximum likelihood (ML). Using numerical simulations,
we show that in the HK case, maximum likelihood estimation does not provide a
significant advantage over a simplistic estimator based on the ergodicity property of
the scattered field. On contrary, in GK scattering the transition probabilities carry
significant information about the parameters, resulting in much better performance
of the ML estimator.

Keywords: dynamic random media, electromagnetic scattering, weak scattering,
target detection, transition probabilities

1. Introduction

The random walk model (see [1]) represents the field scattered by a random medium
as the sum of contributions from scattering centers, which may be discrete scat-
terers (particles in suspension for example) or focusing elements from continuous
media (rough surfaces, turbulent fluids). The random walk is very general and
therefore applicable to a wide variety of scattering configurations. The scattered
complex amplitude can be assumed to be the sum of the complex amplitudes of the
scattering centers, and a distribution is usually assigned to the phase of the scat-
terers. In case of strong scattering, the phase is spread uniformily over [0, 2π[. If the
number N of scattering centers is increased to infinity (after proper normalization
of the amplitudes), the resulting scattered field has exponentially-distributed in-
tensity (modulus squared). Also for strong scattering, if the number N of scatterers
fluctuates according to a negative binomial distribution of mean N̄ , the scattered
field becomes K-distributed [2], [3] in intensity after letting N̄ go to infinity.

As a particular example, scattering of radar waves by the sea surface has been
extensively studied (see [4]) due to its practical implications for maritime surveil-
lance. It has been shown empirically that for not too low grazing angles, the K
distribution adequatly represents the statistics of the scattered field [4].

The K distribution can be generalized by at least two slightly different models:
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the homodyned K model (HK) and the generalized K model (GK) ([5] chapter 9).
The HK model corresponds to the addition of a constant to a K-distributed com-
plex amplitude, while the GK model corresponds to the addition of a bias common
to all scatterers in the random walk model (with negative binomial population of
scatterers). Alternatively, the GK model is obtained for a random walk with non
uniform (over [0, 2π[) phase distribution (see [6], [7]). In both HK and GK scat-
tering, and contrary to the random walk with uniform scatterer’s phases (e.g. the
K distribution), the phase of the total scattered field is not uniformly distributed
over [0, 2π[. We refer to this situation as coherent scattering.

At least two interpretations exist for coherent scattering: weak scattering and
presence of a coherent scatterer (designated target in the following). Weak scatter-
ing refers to the situation where the scatterers in the random walk do not spread
in phase uniformily over [0, 2π[. Though GK seems to be the model of choice for
weak scattering, HK has also been proposed for it ([5] chapter 9, [7]). The other
interpretation is that the field scattered by the random medium can be described
by an isotropic random walk (K distribution), but that there is in addition a tar-
get embedded in the random medium and which contributes to the total field. HK
seems to be best adapted to describe this situation, but both HK and GK have
been proposed to model it [4]. By convention, we refer to a target in the remaining
of this paper. However, it should be remembered that the HK and GK models
are general to coherent scattering, such that our results are equally valid for weak
scattering. The isotropic contribution of the random medium is termed clutter.

A major limitation of the HK and GK models presented in the literature before
[5], is their static nature: the relation between the scattered field at two subsequent
times is not explicited, and usually independence is assumed. If the time interval
is long, this assumption is essentially valid. However, it breaks down when the
time interval is short, which occurs if the sampling frequency sufficiently high. In
order to overcome this problem, Field’s model [5] represents the clutter in a fully
dynamic way as a stochastic process solution to a stochastic differential equation.
Stochastic differential equations (SDE) are the stochastic equivalent of ordinary
differential equations. Field’s model is a dynamic generalization of the isotropic
(K distribution) random walk model. It leads to the concept of SDE, which is
powerful for describing the transitions of the clutter, however small the time interval
is. Indeed, when a SDE describes the dynamics of a process (or signal), one can
compute the transition probabilities of the process, i.e. the probability that it takes
some value in the future given an observation made at the present time. In chapter
9 of [5], Field expresses the multidimensional SDE for HK and GK scattering
(interpreted as being for weak scattering) in polar coordinates.

In this paper, we propose to reexpress the SDE for HK and GK scattering in
cartesian coordinates to estimate the transition probabilities of the target plus
clutter signal (total scattered field), and to use them for maximum likelihood esti-
mation of the target parameters.

In section 2, we explicit the isotropic random walk model, give a brief account
of the concepts of SDE and transition probabilities, and explain Field’s model
in connection with the random walk model. In section 3, we use Field’s model
and Ito’s calculus to derive the SDE of the clutter plus target signal, for the HK
and GK “target models”. In section 4, we derive analytical approximation for the
transition probabilities in HK and GK scattering. We then show that maximum
likelihood estimation of the target parameters is possible using these transition
probabilities and leads to explicit formula. In section 5, we assess the performance
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of the maximum likelihood estimator using numerical simulations of the SDE we
derived in section 3. Section 6 is a discussion about the limits and advantages of
our approach, as well as its implications in terms of decision theory. Finally, we
conclude in section 7.

2. Theoretical background

2.1. The random walk model

The reflectivity of a dynamic random medium is best represented mathematically
by a stochastic process, i.e. a family {Xt, t ≥ 0} of random variables. The most well-
known statistical models [3], [7], [8], [1], [4] for the clutter (no coherent scatterer)
are derived by starting from the fundemental idea that the reflectivity is a sum of
contributions over a population of independent scatterers, i.e. ∀t ≥ 0:

Xt =

Nt∑
n=1

a
(n)
t eiφ

(n)
t . (1)

a
(n)
t and φ

(n)
t are respectively the amplitude and phase of the n-th scatterer. It

is assumed that for fixed t, the amplitudes a
(n)
t are independent and identically

distributed (i.i.d). Similarly, the phases φ
(n)
t are independent and uniformily dis-

tributed over [0, 2π[, and all phases and amplitudes are independent. Finally, the
number of scatterers Nt is itself a random variable which follows a negative bino-
mial distribution. Moreover, all processes are stationary.

Let N̄ = E[Nt] be the average number of scatterers. If we normalize the ampli-
tudes by N̄ and let N̄ → +∞, we obtain:

Yt = lim
N̄→+∞

Nt∑
n=1

a
(n)
t

N̄
eiφ

(n)
t . (2)

∀t, Yt is then a complex random variable whose properties are known. For example,
|Yt|2 (the intensity) follows the famous K distribution. However, something crucial
is missing in this formulation: the relation between Yt1 and Yt2 for two subsequent
times t1, t2 is not specified. Only the static distributions (for a fixed t) are known.
One can partially dodge the problem by specifying correlation times and designing
ad hoc numerical procedures for simulating individual trajectories of the process
(see [4]). However, there is a much more satisfying framework: that of stochastic
differential equations.

2.2. Stochastic differential equations

A stochastic differential equation (abbreviated SDE), is the proper generalization
of a differential equation to stochastic processes. The solution, instead of being
simply a function of time, is a stochastic process, i.e. at time t one has a random
variable or vector, instead of a single value. A homogeneous n dimensional (n-D)
SDE is in the following form:
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{
dYt = µ(Yt)dt+ σ(Yt)dWt

Y0 = ξ0
(3)

Wt = [W
(1)
t ,W

(2)
t , ...,W

(n)
t ]T is a n-D brownian motion, which means that the

W
(k)
t are independent 1-D brownian motions. ξ0 is the initial condition (random

vector). µ is called the ‘drift’ and σ is called the ‘volatility’ (matrix valued). Under
the conditions of Ito’s theorem of existence and unicity of the solutions, the unique
solution, denoted (Yt)t≥0 is a homogeneous Markov process (e.g. [9]). Observe that
if one sets the volatility σ = 0 and ξ0 ∈ R (deterministic initial condition), one gets
back to an ordinary differential equation.

Let us denote y 7→ p(Yt = y |Y0 = ξ0) the distribution of Yt with initial condition
Y0 = ξ0. In the 1-D case, p(Yt = y | ξ0) is a function of (t, y) ∈ R2 and it is solution
to the so-called Fokker-Planck (a.k.a Kolmogorov forward) equation:

∂p(Yt = y |Y0 = ξ0)

∂t
=

1

2

∂2σ(y)2p(Yt = y |Y0 = ξ0)

∂y2
− ∂µ(y)p(Yt = y |Y0 = ξ0)

∂y
.

(4)
The Fokker-Planck equation (FPE) is a partial derivative equation in the variables
(y, t). Its solution is the time-dependent distributions of Yt and it depends on the
initial condition. There are 2 special cases. First, if Y0 is distributed according
to the stationary solution of the FPE, then so is Yt for all t. In that case, the
distribution is simply denoted p(Yt = y). This is a priori the case for the reflectivity
of the random medium since it is stationary. Second, if one sets Y0 = x where
x ∈ R, then the distributions given by the solution of the Fokker-Planck equation
are the transition probabilities p(Yt = y |Y0 = x). Note that since the process is
homogeneous, ∀h ≥ 0:

p(Yt+h = y |Yt = x) = p(Yh |Y0). (5)

Following the explanations in [10], the transition probabilities can be used to
‘transport’ non-synchronous observations of the random medium to a common
time. The transition probabilities were obtained by the analytical resolution of
1-D Fokker-Planck equations. Most importantly, it should be understood that
p(Yt+h = y |Yt = x) is the distribution of Yt+h knowing that you have observed the
value x at time t. It is different from the stationary distribution and enables you
to make more precise probabilistic inferences for what the value of the reflectivity
should be a bit later given some observed value at the present time.

Another application of the transition probabilities is parameter estimation. First
we assume that Yt depends on some unknown parameter λ. Assume also that a
particular trajectory of Yt is observed at discrete times t0 < t1 < ... < tn and yields
Ỹ0, Ỹ1, ..., Ytn .

Since Yt is a Markov process, its joint probability density function associated is:

pλ(Yt0 = Ỹ0, ..., Ytn = Ỹn)

= pλ(Yt0 = Ỹ0, ..., Ytn−1
= Ỹn−1)pλ(Ytn = Ỹn | Yt0 = Ỹ0, ..., Ytn−1

= Ỹn−1)

= pλ(Yt0 = Ỹ0, ..., Ytn−1
= Ỹn−1)pλ(Ytn = Ỹn |Ytn−1

= Ỹn−1 ).

By recurrence, the joint probability density function, or more simply the likelihood,

4



is:

L(λ) = pλ(Yt0 = Ỹ0)
n∏
i=1

pλ(Yti = Ỹi | Yti−1
= Ỹi−1). (6)

Improperly speaking, it is the ‘probability’ that we observe the sequence
Ỹ0, Ỹ1, ..., Ytn if the parameter is λ. Maximum likelihood estimation (ML) con-
sists in maximizing L with respect to λ, which yields the estimated parameter λ̃.
In practice, we often maximize the log of L rather than L directly. As evidenced
in equation (6), all we need to estimate λ by ML is the stationary distribution
p(Yt = y) and the transition probabilities p(Yt+h = y |Yt = x). Estimating pa-
rameters using this procedure (SDE → FPE → transition probabilities → ML
estimation) has been done in [11] for estimating the parameters of the clutter only.

The reader may have noticed that we provided the FPE only for 1-D processes.
This is because we merely wanted to illustrate the general procedure to get transi-
tion probabilities. Most of the time, the Fokker-Planck equation cannot be solved
analytically, especially for dimensions greater than 1. In the remainder of this
paper, the procedure of going from a SDE to transition probabilities and ML esti-
mation is done but the transition probabilities are approximated and not obtained
though the FPE. As exemplified in section 4, the approximation for small time steps
comes from Euler-Maruyama numerical scheme (see [12] and [13]). This scheme is
the most simple to numerically solve a SDE. Let [0, T ] be a finite time interval and
t0 = 0 < t1 < ... < tn a partition of [0, T ]. The Euler-Maruyama method applied
to equation (3) reads:

Yti = Yti−1
+ µ(Yti−1

)(ti − ti−1) + σ(Yti−1
)(Wti −Wti−1

). (7)

Equation (7) states that the increment of Y between ti−1 and ti is the sum of a
term proportional to ∆ti = ti − ti−1 and a term proportional to the increment of
the multidimensional brownian motion ∆Wti = Wti −Wti−1

. This increment is a
Gaussian random vector with law N (0,∆ti σσ

T (Yti−1
)). Euler-Maruyama scheme

is useful for at least 2 different reasons: for small ∆t, it provides a gaussian ap-
proximation to the transition probabilities, and otherwise it can simply be used
to simulate many trajectories (realizations) of the process which is useful to assess
parameter estimation methods as exemplified in [11] and in section 5.

2.3. Field’s model of the clutter

In the most general situation, the reflectivity CΨ(t) of the observed scene is defined
as the ratio of the reflected wave to the incoming wave. We have:

Es(t) = CΨ(t)Ei(t), (8)

where Es(t) and Ei(t) are respectively the scattered and incident waves (one com-
ponent of the electric or magnetic wave). CΨ(t) is the complex reflectivity. C is a
positive constant equal to the square root of the mean power. Ψ(t), denoted as Ψt

in stochastic process theory, is the normalized complex reflectivity (simply referred
to as reflectivity). Actually, Ψt modulates both the amplitude and phase of the
wave. Field, in [5] (chapters 6 to 8), built upon the random walk model for the
clutter (no coherent scatterer) in equation (1) which, just to remind, led to the K
distribution for the intensity. We noted that this model was static: no dynamics
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are specified and so the relation between the process at two different times in un-
defined. With the same notations as in section 2.1, Field adds mainly 3 hypotheses.
First, he assumes that the dynamics of the phases are determined by the SDE:{

dφ
(n)
t = B1/2dW

(n)
t

φ
(n)
0 = ∆(n),

(9)

where ∀n, ∆(n) is uniformily distributed over [0, 2π[ and B is a positive constant.
Second, he assumes that the amplitudes are deterministic constants, i.e. ∃a > 0
such that

∀t, n : a
(n)
t = a. (10)

Finally, he assumes that the number of scatterers Nt is a linear Birth-Death-
Immigration population model, which is consistent with the fact that ∀t, Nt is
negative binomial distributed (see for example [14] for an introduction to popula-
tion models). Under such hypotheses, he shows that the normalized reflectivity Ψt

of the random medium only (i.e. the clutter) can be expressed as the product:

Ψt = x
1/2
t γt = x

1/2
t

(
γ

(R)
t + iγ

(I)
t

)
, (11)

where xt, γ
(R)
t and γ

(I)
t are stochastic processes solutions to the following stochastic

differential equations ([5], chapter 8):


dxt = A(1− xt)dt+

(
2Aαxt

) 1

2 dW
(x)
t

dγ
(R)
t = −1

2Bγ
(R)
t dt+ 1√

2
B

1

2 dW
(R)
t

dγ
(I)
t = −1

2Bγ
(I)
t dt+ 1√

2
B

1

2 dW
(I)
t .

(12)

W
(x)
t ,W

(R)
t ,W

(I)
t are 3 independent brownian motions. It should be noted that

γ
(R)
t and γ

(I)
t are assumed to be independent.

Field’s model of the clutter is valid for any wavelength: optical, infrared, mi-
crowaves etc. However, for the hypothesis of uniform phase over [0, 2π[ to be true,
the size of the random medium should be large compared to the wavelength of the
incoming wave.

The first equation of (12) is equation (8.9) of [5] (in [5] αxt has been replaced
by xt) while the last two equations of (12) constitute the complex-valued equation

(8.4) of [5]. From (11), one should understand that if we know xt, γ
(R)
t , γ

(I)
t , we

know the reflectivity of the time-evolving random medium Ψt. xt is the scattering
cross-section normalized by its mean value, and will be referred to as SCS in the
following. γt is the complex-valued speckle (with unit mean amplitude), expressed

with its real and imaginary parts γ
(R)
t and γ

(I)
t .

Three constants parametrize the model: A and α for the SCS, B for the speckle.
A and α are from the underlying Birth-Death-Immigration population model for
the number of scatterers and B comes from the dynamics of the phases in equation
(9). A and B are homogeneous to the inverse of a time (i.e. a frequency). A can be
understood as the inverse of a decorrelation time for the SCS, and B as the inverse
of a decorrelation time for the speckle. α is the inverse of the variance of the SCS
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xt for any time t as seen below. In Field’s model, A � B, i.e. γt decorrelates much
faster than xt. The SCS should therefore be thought of as a slow process which
modulates the power of the fast complex process γt. Also note that the carrier wave
does not appear in equation (8). This is so because it is assumed that the carrier
wave oscillates on a much shorter timescale than the reflectivity Ψt. To sum up,
there are three timescales T at stake:

Tcarrier � Tspeckle � TSCS . (13)

Only Tspeckle and TSCS are relevant here, and are dictated by B and A respectively.
It is shown in [11] that:

p
(
γ

(R)
t = x

)
= p

(
γ

(I)
t = x

)
= 1√

π
e−x

2

p
(
γ

(R) 2
t + γ

(I) 2
t = x

)
= e−x

p(C2xt = x) =
( α

C2 )αxα−1 e
− α
C2 x

Γ(α)

(14)

where Γ is the gamma function. From equation (14), the mathematical expectation
of the squared amplitude of the reflectivity is:

E[|CΨt|2] = E
[
C2xt

(
γ

(R) 2
t + γ

(I) 2
t

)]
= C2E[xt]E

[
γ

(R) 2
t + γ

(I) 2
t

]
= C2 × 1× 1 = C2, (15)

where we have used independence of xt and γ
(R) 2
t +γ

(I) 2
t . Therefore, the normalized

reflectivity Ψt is normalized in the sense that E[|Ψt|2] = 1. We also say that the
mean power is 1.

2.4. Numerical application

In section 5, we need to use numerical values for the parameters A,B, C and α to
generate trajectories of the reflectivity and assess the performance of the estimators.
Rather than setting the values randomly, we set A = 1 Hz, B = 100 Hz and α = 1
as in [11]. These particular values are relevant to radar scattering by the sea surface.
An important constraint that they respect is:

A � B, (16)

which corresponds to the difference of timescales between the SCS and the speckle.
We also set C = 1 in the remaining. The idea behind this assumption is that the
performances of the estimators depend on the ratio of the target power to the
clutter power: it is not necessary to tune both the target and clutter mean powers.

3. SDE of the clutter plus target

Section 2.3 summed up Field’s approach to derive the SDE of the clutter (random
medium only). In [5], chapter 9, the SDE of the clutter plus target are expressed
in polar coordinates, which yields heavy expressions. In this section, we derive the
SDE of the clutter plus target (coherent scatterer) in cartesian coordinates (real
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and imaginary parts) since it is a more convenient coordinate system for target
parameter estimation. Two models for the target reflectivity will be considered:
Homodyned K scattering and Generalized K scattering (see [5] p 70-71 and see
sections 3.2 and 3.3). It will be evidenced in equations (22) and (26) that HK and
GK scattering encompass the cases of Rice, Rayleigh and K distribution scattering.
Rice scattering is recovered when there is a target and the SCS xt is constant,
Rayleigh scattering is recovered when there is no target and the SCS is constant,
and K distribution scattering is recovered when there is no target but still a varying
SCS.

3.1. SDE of the real and imaginary parts of the clutter

As a preliminary step, we derive the SDE of the in-phase (real part) component,

denoted R
(cl)
t , and quadrature phase (imaginary part) component, denoted I

(cl)
t ,

of the clutter only. Of course, R
(cl)
t = x

1/2
t γ

(R)
t and I

(cl)
t = x

1/2
t γ

(I)
t . Since from

equation (12) γ
(R)
t and γ

(I)
t follow the same SDE with different brownian motions,

we just need to derive the SDE for R
(cl)
t for example, and that of I

(cl)
t will follow

immediately.

Let st = x
1/2
t . Using Ito’s formula for f(xt) with f(x) = x1/2, one can show that

st is solution to the following SDE:

dst =
A
2

(
1

st

(
1− 1

2α

)
− st

)
dt+

(
A
2α

)1/2

dW
(x)
t . (17)

From Ito’s product law:

dR
(cl)
t = stdγ

(R)
t + γ

(R)
t dst + d[sγ(R)]t (18)

⇔ dR
(cl)
t = stdγ

(R)
t + γ

(R)
t dst, (19)

where we have used that [sγ(R)]t, the quadratic variation at time t of the processes

st and γ
(R)
t , is zero by independence of xt and γ

(R)
t . Using equations (12), (17) and

(18), we obtain after factorization:

dR
(cl)
t =

(
−A+ B

2
stγ

(R)
t +

Aγ(R)
t

2st

(
1− 1

2α

))
dt

+
[
γ

(R)
t

( A
2α

)1/2
st
(B

2

)1/2][dW
(x)
t

dW
(R)
t

]
. (20)

The system of SDE for the clutter in the coordinate system (x,R(cl), I(cl)) be-
comes:
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 dxt

dR
(cl)
t

dI
(cl)
t

 =


A(1− xt)(

−A+B
2 R

(cl)
t + AR(cl)

t

2xt

(
1− 1

2α

))(
−A+B

2 I
(cl)
t + AI(cl)

t

2xt

(
1− 1

2α

))
dt

+


(

2Axt
α

)1/2
0 0

R
(cl)
t

x
1/2
t

( A
2α

)1/2 (Bxt
2

)1/2
0

I
(cl)
t

x
1/2
t

( A
2α

)1/2
0

(Bxt
2

)1/2

dW

(x)
t

dW
(R)
t

dW
(I)
t

. (21)

3.2. Homodyned K scattering

In Homodyned K (HK) scattering, the reflectivity of the target is a complex con-

stant added to the reflectivity of the clutter. We denote Ψ
(HK)
t the total reflectivity

and we have:

Ψ
(HK)
t = Ψ(R)

c + iΨ(I)
c + x

1/2
t γt, (22)

where Ψc = Ψ
(R)
c + iΨ

(I)
c is the target constant. It is constant in both phase and

amplitude. For simplicity, we denote Rt, It the real and imaginary parts of Ψ
(HK)
t .

We omit voluntarily the superscript (HK) to lighten the notation.
It is very straightforward to obtain the SDE of Rt and It in the case of HK

scattering. Indeed, from (22) we get:{
Rt = Ψ

(R)
c +R

(cl)
t ; dRt = dR

(cl)
t

It = Ψ
(I)
c + I

(cl)
t ; dIt = dI

(cl)
t .

(23)

Therefore, we have directly from (21):

dxt
dRt
dIt

 =


A(1− xt)

−A+B
2

(
Rt −Ψ

(R)
c

)
+
A(Rt−Ψ

(R)
c )

2xt

(
1− 1

2α

)
−A+B

2

(
It −Ψ

(I)
c

)
+
A(It−Ψ

(I)
c )

2xt

(
1− 1

2α

)
dt

+


(

2Axt
α

)1/2
0 0

(Rt−Ψ
(R)
c )

x
1/2
t

( A
2α

)1/2 (Bxt
2

)1/2
0

(It−Ψ
(I)
c )

x
1/2
t

( A
2α

)1/2
0

(Bxt
2

)1/2

dW

(x)
t

dW
(R)
t

dW
(I)
t

. (24)

The SDE obtained for HK scattering, equation (24), can also be written in the
more compact form:

dxt
dRt
dIt

 = β
(HK)
Ψc

(xt, Rt, It) dt+ Σ
(HK)
Ψc

(xt, Rt, It)

dW
(x)
t

dW
(R)
t

dW
(I)
t

. (25)

9



Vector β
(HK)
Ψc

and matrix Σ
(HK)
Ψc

are respectively the drift and volatility in the case
of HK scattering.

3.3. Generalized K scattering

In Generalized K (GK) scattering, the reflectivity of the target is modulated by
the SCS xt (see [5] p 71):

Ψ
(GK)
t =

(
Ψ(R)
c + iΨ(I)

c

)
ηxt + x

1/2
t γt, (26)

where η is a constant coupling factor and Ψc = Ψ
(R)
c + iΨ

(I)
c is the target constant.

Physically, it means that the reflectivity of the target,
(

Ψ
(R)
c + iΨ

(I)
c

)
ηxt, varies

proportionally as the number of scatterers which contribute to the clutter. Simi-

larly to section 3.2, Rt and It denote now the real and imaginary parts of Ψ
(GK)
t ,

respectively. From (26), we get:

{
Rt = Ψ

(R)
c ηxt +R

(cl)
t ; dRt = Ψ

(R)
c ηdxt + dR

(cl)
t

It = Ψ
(I)
c ηxt + I

(cl)
t ; dIt = Ψ

(I)
c ηdxt + dI

(cl)
t .

(27)

Again we derive the SDE for Rt and that of It will follow immediately. From
equations (27), (21) and (12), we get:

dRt =

(
ηΨ(R)

c A(1− xt)−
A+ B

2
R

(cl)
t +

AR(cl)
t

2xt

(
1− 1

2α

))
dt

+
[
Rclt
x

1/2
t

( A
2α

)1/2
+ ηΨ

(R)
c

(
2Axt
α

)1/2 (Bxt
2

)1/2][dW
(x)
t

dW
(R)
t

]
. (28)

Replacing R
(cl)
t = Rt −Ψ

(R)
c ηxt in equation (28) and applying the same procedure

for It, we get the following system of coupled SDE that describe GK scattering:

dxt
dRt
dIt

 =


A(1− xt)

ηΨ
(R)
c A(1− xt) +

(
Rt −Ψ

(R)
c ηxt

)(
−A+B

2 + A
2xt

(
1− 1

2α

))
ηΨ

(I)
c A(1− xt) +

(
It −Ψ

(I)
c ηxt

)(
−A+B

2 + A
2xt

(
1− 1

2α

))
dt

+


(

2Axt
α

)1/2
0 0

Rt−Ψ
(R)
c ηxt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(R)
c

(
2Axt
α

)1/2 (Bxt
2

)1/2
0

It−Ψ
(I)
c ηxt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(I)
c

(
2Axt
α

)1/2
0

(Bxt
2

)1/2

dW

(x)
t

dW
(R)
t

dW
(I)
t

. (29)

The SDE obtained for GK scattering, equation (29), can also be written in the
more compact form:

10



dxt
dRt
dIt

 = β
(GK)
Ψc

(xt, Rt, It) dt+ Σ
(GK)
Ψc

(xt, Rt, It)

dW
(x)
t

dW
(R)
t

dW
(I)
t

. (30)

Vector β
(GK)
Ψc

and matrix Σ
(GK)
Ψc

are respectively the drift and volatility in the case
of GK scattering.

4. Maximum likelihood estimation of Ψc

Let Ψc = Ψ
(R)
c + iΨ

(I)
c be the target constant. We remind from section 3 that the

target reflectivity is simply the target constant Ψc for HK scattering, and is the
target constant times the SCS and the coupling factor, i.e. Ψcηxt for GK scattering.
For both cases, our aim is to estimate Ψc. It is also assumed that there is always
a target, since even the absence of target can be seen as the special case Ψc = 0.

We assume in this section that we observe three discrete time series: (x̃, R̃, Ĩ) =
{(x̃k, R̃k, Ĩk), k = 0, ..., n}. The measurements are made at times tk with k ranging
from 0 to n. We also assume for simplicity that ∀k, tk − tk−1 = ∆t is a constant.

As explained in section 2.2, the maximum likelihood (ML) estimation consists
in maximizing the likelihood function with respect to the parameter Ψc. The like-
lihood can be written:

L
(
x̃, R̃, Ĩ; Ψc

)
= p∞Ψc

n∏
k=1

p
(k)
Ψc
, (31)

with

p∞Ψc
= pΨc

((xt0 , Rt0 , It0) = (x̃0, R̃0, Ĩ0)) (32)

= p∞Ψc
(x̃0, R̃0, Ĩ0)

and

p
(k)
Ψc

= pΨc

(
(xtk , Rtk , Itk) = (x̃k, R̃k, Ĩk) | (xtk−1

, Rtk−1
, Itk−1

) = (x̃k−1, R̃k−1, Ĩk−1)
)
.

(33)
p∞Ψc

is the stationary (asymptotic) distribution of the process (xt, Rt, It). It accounts

for the initial value at time t0 and it is implicit that it is evaluated at (x̃0, R̃0, Ĩ0).

p
(k)
Ψc

is the transition probability between times tk−1 and tk. L
(
x̃, R̃, Ĩ; Ψc

)
is

therefore the joint probability (density) of the observed initial value and of the
n transitions occuring from t0 to tn. We assume that the parameters of the clut-
ter, i.e. A,B, C and α are known. In that case, for a given observed trajectory,

L
(
x̃, R̃, Ĩ; Ψc

)
depends only on Ψc. Maximizing it with respect to Ψc yields the

estimated target constant Ψ̃c.
Instead of maximizing directly the likelihood function L, we choose to maximize

11



its logarithm:

l
(
x̃, R̃, Ĩ; Ψc

)
= ln

(
L
(
x̃, R̃, Ĩ; Ψc

))
(34)

= ln
(
p∞Ψc

)
+

n∑
k=1

ln
(
p

(k)
Ψc

)
.

If x̃, R̃, Ĩ are fixed, i.e. a time series is observed, the necessary conditions of opti-
mality are:


∂l

∂Ψ
(R)
c

(Ψ̃
(R)
c , Ψ̃

(I)
c ) = 0

∂l
∂Ψ

(I)
c

(Ψ̃
(R)
c , Ψ̃

(I)
c ) = 0.

(35)

4.1. ML estimation of Ψc in HK scattering

From equations (34) and (35), it is obvious that one must know p∞Ψc
and the tran-

sition probabilities p
(k)
Ψc

to estimate Ψc.

4.1.1. Asymptotic distribution

Let Ψ
(HK)
t = Ψ

(R)
c + iΨ

(I)
c + x

1/2
t γt. At fixed SCS xt = x, the random variable

(Rt, It) is a bivariate gaussian distribution (see [4] equation (4.12)):

pΨc
((Rt, It) = (R, I) | xt = x) =

1

πx
exp

(
−(R−Ψ

(R)
c )2 + (I −Ψ

(I)
c )2

x

)
. (36)

In that case, (R2
t + I2

t )1/2 follows the so-called Rice distribution. From equations
(14) and (36), we get:

p∞Ψc
(R, I, x) =

1

πx
exp

(
−(R−Ψ

(R)
c )2 + (I −Ψ

(I)
c )2

x

)
× ααxα−1 e−αx

Γ(α)
. (37)

4.1.2. Approximate transition probabilities

Deriving the transition probabilities requires some tedious calculus. Exact transi-
tion probabilities could be derived by solving the Fokker-Planck equation associated
with (24) (see [15] for a detailed account of the Fokker-Planck equation). In prac-
tice, it is rarely possible to solve it analytically. Instead, if the time difference ∆t
between tk−1 and tk is small enough, one can approximate the transition probabil-
ity by a multivariate gaussian distribution. The starting point is Euler-Maruyama’s
scheme applied to the SDE (25):
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∆xt
∆Rt
∆It

 = β
(HK)
Ψc

(xt, Rt, It) ∆t+ Σ
(HK)
Ψc

(xt, Rt, It)

∆W
(x)
t

∆W
(R)
t

∆W
(I)
t


⇔

xt+∆t

Rt+∆t

It+∆t

 =

xtRt
It

+ β
(HK)
Ψc

(xt, Rt, It) ∆t+ Σ
(HK)
Ψc

(xt, Rt, It) ∆t1/2

nxnR
nI

(38)

where
[
nx nR nI

]T
is a vector of independent standard gaussian random variables.

It follows that:

p
(k)
Ψc
≈ 1

(2π)3/2
∣∣∣σ(HK)

Ψc
∆t
∣∣∣1/2 exp

(
−1

2
(vk − µk)T

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk)
)
, (39)

with


vk =

[
x̃k R̃k Ĩk

]T
µk =

[
x̃k−1 R̃k−1 Ĩk−1

]T
+ β

(HK)
Ψc

(
x̃k−1, R̃k−1, Ĩk−1

)
∆t

σ
(HK)
Ψc

= Σ
(HK)
Ψc

Σ
(HK) T
Ψc

.

(40)

Indeed, to get the transition probability, we fix
[
xt Rt It

]T
=
[
x̃k−1 R̃k−1 Ĩk−1

]T
.

Thus, the only random part in the right hand side of equation (38) is the gaussian

vector
[
nx nR nI

]T
. σ

(HK)
Ψc

is referred to as the squared volatility. It is a positive
definite symmetric matrix in the non degenerate case. We can show that:

σ
(HK)
Ψc

=


2Axt
α

A(Rt−Ψ
(R)
c )

α
A(It−Ψ

(I)
c )

α
A(Rt−Ψ

(R)
c )

α
A
2α

(Rt−Ψ
(R)
c )2

xt
+ Bxt

2
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A(It−Ψ

(I)
c )

α
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A
2α

(It−Ψ
(I)
c )2

xt
+ Bxt

2

. (41)

We have very simply that
∣∣∣σ(HK)

Ψc
∆t
∣∣∣ =

∣∣∣Σ(HK)
Ψc

∣∣∣2 ∆t3 = ∆t3AB2x3
t

2α . We can then

invert σ
(HK)
Ψc

and we get after some calculations:

(
σ

(HK)
Ψc

∆t
)−1

=


(Rt−Ψ

(R)
c )2+(It−Ψ

(I)
c )2

2B∆tx3
t

+ α
2A∆txt

−Rt−Ψ
(R)
c

B∆tx2
t
− It−Ψ

(I)
c

B∆tx2
t

−Rt−Ψ
(R)
c

B∆tx2
t

2
B∆txt

0

− It−Ψ
(I)
c

B∆tx2
t

0 2
B∆txt

. (42)

Note that in equation (39),
(
σ

(HK)
Ψc

∆t
)−1

must be evaluated at t = tk−1, i.e.

[xt, Rt, It] = [x̃k−1, R̃k−1, Ĩk−1] respectively in equation (41). Using (34), (37) and
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(39), we have:

l
(
x̃, R̃, Ĩ; Ψc

)
= ln

(
ααx̃α−1

0 e−αx̃0

πx̃0Γ(α)

)
− (R̃0 −Ψ

(R)
c )2 + (Ĩ0 −Ψ

(I)
c )2

x̃0

−nln
(

(2π)3/2
∣∣∣σ(HK)

Ψc
∆t
∣∣∣1/2)+

n∑
k=1

Φk (43)

with

Φk = −1

2
(vk − µk)T

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk). (44)

If we express the first optimality condition in (35), we get after some calculations:

∂l

∂Ψ
(R)
c

(Ψ̃(R)
c , Ψ̃(I)

c ) = 0

⇔ −
2
(

Ψ̃
(R)
c − R̃0

)
x̃0

+

n∑
k=1

Ψ̃
(R)
c − R̃k−1

B∆tx̃k−1

(
−
w2
k

2
− 2γ2

k +
2γkwk
x̃k−1

)

+
n∑
k=1

R̃k − R̃k−1

B∆tx̃k−1

(
2γk −

wk
x̃k−1

)
= 0, (45)

with

{
wk = x̃k − x̃k−1 −A∆t(1− x̃k−1)

γk = A+B
2 − A

2x̃k−1

(
1− 1

2α

)
.

(46)

We see that equation (45) depends only on xt and the real part Rt of the re-

flectivity. It gives a condition on Ψ̃
(R)
c only. It is then straightforward to get the

estimation of Ψ
(R)
c :

Ψ̃(R)
c =

−2R̃0

x̃0
+
∑n

k=1
R̃k−1

B∆tx̃k−1

(
−w2

k

2 − 2γ2
k + 2γkwk

x̃k−1

)
−
∑n

k=1
R̃k−R̃k−1

B∆tx̃k−1

(
2γk − wk

x̃k−1

)
∑n

k=1
1

B∆tx̃k−1

(
−w2

k

2 − 2γ2
k + 2γkwk

x̃k−1

)
− 2

x̃0

(47)

The estimator for Ψ
(I)
c follows the same equation with Ĩ replacing R̃. Note that

wk and γk are common to both the estimators of Ψ
(R)
c and Ψ

(I)
c .

4.2. ML estimation of Ψc in GK scattering

As seen below, the estimator for Ψc in the GK scattering case is obtained by the
same procedure as for HK scattering.
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4.2.1. Asymptotic distribution

Let Ψ
(GK)
t =

(
Ψ

(R)
c + iΨ

(I)
c

)
ηxt+x

1/2
t γt. At fixed SCS xt = x, the random variable

(Rt, It) is a bivariate gaussian distribution (see [4] equation (4.12)):

pΨc
((Rt, It) = (R, I) | xt = x) =

1

πx
exp

(
−(R−Ψ

(R)
c ηx)2 + (I −Ψ

(I)
c ηx)2

x

)
.

(48)
From equations (14) and (48), we get:

p∞Ψc
(R, I, x) =

1

πx
exp

(
−(R−Ψ

(R)
c ηx)2 + (I −Ψ

(I)
c ηx)2

x

)
× ααxα−1 e−αx

Γ(α)
. (49)

4.2.2. Approximate transition probabilities

To derive approximate transition probabilities, we dodge the complications of the
Fokker-Planck equation again and compute gaussian approximations. If we apply
Euler-Maruyama’s scheme to (30), we get:

∆xt
∆Rt
∆It

 = β
(GK)
Ψc

(xt, Rt, It) ∆t+ Σ
(GK)
Ψc

(xt, Rt, It)

∆W
(x)
t

∆W
(R)
t

∆W
(I)
t


⇔

xt+∆t

Rt+∆t

It+∆t

 =

xtRt
It

+ β
(GK)
Ψc

(xt, Rt, It) ∆t+ Σ
(GK)
Ψc

(xt, Rt, It) ∆t1/2

nxnR
nI

(50)

where
[
nx nR nI

]T
is a vector of independent standard gaussian random variables.

It follows that:

p
(k)
Ψc
≈ 1

(2π)3/2
∣∣∣σ(GK)

Ψc
∆t
∣∣∣1/2 exp

(
−1

2
(vk − µk)T

(
σ

(GK)
Ψc

∆t
)−1

(vk − µk)
)
, (51)

with 
vk =

[
x̃k R̃k Ĩk

]T
µk =

[
x̃k−1 R̃k−1 Ĩk−1

]T
+ β

(GK)
Ψc

(
x̃k−1, R̃k−1, Ĩk−1

)
∆t

σ
(GK)
Ψc

= Σ
(GK)
Ψc

Σ
(GK) T
Ψc

.

(52)

The squared volatility σ
(GK)
Ψc

is also a positive definite symmetric matrix in the
non degenerate case. We can show that:

σ
(GK)
Ψc

=


2Axt
α

A(Rt+Ψ
(R)
c ηxt)

α
A(It+Ψ

(I)
c ηxt)
α

A(Rt+Ψ
(R)
c ηxt)

α
A
2α

(Rt+Ψ
(R)
c ηxt)2

xt
+ Bxt

2
A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A(It+Ψ

(I)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A
2α

(It+Ψ
(I)
c ηxt)2

xt
+ Bxt

2

.
(53)
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We have again that
∣∣∣σ(GK)

Ψc
∆t
∣∣∣ =

∣∣∣Σ(GK)
Ψc

∣∣∣2 ∆t3 = ∆t3AB2x3
t

2α . We can invert σ
(GK)
Ψc

and we get after some calculations:

(
σ

(GK)
Ψc

∆t

)−1
=


(Rt+Ψ

(R)
c ηxt)2+(It+Ψ

(I)
c ηxt)2

2B∆tx3
t

+ α
2A∆txt

−Rt+Ψ
(R)
c ηxt

B∆tx2
t

− It+Ψ
(I)
c ηxt

B∆tx2
t

−Rt+Ψ
(R)
c ηxt

B∆tx2
t

2
B∆txt

0

− It+Ψ
(I)
c ηxt

B∆tx2
t

0 2
B∆txt

.
(54)

In equation (51),
(
σ

(GK)
Ψc

∆t
)−1

must be evaluated at t = tk−1, i.e. [xt, Rt, It] =

[x̃k−1, R̃k−1, Ĩk−1] in equation (53). Using (34), (49) and (51), we have:

l
(
x̃, R̃, ˜I; Ψc

)
= ln

(
ααx̃α−1

0 e−αx̃0

πx̃0Γ(α)

)
− (R̃0 −Ψ

(R)
c ηx̃0)2 + (Ĩ0 −Ψ

(I)
c ηx̃0)2

x̃0

−nln
(

(2π)3/2
∣∣∣σ(HK)

Ψc
∆t
∣∣∣1/2)+

n∑
k=1

Φk (55)

with

Φk = −1

2
(vk − µk)T

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk). (56)

If we express the first optimality condition in (35), we get after some calculations:

∂l

∂Ψ
(R)
c

(Ψ̃(R)
c , Ψ̃(I)

c ) = 0 (57)

⇔ −
2η
(

Ψ̃
(R)
c ηx̃0 − R̃0

)
x̃0

+

n∑
k=1

λ
(1)
k +

˜
Ψ

(R)
c

n∑
k=1

λ
(2)
k = 0 (58)

with

λ
(1)
k =

−w2
kηR̃k−1

2B∆tx̃2
k−1

− 2

B∆tx̃k−1

(
R̃k − R̃k−1 − γk∆tR̃k−1

)
× (−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1) +

wk
B∆tx̃2

k−1

ηx̃k−1

(
R̃k − R̃k−1 − γk∆tR̃k−1

)
+

wk
B∆tx̃2

k−1

R̃k−1 (−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1) (59)

and

λ
(2)
k =

−w2
kη

2

2B∆tx̃k−1
− 2

B∆tx̃k−1
(−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1)

× (−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1)

+
2wkη

B∆tx̃k−1
(−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1) (60)

Equation (57) depends only on xt and the real part Rt of the reflectivity. It gives
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a condition on Ψ̃
(R)
c only. It is straightforward to get the estimation of Ψ

(R)
c :

Ψ̃(R)
c =

−2ηR̃0

x̃0
−
∑n

k=1 λ
(1)
k

−2η2 +
∑n

k=1 λ
(2)
k

(61)

The estimator for Ψ
(I)
c follows the same equation with Ĩ replacing R̃. Note that

wk and γk are common to both the estimators of Ψ
(R)
c and Ψ

(I)
c .

5. Performance of the ML estimation

5.1. A simple estimator for Ψc

As seen in the previous section, estimating Ψc with ML is straightforward but
involves quite heavy expressions, at least as compared to the ’ergodicity’ estimator.
This very simple estimator arises naturally. Indeed from equations (22) and (26)
we get:E

[
Ψ

(HK)
c

]
= E

[
Ψc + x

1/2
t γt

]
= Ψc + E[x

1/2
t ]E[γt] = Ψc

E
[
Ψ

(GK)
c

]
= E

[
Ψcηxt + x

1/2
t γt

]
= ηΨcE[xt] + E[x

1/2
t ]E[γt] = ηΨc.

(62)

We have used that xt and γt are independent, and that E[xt] = 1 and E[γt] = 0
(see equation (14)). We assume that the reflectivity is ergodic, or more precisely
we assume that:

E
[
Ψ

(HK)
t

]
= lim

T→+∞

1

T

∫ T

0
Ψ̃

(HK)
t dt (63)

for any particular trajectory Ψ̃t of the reflectivity, in which case:

Ψc = lim
T→+∞

1

T

∫ T

0
Ψ̃

(HK)
t dt ≈ 1

tn

∫ tn

0
Ψ̃

(HK)
t dt ≈ 1

n∆t

n−1∑
i=0

Ψ̃
(HK)
i ∆t.

Of course, the same holds in the GK scattering case, such that the ergodicity
estimator yields:{

Ψ̂c = 1
n∆t

∑n−1
i=0 Ψ̃

(HK)
i ∆t (HKscattering)

Ψ̂c = 1
n∆t

∑n−1
i=0 Ψ̃

(GK)
i ∆t (GKscattering).

(64)

5.2. Numerical simulations

In this section, we compare the ML estimator to the ergodicity estimator which
serves as a reference. What we really want is to test numerically whether it is
relevant to use the ML estimator, whose formalism is based on transition probabil-
ities. To assess the abilities of the ML and ergodicity estimators, we simulate many
trajectories of (xt, Rt, It) with a given Ψc and then try to retrieve it. To do so, we
solve numerically the SDE (24) and (29) using Euler-Maruyama’s scheme for Rt, It
and Milstein’s scheme for xt (see [12] for Milstein’s scheme). The Euler-Maruyama
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scheme is not used for xt because it raises numerical issues. Indeed, it could gener-
ate negative values, which is absurd since the SCS is always positive. As explained
in section 2.4, we set: A = 1 Hz, B = 100 Hz and α = 1. A realistic value for ∆t
is 0.001 s since the Pulse Repetition Frequency is about 1 kHz for satellite and air-
borne applications [16]. In section 2.4, we also said that we could set C = 1, which
given equation (15) means that the clutter has unit power. This is not restrictive,

since if C 6= 1, we can work with Ψ
(HK)
t /C or Ψ

(GK)
t /C, in which case the target

constant become Ψc

C . In our experiments, the simulation timestep, ∆̂t, should be
much smaller than the measurement timestep ∆t quoted above. Otherwise, the nu-
merical trajectory will not replicate adequately the dynamics of the original SDE,
with its time dependent drifts and volatilities. Consequently, the generated trajec-
tories are evaluated at times t̂k for k = 0...mn, where m is the decimation ratio.
Then, for the estimation stage, they are downsampled (i.e decimated) to the times
ti for i = 0...n, with ti = t̂mi. In our numerical simulations, ∆t being fixed at 0.001
s, we choose ∆̂t = 10−5 s leading to a decimation ratio m = 100. Note that we have
verified that ∆̂t = 10−5 s is small enough: changing it to ∆̂t = 10−7 s does not alter
the results presented here but it requires a much longer computing time.

The detection of a coherent scatterer is naturally more challenging if the coherent
scatterer has a power similar to the clutter. We explore the dependence of the
estimator performance to both the trajectory duration and target intensity (power).
We define the target intensity simply as its squared modulus:

|Ψc|2 = Ψ(R) 2
c + Ψ(I) 2

c . (65)

By rotational symmetry and for simplicity, we also set Ψ
(I)
c = 0 such that all the

target power goes into the real part.

We denote Ψ̃
(R)
c,i the estimated Ψ

(R)
c from the i -th trajectory, and M the number

of trajectories. We assess the performance of the estimators by computing their

estimation bias b(Ψ̃
(R)
c ) and variance σ2(Ψ̃

(R)
c ):

b(Ψ̃(R)
c ) =

1

M

M∑
i=1

(Ψ̃
(R)
c,i −Ψ(R)

c ), (66)

σ2(Ψ̃(R)
c ) =

1

M − 1

M∑
i=1

(Ψ̃
(R)
c,i −Ψ(R)

c )2. (67)

5.2.1. Performance in HK scattering

In the case of HK scattering (equation (22)), we numerically solve the SDE (24) for

known clutter parameters A,B, α and target Ψc = Ψ
(R)
c . We then try to retrieve

Ψ
(R)
c using equations (47) and (64) which correspond respectively to the ML and

ergodicity estimators. We explore the dependency of the estimators performances
to both the trajectory duration (from 0.1 s to 10 s) and target intensity (from
0.1 to 100). When the duration is explored, the target intensity is set to 10, and
when the target intensity is explored, the duration is set to 1 s. The relative squared
estimation bias and the estimation variance are plotted in figure 1. They are simply
the squared bias and variance defined in equation (66) normalized by the target
intensity. We observe that both decrease quickly as the trajectory duration or
target intensity increase. This is easily understandable since a longer trajectory
carries more information, and a stronger target dominates more strongly the overall
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reflectivity. However, the squared bias is orders of magnitude smaller than the
variance and is therefore negligible. It is also what explains its apparent noisiness.
If we now compare the ergodicity and ML estimators based on the variance, we
notice a slight advantage for the ML estimator for low target intensity.
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Figure 1. Relative estimation squared bias and variance of the target in HK scattering for both the
ergodicity and ML estimators. 1000 trajectories are computed, with A = 1 Hz, B = 100 Hz and α = 1. Up:
dependence to trajectory duration with Ψc =

√
10. Down: dependence to target intensity with a duration

of 1 s.

We represent in figure 2 a scatter plot of all the estimated Ψ
(R)
c for 1000 tra-

jectories. There is no striking difference between the ergodicity and ML clouds.

5.2.2. Performance in GK scattering

In the case of GK scattering (equation (26)), we numerically solve the SDE (29)

for known clutter parameters A,B, α, coupling η and target Ψc = Ψ
(R)
c . We then

try to retrieve Ψ
(R)
c using equations (61) and (64) which correspond respectively

to the ML and ergodicity estimators. We explore the dependency of the estimators
performances to both the trajectory duration (from 0.1 s to 10 s) and target inten-
sity (from 0.1 to 100). Again, when the duration is explored, the target intensity is
set to 10, and when the target intensity is explored, the duration is set to 1 s. The
relative squared estimation bias and the estimation variance are plotted in figure
3. We also observe that the variance decreases quickly as the trajectory duration
or target intensity increase. The bias is very noiselike but it is again orders of mag-
nitude smaller than the variance so we shall ignore it. Unlike HK scattering, there
is this time a large difference between the performance of the ergodicity and ML
estimator. The ML estimator outperforms the ergodicity estimator by an order of
magnitude on average (less for small durations and target intensity and vice versa).

We represent in figure 4 a scatter plot of all the estimated Ψ
(R)
c for 1000 trajec-

tories. There is a striking difference between the ergodicity and ML clouds. There
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Figure 2. Scatter plot of the estimated target for both the ergodicity and ML estimators. 1000 trajectories

of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1 and Ψ
(R)
c =

√
10.
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Figure 3. Relative estimation squared bias and variance of the target in GK scattering for both the

ergodicity and ML estimators. 1000 trajectories are computed, with A = 1 Hz, B = 100 Hz, α = 1 and
η = 1. Up: dependence to trajectory duration with Ψc =

√
10. Down: dependence to target intensity with

a duration of 1 s..

are both centered correctly, but the ML cloud is much narrower than the ergodicity
one, in accordance with the estimation variances. There is a second difference that
we should mention: the ML estimator has the drawback of generating some out-
liers (on the order of 0.5%). These outliers have been filtered out for the variance
calculations of figure 3. We noticed that they arise when during the trajectory, xt
goes very close to 0. Of course, it is not physically possible to have a vanishing
SCS. However, we will leave the outliers in the section about decision theory, since
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they merely increase the false alarm rate by a small percentage.

Figure 4. Scatter plot of the estimated target for both the ergodicity and ML estimators. 1000 trajectories

of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1, η = 1 and Ψ
(R)
c =

√
10.

5.2.3. Comparison between HK and GK scattering

In HK scattering, the target reflectivity Ψc is simply added to the random medium

reflectivity (clutter) Ψt = x
1/2
t γt. There is no interaction between the target and

random medium. Retrospectively, it is then natural that the transition probabilities
do not ’really’ depend on the target and that ML estimation does not present any
advantage. More precisely, we mean that the probability of increasing or decreasing
by some amount during time interval ∆t is independent on the target strengh in HK
scattering. In that case, ML estimation is not better than the ergodicity estimator,
except in the case of a low intensity target.

In GK scattering, the target reflectivity is modulated by the SCS to give Ψcηxt
which is added to Ψt. There is an interaction between the target and random
medium, and in this case the transition probabilities ’really’ depend on the target.
As a result, ML estimation is relevant since every single transition depends on Ψc.
Comparing figure 1 and figure 3, we also see that the estimation variance is greater
for GK than HK scattering, which is also a result of the target being modulated
by xt in GK scattering.

5.2.4. Performance as a function of the sampling frequency in GK scattering

The last parameter we wish to assess the influence of, is the sampling frequency.
So far, we fixed the time step to ∆t = 10−3 s. We saw in section 5.2.2 that the
ML estimator significantly outperforms the ergodicity estimation in the case of
GK scattering. Since this is due to the information about Ψc contained in every
single transition, it is natural to think that the more transitions, the better the
performance. To test this idea, we carried numerical simulations and estimated Ψc

for a range of sampling timesteps from 10−5 s to 10−1 s. For each timestep and value
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of A, 10000 trajectories are computed with Ψc =
√

10 (only for GK scattering), and
Ψc is estimated by ML. The estimation variance is then computed. The results are
represented in figure 5. We observe as expected that the variance decreases as the
sampling time step decreases (increase of the sampling frequency) most likely to an
asymptotic lower bound. In GK scattering, there is information about the target
in every transition due to the fact that xt modulates the target constant Ψc in GK
scattering. Therefore, as well as changing the timestep, we also change how fast xt
evolves, by tuning A. Based on our simulation results, it seems that increasing the
dynamics of xt, i.e. increasing A, leads to a decrease in the estimation variance.
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Figure 5. Relative estimation variance of the target in GK scattering for the ML estimators. 10000 tra-

jectories are computed, with B = 100 Hz, α = 1 and η = 1. The variance is plotted as a function of the
sampling time step.

6. Discussion

6.1. Detection

We propose a first approach to the detection problem (instead of estimation)
considering the distribution of the estimated parameter Ψ̃c. For simplicity, let

us assume that the target constant is real-valued i.e. Ψc = Ψ
(R)
c . We denote

pΨc

(
Ψ̃

(R)
c = x

)
and p0

(
Ψ̃

(R)
c = x

)
the distributions of Ψ̃

(R)
c with and without a

target Ψc, respectively. Ψ̃
(R)
c denotes any estimator of Ψ

(R)
c , for example Ψ̃

(R)
c,ML or

Ψ̃
(R)
c, e . For target detection, one can evaluate the likelihood ratio:

Λ(Ψ̃(R)
c ) =

pΨc

(
Ψ̃

(R)
c = x

)
p0

(
Ψ̃

(R)
c = x

) . (68)
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Our method for estimating Ψc does not provide the distributions at the numerator
and denominator for computing Λ. Instead, one can compute numerical distribu-
tions by estimating Ψc on many trajectories. Examples of numerical distributions
obtained with 10000 trajectories are represented in figure 6 (left) for two target
constants: Ψc = 1 and Ψc =

√
0.1. In addition, we represent the Gaussian dis-

tributions with the numerical means and variances. To first order, the curves fit
reasonably well. As might be anticipated, we observe that the separation between
the no target and target distributions is much smaller for Ψc =

√
0.1.

Figure 6. Numerical distributions of Ψ̃c with and without a target, and numerical ROC curves based on
the distribution of Ψ̃c. 10000 trajectories of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1,

η = 1. Up: Ψc = 1; Down: Ψc =
√

0.1.

If we denote σΨc
, σ0 and mΨc

,m0 the numerical standard deviations and means
with and without a target, we have:

Λ(Ψ̃(R)
c ) ≈

1√
2πσΨc

e−(Ψ̃
(R)
c −mΨc )/2σ2

Ψc

1√
2πσ0

e−(Ψ̃
(R)
c −m0)/2σ2

0

. (69)

By deciding that there is a target if Λ exceeds the threshold λT and varying the
threshold, we compute a range of probabilities of detection and probabilities of false
alarms PD and PFA and get a ROC curve. More precisely, 10000 trajectories of

duration 1 s are numerically computed with fixed Ψc = Ψ
(R)
c > 0 (target). The i -th

trajectory gives an estimated target Ψ̃
(R)
c,i . mΨc

and σΨc
are then computed from

the set {Ψ̃(R)
c,i , i = 1, 2, . . . , 10000} of estimated Ψ

(R)
c . A similar procedure is carried

to compute numerically m0 and σ0 (no target). Finally, to compute the probability
of detection at fixed threshold, we count how many trajectories generated with a

target Ψc = Ψ
(R)
c > 0 are such that their associated Ψ̃

(R)
c,i verifies the condition

Λ(Ψ̃
(R)
c,i ) > λT . A similar procedure is done for the probability of false alarm.

The ROC curves with Ψc = 1 and Ψc =
√

0.1 are represented in figure 6 (right).
Notice that the range covered by the x-axis depends on the target. It is manifest
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that, as expected, the ROC curve is much better with Ψc = 1 than with Ψc =
√

0.1.
The reader may object that the Gaussian distributions do not fit so well the

numerical distributions. We wish to emphasize that we chose it just for illustra-
tive purposes. More generally, the objective of this discussion is to show that the
estimation of the target Ψc can lead to target detection.

6.2. Observability of the SCS

We assumed in section 4 that we observed three discrete time series, (x̃, R̃, Ĩ) =
{(x̃k, R̃k, Ĩk), k = 0, ..., n}, which are our available data for estimating the target

constant Ψc = Ψ
(R)
c + iΨ

(I)
c . It is visible in the expressions of the estimators,

equation (47) for HK scattering and equation (61) for GK scattering, which are in
the form: {

Ψ̃
(R)
c = F (x̃, R̃)

Ψ̃
(I)
c = F (x̃, Ĩ)

(70)

where F is some function. That we have access in reality to xt, i.e. the SCS of the

clutter, is not obvious. In reality, a sensor measures the total reflectivity Ψ
(HK)
t or

Ψ
(GK)
t . The real and imaginary parts are then immediately derived, such that R̃ and

Ĩ are indeed observable. However, the SCS xt is ‘encapsulated’ in the reflectivity
as evidenced by equations (22) and (26). Fayard and Field provide a formula to
optimally infer x̃ from increments of zt = |Ψt|2 and of the phase θt when there is
no target, i.e. clutter only [17]. However, their solutions requires the knowledge of
the parameters A and α, which is also taken for granted in the present work. If we
do not know A and α, and still with no target, we can approximate x̃ by applying
a sliding window to z̃, where z̃ is the observed discrete time series of zt. Indeed, zt
is K-distributed, and the K distribution arises from (see [4]):

p(zt = z) = p(zt = z | xt = x)p(xt = x) =
1

x
e−z/x × α(αx)α−1 e−αx

Γ(α)
, (71)

since {
p(zt = z | xt = x) = 1

xe
−z/x

p(xt = x) = α(αx)α−1 e−αx

Γ(α) .
(72)

The distribution of zt for constant SCS xt = x is then a negative exponential of
expectation x. The SCS evolves on a much longer timescales than zt = xt|γt|2
(equation (13)). Consequentely, averaging zt over a time interval long compared
to Tspeckle but short compared to TSCS gives an estimate of the SCS for this time
interval.

It remains that the general case of estimating both Ψc and xt has not been
solved. As a first approach, one could estimate Ψc using the ergodic estimator, i.e.
compute Ψ̂c from equation (64), deduce the approximate clutter by subtracting Ψ̂c

to the observed reflectivity, estimate the SCS using Fayard and Field formula or
a sliding window as described above, and then do ML estimation using equations
(47) or (61). An even more challenging task would be to estimate, based only on
the observed reflectivity (not the SCS), all the parameters of the model: the clutter

parameters A, B, α and the target Ψc = Ψ
(R)
c + iΨ

(I)
c . Those are possible directions
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for future work.

7. Conclusion

The isotropic (uniformly distributed phase over [0, 2π[) random walk model can
be used to model electromagnetic scattering by a random media, i.e. the clutter.
Field’s model for the clutter is an extension of the isotropic random walk model
which accounts for the dynamics of the random medium, and in which the observ-
ables (reflectivity, intensity etc) are expressed in terms of stochastic differential
equations. Coherent scattering (weak scattering or presence of a coherent scatterer)
can be accomodated in this formalism by deriving SDE for the total scattered field.
We derived these SDE for the in-phase and quadrature phase components of the
reflectivity. Two models of coherent scattering have been considered: HK scattering
and GK, which both depends on two parameters referred to as “target parame-
ters”. Approximate transition probabilities have been derived for small time steps
using Euler-Maruyama scheme. We used these approximate transition probabilities
for maximum likelihood estimation of the target parameters. In both HK and GK
scattering, the estimators are given by explicit analytical formula.

Using numerical simulations, we have assessed the performance of the estimators.
The estimation bias is negligible and the estimation variance is small compared to
the parameters. We observed the intuitive result that the estimation variance de-
creases as the duration, or target intensity, or sampling frequency increases. We
showed that mostly for GK scattering does the maximum likelihood estimation
provide a significant advantage over the very simple ergodic estimator. Only in
this case, do the transition probabilities really (i.e. not a simple translation) de-
pend on the target parameters (see section 5.2.3). For HK scattering, the maximum
likelihood estimator is better than the ergodic estimator in the case of small pa-
rameters. We discussed how our method of estimating the target leads to target
detection, ROC curves etc.

We think that it would be valuable to study more precisely the performance of
the estimation in terms of the quantity of information about the target parameters
contained in each transition and the number of transitions available given the time
series duration and the sampling frequency. This quantity of information would
also depend on the parameters A, B and α, which control the dynamics of the
clutter. Finally, HK and GK scattering are two examples of coherent scattering
models. It is possible that based on physical considerations, one would choose a
more adapted model, maybe a combination of HK and GK scattering or a model
where the target is not modulated by xt but by a different process. Our approach
could then be extended to such models as long as the dynamics are expressed by
stochastic differential equations.
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