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In this paper we propose a new approach for nonlinear parameter estimation under additive Gaussian noise. We provide an algorithm based on interval analysis and set inversion which computes an inner and an outer approximation of a set enclosing the parameter vector with a given probability. The principle of the approach is illustrated by examples related to parameter estimation and range-only localization.

Introduction

Parameter set estimation deals with characterizing a set (preferably small) which encloses the parameter vector p of a parametric model from a finite set of data collected on the system. In a bounded-error context [START_REF] Norton | Special Issue on Bounded-Error Estimation: Issue 1[END_REF] [START_REF]Bounding Approaches to System Identification[END_REF] [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF] the measurement errors are assumed to be bounded and computing the feasible set for p can be described as a set inversion problem [START_REF] Jaulin | Guaranteed nonlinear parameter estimation via interval computations[END_REF] for which interval methods [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF] are particularly efficient, even when the model is nonlinear. In a probabilistic context, the error is not anymore described by membership intervals , but by probability density functions (pdf) instead. The correspondence between the two approaches has been studied by Vladik Kreinovich [START_REF] Kreinovich | Probabilities, intervals, what next ? extension of interval computations to situations with partial information about probabilities[END_REF] [START_REF] Kreinovich | Interval methods for data fitting under uncertainty: A probabilistic treatment[END_REF]. In this context, Vladik proposed showed that the interval estimation problem was intractable [START_REF] Kreinovich | Computational complexity and feasibility of data processing and interval computations[END_REF], even in a linear context when experimental factors are uncertain [START_REF] Kreinovich | Approximate Linear Algebra is Intractable[END_REF]. He also provided some links with a fuzzy representation of uncertainties [START_REF] Longpré | Quantum computation techniques for gauging reliability of interval and fuzzy data[END_REF] and how to deal with outliers [START_REF] Sliwka | Processing interval sensor data in the presence of outliers, with potential applications to localizing underwater robots[END_REF].

In a Bayesian context, the Bayes rule makes it possible to get the posterior pdf for p (see, e.g., [START_REF] Eykhoff | System Identification, Parameter and State Estimation[END_REF]). The set to computed becomes the credible set [START_REF] Berger | Statistical Decision Theory and Bayesian Analysis[END_REF] and corresponds to the minimal volume set, in the parameter space, which contains p with a given probability η. This problem cannot be cast into a set inversion problem but existing interval methods can still be used [START_REF] Jaulin | Computing minimal-volume credible sets using interval analysis; application to bayesian estimation[END_REF]. Unfortunately, the approach is limited to few parameters (typically less than 3) and few measurements (typically less than 10).

Recently, an original approach [START_REF] Campi | Guaranteed non-asymptotic confidence regions in system identification[END_REF] named Sign-Perturbed Sums (SPS) has proposed to constructs non-asymptotic confidence regions which is guaranteed to contain the true parameters with a given probability η. This approach has been used for nonlinear models to compute confidence regions [START_REF] Csaji | Non-asymptotic confidence regions for the least-squares estimate[END_REF] which have not a minimal volume (at least in the Gaussian case). Interval analysis has also been considered to deal with the SPS method [START_REF] Kieffer | Guaranteed Characterization of Exact non-Asymptotic Confidence Regions as Defined by LSCR and SPS[END_REF] to compute guaranteed confidence regions. Other methods such as [START_REF] Drevelle | Localization confidence domains via set inversion on short-term trajectory[END_REF] or [START_REF] Jaulin | Probabilistic set-membership approach for robust regression[END_REF] are also able to compute guaranteed confidence regions using interval analysis, but the computed set is not of minimal volume and it is difficult to evaluate the resulting pessimism.

There exist other approaches that combine bounded-error estimation with probabilistic estimation [START_REF] Abdallah | Box particle filtering for nonlinear state estimation using interval analysis[END_REF] [25] [START_REF] Xiong | Fault detection using interval kalman filtering enhanced by constraint propagation[END_REF], [START_REF] Gning | An Introduction to Box Particle Filtering[END_REF] or use other frameworks such as random sets [START_REF] Molchanov | The Theory of Random Sets[END_REF] [33] [START_REF] Ristic | Bayesian estimation with imprecise likelihoods: Random set approach[END_REF] or fuzzy-sets [7][30], but all these methods do not solve a problem which is expressed only in terms of probabilities only and can thus not be used to compute confidence regions. This paper considers a problem which can be considered as classic on probabilistic parameter estimation: compute a set which encloses the parameter vector with a fixed probability η. Our main contribution is to be able to solve this problem in a reliable way in the case where the error is Gaussian and the model is nonlinear.

Section 2 recalls the principle of set-inversion for the specific case where the noise is Gaussian and proposes different shape for the set to be inverted. Section 3 3 recalls the principle of the linear Gaussian estimation that will be used for comparison. Section 4 illustrates the proposed approach on three simple simulated examples and gives a comparison with a classical linear Gaussian estimator. Section 5 concludes the paper.

Set Inversion for Nonlinear Gaussian Estimation

This section recalls the principle of set inversion and considers the special case where the set to be inverted is a confidence region of a Gaussian probability density function.

Consider the following parameter estimation problem

y = ψ(p) + e, (1) 
where ψ is the model, y ∈ R n is the vector of all measurements (which is known) and e is the error vector. Without loss of generality we assume that e : N (0, I n ).

Remark. As illustrated by Figure 1, a random variable y following a normal distribution N (µ, Γ) can always be whitened into a random variable x distributed as N (0, I n ) by the affine transform x = Γ -1/2 (y -µ).

Definition. Define the function f (p) = yψ (p) corresponding to the error e and a set Eη containing e with a probability η. The probabilistic set associated to Eη is defined as

PEη = f -1 (Eη) . (2) 
It contains p with a prior probability of η [START_REF] Jaulin | Probabilistic set-membership approach for robust regression[END_REF]. As a consequence, a probabilistic set estimation can be viewed as a set inversion problem for which guaranteed interval techniques could be used. Now, there exists several manners to choose such a set Eη. We compare two different types of sets: a sphere (which is a confidence region of minimal volume) and a box, which is a good representation for interval methods.

Let us now recall [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF] some results useful to get a set which encloses the normal error e with a given probability η.

Theorem. The minimal volume confidence region of probability η associated with e : N (0, I n ) is the centered n-dimensional sphere Sη of radius α, where (α, η) are linked by the relation

η = α 2 0 z ( n 2 -1) e -z 2 2 n 2 Γe n 2 • dz (3) 
where Γe the Euler function. Recall that for n ∈ N the Euler function satisfies

Γe (n) = (n -1)! (4) 
Proof. The random variable z = e T • e follows a χ 2 distribution with n degrees of freedom whose probability density function is

π(z, n) = z ( n 2 -1) • e -z 2 2 n 2 Γe n 2 . ( 5 
)
The minimal volume confidence region Sη is the set of all e such that

z = e T • e ≤ α 2 (η) (6) 
and the probability η to have e ∈ Sη is

η = α 2 0 π (z, n) • dz = α 2 0 z ( n 2 -1) e -z 2 2 n 2 Γe n 2 • dz. (7) 
For n = 1, n = 2 or n large, from the integral in Equation (3), we can have an expression of the radius α(η) [START_REF] Berger | Statistical Decision Theory and Bayesian Analysis[END_REF] as recalled in Table 1.

n α(η)

1 α = √ 2erf -1 (η) 2 α = -2 • log (1 -η) n 1 α n + 2 √ n • erf -1 2η + erf - √ n 2
.

Table 1: α(η) for n = 1, 2 and n 1

In our context, the dimension of e is large and we can consider that the formula corresponding to n 1 is correct.

Theorem. With n 1 , the probability φη to have e : N (0,

I n ) inside, the box-hull [Sη] of Sη is φη = erf √ n • erf -1 2 • η + erf - √ n 2 + n 2 n . (8) 
Proof. From Table 1 with n 1, for a given confidence η, the radius α of Sη is

α = 2 • √ n erf -1 2η + erf - √ n 2 + n. (9) 
Now, [Sη] is the Cartesian product of n intervals [ei] of length 2α:

[Sη] = [e1] × [e2] × . . . × [en] . (10) 
From Table 1 with n = 1, we know that the probability to have ei ∈

[ei] is P r (ei ∈ [ei]) = erf α √ 2 . ( 11 
) Therefore P r (e ∈ [Sη]) = n i=1 P r (ei ∈ [ei]) = erf α √ 2 n . ( 12 
)
By combining ( 9) with ( 12), we get [START_REF] Eykhoff | System Identification, Parameter and State Estimation[END_REF].

Remark. ∀η > 0, limn→+∞ P r (e ∈ [Sη]) = 1. It means that even for low values of η the probability P r (e ∈ [Sη]) increases dramatically fast with the dimension of e. Therefore when n is large inverting [Sη] yields too much pessimism as illustrated by Figure 2.

Theorem. The minimal volume box Bη which encloses e : N (0, I n ) with a probability η is the centered cube with half-width Proof. The symmetry of the problem implies that Bη should be centered. Since the ei are independent, we have:

α= √ 2erf -1 ( n √ η) . ( 13 
)
η = P r (∀i, ei ∈ [-α, α]) = n i=1 P r (ei ∈ [-α, α]) = n i=1 erf α √ 2 = erf α √ 2 n (14) 
i.e., α= √ 2erf -1 n √ η .

Theorem. We have

lim n→∞ vol (Sη) vol (Bη) = 0. (15) 
Proof. Since the volume of a n-dimensional sphere Sη of radius α is

Vn = π n/2 α n Γe ( n /2 + 1) ,
we have:

ρ η (n) = vol (Sη) vol (Bη) = π n/2 • n+2 √ n•erf -1 2η+erf - √ n 2 n Γe(n/2+1) 2 √ 2erf -1 n √ η n The Stirling formula Γe (n + 1) = n! ∼ √ 2πn n e n implies that ρ η (n) ∼ π n/2 • n + 2 √ n • erf -1 2η + erf -√ n 2 n 2π n 2 n 2e n 2 • 2 √ 2erf -1 n √ η n . Now, 2η + erf -√ n 2 ∼ 2η -1. Therefore ρ η (n) ∼ π n/2 • n + 2 √ n • erf -1 (2η -1) n √ πn n 2e n 2 • 2 √ 2erf -1 n √ η n Since, n + 2 √ n • erf -1 (2η -1)
∼ n, we get:

ρ η (n) ∼ π n/2 • √ n n √ πn( n 2e ) n 2 • 2 √ 2erf -1 ( n √ η) n = π n/2 •n n 2 •(2e) n 2 √ nn n 2 • 2 √ 2erf -1 ( n √ η) n ∼ (eπ) n 2 (2erf -1 ( n √ η)) n = √ eπ 2erf -1 ( n √ η)
n which converges to zero. 

Linearization method

To compute a set which encloses the parameter vector e with a probability η, the previous section proposed to compute the probabilistic set PEη associated to Eη, the set which contains e with a probability η. This set can be expressed as the set inversion problem PEη = f -1 (Eη) where f (p) = yψ (p). For a comparison, we recall the classical the Maximum Likelihood approach to estimate such a confidence set by a linearization of the model. Unfortunately, the linearization error cannot be quantified in a reliable way.

The linearization method searches for the parameter vector p which maximizes the likelihood function

L (yi | p) = i π (yi | p) ∝ i e -(ψ i (p)-y i ) 2 . ( 16 
)
This is equivalent to minimizing

λ (p) = -log L (yi | p) = i (ψi (p) -yi) 2 (17) 
which is corresponds to a non-linear least-square minimization problem. It seems reasonable to assume that the true value for p is closed to the minimizer p and that λ (p) can be approximated by a second order Taylor development of Equation 17around p. Since the gradient of λ at p is zero, we get

λ (p) ∼ λ (p) + 1 2 • (p -p) T • H λ (p) • (p -p) (18) 
where H λ is the Hessian matrix of λ. Now e T •e ≤ α (η) 2 ⇔ λ (p) = i (ψ (p) -yi) 2 ≤ α 2 (η). As a consequence, a confidence ellipsoid which contains p with a probability η is:

λ (p) + 1 2 • (p -p) T • H λ (p) • (p -p) ≤ α 2 (η) .
Note that H λ (p) corresponds to the observed Fisher information matrix at p [31] [START_REF] Berger | Statistical Decision Theory and Bayesian Analysis[END_REF] which is the inverse of the covariance matrix Σ p for the estimated maximum likelihood parameter p. Note also that the linearization method provides on ellipsoid associated to the probability η but this ellipsoid cannot be considered as reliable: the probability that it contains p is most of the time far from η.

Test-cases

To illustrate our method, we consider here three illustrative test-cases involving parameter estimation under white, additive Gaussian noise.

Test-case 1

Consider the following model

y(t) = p2 • e -p 1 •t + p1 • e -p 2 •t + w(t) (19) 
where t ∈ {0, 0.01, 0.02, . . . , 12} and w(t) is a white centred Gaussian noise with a variance σ 2 = 1. Figure 4 represents the collected data y(t). Figure 5 represents the three sets P0.99 obtained by an inversion of [S0.99] , B0.99 and S0.99. This comparison confirms that the box-hull inversion P[S 0.99 ] is too pessimistic. Figure 6 illustrates a situation where PS 0.99 ⊂ PB 0.99 . From Theorem 2 we could have expected an inclusion. Now, this example is quite atypical: the parametric model is not globally identifiable, i.e., p1 and p2 can be interchanged without any effect on the output. Figure 6 also represents the confidence ellipsoid generated by the linear estimator. Due to the non identifiability problem, we have two global minimizers. We have chosen to draw the ellipsoid centred around the minimizer corresponding to the true parameter vector p * . Otherwise, the 0.99 ellipsoid would not contains p * .

Test-case 2

Consider the following model studied in [START_REF] Jaulin | Bounding Approaches to System Identification, chapter Guaranteed nonlinear set estimation via interval analysis[END_REF] 

y(t) = 20 • e -p 1 •t -8 • e -p 2 •t + w (20) 
which is similar to the model of Test-case 1 but the model is now identifiable. Again, w(t) is a centred normal noise with a unit variance. We collected 1000 measurements for y(t) at different times t ∈ [0, 25] as represented on Figure 7.

Figure 8 shows that the inversion PS 0.99 of the confidence sphere S0.99 is more precise than the inversion of [S0.99] and B0.99. The set PS 0.99 has two disjoint components at a confidence level η = 0.99. Figure 9 shows that the linear estimator was able to capture the correct parameters vector.

Remark. Figure 8 shows that the proposed approach suffers from an important pessimism: the border of the computed set is quite thick, and the generated subpaving is not minimal. This is due to the multiple-occurences in the parameter variables in the expression of the inequalities describing Sη. Interval methods are sensitive to this type of situation which adds pessimism in the propagation of uncertainties [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF]. To limit this phenomena, linear approximations such as the centered or affine forms of 

Test-case 3

In this example, a lost underwater vehicle tries to get its position by gathering rangeonly measurements to three beacons [START_REF] Creuze | Robots marins et sous-marins ; perception, modélisation, commande[END_REF] [12]. The position xj = xj yj zj of the j th beacon is precisely known from a previous survey of the area, as well as the altitude zm of the robot, thanks to a pressure sensor. The three beacons are almost aligned, which causes a bad conditioning. The robot is assumed to be static during the acquisition. For each measurement di to the beacon j we have

dij = (xj -xm) 2 + (yj -ym) 2 + (zj -zm) 2 + w ( 21 
)
where w is a white centred Gaussian noise, whose variance is given by the sensor for each measurement. The signals associated to the three beacons are pictured in Figure 10.

From Figure 12, we observe that PS 0.99 ⊂ PB 0.99 ⊂ P[S 0.99 ] , which confirms that the PS 0.99 is more precise than the two other confidence regions. Figure 13 is the superposition of PS 0.99 , PB 0.99 , P[S 0.99 ] and the 0.99 confidence ellipse (flat and horizontal) of a linear estimator. While the linear estimator gives an estimate that is consistent (it contains the true solution), it is obvious that it doesn't fully capture the underlying banana-shaped probability density function, which is more accurately seized by our nonlinear methods. 

Conclusion

In this paper, we have presented a new approach for parameter estimation of nonlinear models with additive Gaussian noise. The resulting method makes it possible to compute a set which contains the parameter vector with a given probability. The main contribution of this paper is that the results are guaranteed, which is not the case for existing approaches. Indeed, although if existing methods are also able to provide an estimation of such a confidence region of probability η, they perform some linearizations without quantifying the corresponding error. Three simulated test-cases were presented and compared to existing and linear methods. 
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	inverting boxes, which are convenient representations for interval methods, takes much
	less time than inverting a sphere.			
	Computation time (s) Test-case 1 Test-case 2 Test-case 3
			P[S0.99]		35 sec	1sec	26sec
			PB0.99		62sec	6sec	45sec
			PS0.99		839sec	89sec	510sec

Table 2 :

 2 Computation times for Test-cases 1, 2 and 3