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Abstract 

In the global context of population growth and climate change, monitoring crops is necessary to sustain 

agriculture and conserve natural resources. While many studies have demonstrated the ability of optical and SAR 

remotely sensed data to estimate crop parameters, these data have not been compared or combined to predict 

crop phenological stages. Despite the high sensitivity of SAR polarimetric data to crop phenological stages, no 

study has used high temporal resolution data. The freely available SAR Sentinel-1 (S-1) and optical Sentinel-2 

(S-2) time series provide a unique opportunity to monitor crop phenology at a high spatial resolution on a weekly 

basis. The objective of this study was to evaluate the potential of S-1 data alone, S-2 data alone, and their 

combined use to predict wheat and rapeseed phenological stages. We first analyzed temporal profiles of spectral 

bands, vegetation indices and leaf area index (LAI) derived from S-2 data, and backscattering coefficients and 

polarimetric indicators derived from S-1 data. Then, an incremental procedure was used to estimate the 

contribution of S-1 and S-2 features to the classification of principal and secondary phenological stages of wheat 

and rapeseed. Results for both crops showed that the classification obtained with combined S-1 & 2 data (mean 

kappa = 0.53-0.82 and 0.74-0.92 for wheat and rapeseed, respectively) was more accurate than those obtained 

with S-2 data alone (mean kappa = 0.54-0.75 and 0.67-0.86 for wheat and rapeseed, respectively) or S-1 data 

alone (mean kappa = 0.48-0.61 and 0.61-0.64 for wheat and rapeseed, respectively). Combining S-1 & 2 data 

allowed better identification of the beginning and end of tillering for wheat and the beginning and end of 

ripening for rapeseed. Among S-2 features, the most important were LAI for wheat and the NDVI for rapeseed. 

For both crops, the S2REP index was one of the most important vegetation indices, while MCARI was less 

important. For S-1 features, results highlighted the large contribution of the backscatter ratio (σ◦VH:σ◦VV) and 

the value of using polarimetric indicators (Shannon entropy and span) to monitor rapeseed and wheat phenology. 

The main novelties of this work are the use of S-1 polarimetric indicators to identify phenological stages of 

wheat and rapeseed and the mapping of wheat and rapeseed secondary phenological stages using remotely 

sensed data. 
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1. Introduction 

Monitoring crops is important for many agricultural and ecological applications, such as estimating crop 

yields (Maas, 1988; Jin et al., 2018), preventing disease and insect infestation (Hatfield and Pinter, 1993), 

applying fertilizer (Bouchet et al., 2016; Diacono et al., 2013) and managing water resources (Duchemin et al., 

2015). Identifying and predicting phenological stages provide essential information for precision agriculture. 

Considering specific phenological stages can optimize irrigation and fertilizer application schedules (Bouchet et 

al., 2016; Sakamoto et al., 2005). Some phenological stages are more sensitive to pests and diseases, thus 

identifying and predicting these stages can prevent pest outbreaks and diseases and reduce the use of pesticides 

(Vreugdenhil et al., 2018). Finally, phenological stages can be used as indicators of global warming on terrestrial 

ecosystems (Menzel et al., 2006). One of the main current challenges is to identify principal and secondary 

phenological stages of wheat and rapeseed that are two of the most important crops in the world in terms of 

harvested area (Food and Agriculture Organization of the United Nations, 2017). Principal phenological stages 

are defined as long-duration developmental phases of plants, while secondary stages are short developmental 

steps within them (Bleiholder, et al., 2001).  

The recent Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) sensors, which 

acquire image time-series at a high temporal frequency (every 5-12 days, depending on the acquisition mode and 

location in the world) and high spatial resolution (2.3 m and 13.9 m in range and azimuth directions, 

respectively, for S-1 bands; 10, 20 and 60 m spatial resolutions for S-2 bands), provide a unique opportunity to 

monitor crops regularly at fine grain scale. Moreover, S-1 & 2 data are freely available under an open license. 

Several features (i.e. spectral bands, vegetation indices and biophysical variables) derived from optical 

remotely sensed data have demonstrated their great potential to predict crop parameters such as yield, biomass 

and phenological stages (Quarmby et al., 1993; Doraiswamy et al., 2004; Mulla, 2013; Bontemps et al., 2015; 

Pan et al., 2015; Betbeder et al., 2016). For S-2 time series, significant relationships have been found between S-

2 and vegetation indices: LAI, leaf chlorophyll concentration and canopy chlorophyll content for potato crops in 

the Netherlands (Clevers et al., 2017) and for maize, garlic, oat, onion, potato, sunflower, alfalfa and grape crops 

in Spain and Italy (Frampton et al., 2013). The potential of S-2 red-edge bands for estimating LAI was 

demonstrated for maize, wheat, rapeseed, barley, sugar beet, sunflower, onion and other vegetable crops in Spain 

and Germany  and for winter wheat in northern China (Pan et al., 2018). Veloso et al. (2017) found that S-2 

Normalized Difference Vegetation Index (NDVI) was highly sensitive to the phenological stages of winter and 

summer crops in southern France. Despite these abilities, a continuous time-series of optical images is difficult – 

if not impossible – to acquire due to the cloud-free dependence of optical acquisitions and the signal provides 

information only about the top layer of vegetation. In this context, Synthetic-Aperture Radar (SAR) images are a 

reliable alternative to the limitations of optical images since microwaves are not sensitive to atmospheric or light 

conditions. Unlike optical reflectance, backscattering coefficients depend on soil conditions (roughness and 

moisture) during early plant phenological stages (McNairn and Brisco, 2004; Baup et al., 2007; Álvarez-Mozos 

et al., 2009) and later on crop properties (biomass, architecture, height) (Baghdadi et al., 2009; Fieuzal et al., 

2013; Wiseman et al., 2014). 

Many studies have demonstrated the relevance of airborne and spatial SAR data for identifying phenological 

stages (Steele-Dunne et al., 2017). In recent years, several studies have shown the value of S-1 data for 



monitoring crop phenology. Bargiel (2017) improved crop classification in northern Germany using 

phenological stages based on S-1 time series. Vreugdenhil et al. (2018) demonstrated the high sensitivity of 

S-1 backscattering coefficients and the ratio of VH:VV polarizations in detecting changes in vegetation 

structure for rapeseed, maize and winter cereals. S-1 VV and VH polarizations have shown great potential 

for identifying phenological stages of wheat (Song and Wang, 2019) and rice (Mandal et al., 2018) based on 

analyzing temporal behavior of backscattering coefficients, but phenological stages were not classified in these 

studies. Studies using polarimetric features derived from RADARSAT-2 or TerraSAR-X satellite images to 

identify crop parameters showed that polarimetric indicators were highly sensitive to phenological stages 

(McNairn et al., 2018; Pacheco et al., 2016), crop height (Betbeder et al., 2016; Canisius et al., 2018), crop 

biomass (Wiseman et al., 2014; Jin et al., 2015; Betbeder et al., 2016; Homayouni et al., 2019) and LAI (Jiao et 

al., 2009; Jin et al., 2015; Betbeder et al., 2016; Canisius et al., 2018). To our knowledge, polarimetric indicators 

derived from S-1 data have not been used to study crop parameters.  

A few studies used both optical and radar data to monitor crop phenology. Most used optical data as a 

reference and predicted biophysical parameters from SAR data. Betbeder et al. (2016) revealed the high potential 

of RADARSAT-2 polarimetry using NDVI derived from Formosat-2, SPOT-4 and SPOT-5 as references. El 

Hajj et al. (2019) described the ability of the S-1 C-band to penetrate crops when biomass is high (NDVI > 0.7) 

for maize, and the lack of this ability for wheat and grassland. Veloso et al. (2017) showed the value of S-1 data 

for monitoring crop growth through analysis of temporal profiles of VV and VH polarizations and the VH:VV 

ratio for winter and summer crops in southern France. Although these studies highlighted the value of SAR data, 

they did not evaluate the potential of combining SAR and optical data to predict crop parameters. Stendardi et al. 

(2019) concluded that combining SAR S-1 and optical S-2 data shows promise for detecting the phenology of 

mountain meadows in northern Italy. Jin et al. (2015) studied the potential of vegetation indices derived from the 

Huanjing-1A/B optical satellite and polarimetric indicators derived from RADARSAT-2 to estimate the LAI and 

biomass of winter wheat. They found the highest correlations when optical and radar data were combined. While 

these studies evaluated SAR and optical time-series and their combined use to estimate LAI and biomass, to our 

knowledge, no study has explored the value of SAR S-1 and optical S-2 data for predicting phenological stages. 

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone, and their combined 

use to identify principal and secondary phenological stages of wheat and rapeseed. More specifically, this study 

aimed to evaluate the value of  polarimetric indicators to discriminate wheat and rapeseed phenological stages 

and determine the number of relevant S-1 & 2 features that are needed to discriminate principal and secondary 

phenological stages of these crops. We evaluated the performance of spectral bands and vegetation indices 

derived from S-2 time-series and backscattering coefficients and polarimetric indicators derived from S-1 time-

series. We first analyzed temporal profiles of features derived from S-1 and S-2 time-series for wheat and 

rapeseed crops. Satellite images were then classified using an incremental procedure based on the importance 

rank of these input features (Mercier et al., 2019). This method automatically selects important features to 

classify the phenological stages of wheat and rapeseed. 

The novelties of this work are threefold: (i) The use of S-1 polarimetric indicators to identify principal and 

secondary phenological stages of wheat and rapeseed; (ii) The statistical analysis of optical data, SAR data and 

their combined use to discriminate phenological stages of wheat and rapeseed; (iii) Mapping of wheat and 

rapeseed secondary phenological stages using remotely sensed data.  
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2. Materials 

2.1 Study area 

The study area consisted of two 5 × 5 km sub-sites in northern France (Fig. 1). Their climate is oceanic with a 

mean annual temperature of 10°C and mean annual precipitation of 702 mm (Météo France). The western site is 

located in an open field landscape with intensive cultivation of cereals and sugar beet. The eastern site is located 

in a “bocage” landscape dominated by grasslands and is characterized by less intensive farming activities 

(mainly dairy cattle) and smaller fields that tend to be enclosed by hedgerows. Both landscapes contain managed 

forest fragments that are used mainly for hunting and production of wood (Jamoneau, 2010)). The topography of 

the study area is quite flat, elevation of the “bocage” and open field landscapes ranging from 125 to 224 m (mean 

= 180 m) and 72 to 158 m (mean = 114 m), respectively. The geological substrate is composed of chalk in the 

open field landscape and silt in the “bocage” landscape (Jamoneau, 2010). 

 

Figure 1. Location of the two sub-sites of the study area (bocage at the top, open field at the bottom ) and the 
sampled fields (Sources: © EuroGeographics for the administrative boundaries; Bing © 2019, Microsoft 
Corporation © 2019, and DigitalGlobe © CNES 2019 Distribution Airbus DS for aerial photographs). 



2.2 Satellite imagery 

A series of five optical S-2 and eight SAR S-1 images were downloaded from January to July 2017 to cover 

crop cycles of wheat and rapeseed (Fig. 2). The S-1 images were acquired in Interferometric Wide (IW) swath 

mode and delivered with VV and VH polarizations. We used the Single Look Complex (SLC) product, which 

consists of focused SAR data that use the full C-signal bandwidth and preserve the phase information, to derive 

polarimetric indicators. The incidence angle of images ranged from 30.6-46.0° (Table 1). The ground spatial 

resolution was 2.5 m and the azimuth spatial resolution was 13.9 m (Table 1). According to data recorded at the 

Météo-France weather station in Saint Quentin (49°49’06”N, 3°12’22”E, located 24 km from the open field site 

and 52 km from the “bocage” site), two S-1 images (DOY 69 and 182) were acquired after a rainfall event. The 

weather station recorded a rainfall of 2.6 mm and 10.1 mm on days 68 and 182, respectively. However, the radar 

signal was not affected by rainfall or freezing on acquisition dates, no peak being observed in the temporal 

profiles of VH and VV polarizations (Fig. 2). 

Figure 2. Days of year of satellite images (triangular shape), field surveys (circular shape) and main crop 
phenological stages for wheat and rapeseed (drawings) (Bleiholder, et al., 2001). The ombrothermal diagram 
(Météo France) shows climatic conditions on the image acquisition dates and temporal profiles show the mean 
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and standard deviation of the Sentinel-1 backscattering coefficients for wheat and rapeseed. The radar signal was 
not affected by rainfall (blue columns) or freezing (red lines) on acquisition dates. 

 

Table 1. Main characteristics of Sentinel-1 SLC images. 

Band C (center frequency of 5 405 GHz) 
Mode Interferometric Wide Swath 

Product type Single Look Complex 

Ground Resolution 2.3 m 

Azimuth resolution 13.9 m 

Temporal resolution 6 days 

Orbit Ascending 

Polarization Dual (VV & VH) 

Swath 250 km 

Incidence angle 30.6-46.0° 

 
The S-2 images were acquired with spatial resolutions of 10 and 20 m, and a spectral resolution of 10 bands 

(Table 2). The tiles were downloaded in level 2A, which provides Top of Canopy reflectance and a cloud and 

shadow mask (ESA, 2019b). Only two S-2 images were acquired between DOY 72 and 163 due to heavy cloud 

cover during the spring. 

Table 2. Main characteristics of Sentinel-2 MSI L2A images. 

Spatial and spectral 

resolutions 

10 × 10 m 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

20 × 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 nm) 

Temporal resolution 5 days 

Swath 290 km 

2.3 Field data collection 

Field surveys were conducted on 36 and 19 fields of wheat (Triticum aestivum L.) and rapeseed (Brassica 

napus L.), respectively (Fig. 1). Sizes of wheat and rapeseed fields ranged from 0.77-35.09 ha (mean=7.31 ha), 

median=4.63) and 1.35-23.91 ha (mean=4.82 ha, median=2.84 ha), respectively. Phenological stages were 

identified on 8 dates from January to July 2017 (Fig. 2) based on the Biologische Bundesanstalt, 

Bundessortenamt and CHemical industry (BBCH) scale (Bleiholder, et al., 2001). Five principal phenological 

stages were observed for both crops, and 29 and 15 secondary phenological stages were identified for wheat 

(Table 3) and rapeseed (Table 4), respectively. The samples of secondary phenological stages available for wheat 

and rapeseed were grouped into sub-classes to obtain a sufficient number of samples per class to train and 

validate the classifications. 

 

  



Table 3. Phenological stages of wheat considered in this study and number of field observations for each 
secondary stage 

Principal 

stage 
Sub-class 

2° 

stage 
Description 

Number of 

observations 

Tillering 

1 

20 No tillers 1 

21 Beginning of tillering: first tiller detectable 14 

22 2 tillers detectable 16 

23 3 tillers detectable 18 

2 

24 4 tillers detectable 22 

25 5 tillers detectable 6 

26 6 tillers detectable 8 

29 9 tillers detectable 20 

Stem 

elongation 
3 

30 Beginning of stem elongation 4 

31 First node at least 1 cm above tillering node 25 

32 Node 2 at least 2 cm above node 1 6 

33 Node 3 at least 2 cm above node 2 24 

34 Node 4 at least 2 cm above node 3 9 

35 Node 5 at least 2 cm above node 4 3 

Flowering, 

anthesis 
4 

65 Full flowering: 50% of anthers mature 3 

66 Full flowering: 60% of anthers mature 2 

67 Full flowering: 70% of anthers mature 3 

68 Full flowering: 80% of anthers mature 4 

69 End of flowering 9 

Development 

of fruit 
5 

71 Watery ripe: first grains have reached half their final size 14 

72 Watery ripe / Early milk 2 

73 Early milk (the content of the kernel is milky) 13 

75 
Medium milk: grain content milky, grains reached final size, still 

green 
19 

77 Late milk 4 

Ripening 

6 

83 Early dough (the content of the kernel is doughy)  10 

84 Early dough/ Soft dough ((the content of the kernel is doughy) 5 

85 Soft dough: grain content soft but dry. Fingernail impression not held 3 

7 
87 Hard dough: grain content solid. Fingernail impression held 9 

89 Fully ripe: grain hard, difficult to divide with thumbnail 8 

 

 

Table 4. Phenological stages of rapeseed considered in this study and number of field observations for each 
secondary stage 

Principal stage Sub-class 2° stage Description 
Number of 

observations 

Leaf development 1 

17 7 leaves unfolded 4 

18 Beginning of tillering: first tiller detectable 7 

19 2 tillers detectable 7 

Inflorescence 

emergence 
2 

50 Flower buds present, still enclosed by leaves 10 

51 Flower buds visible from above (“green bud”) 26 

Flowering 

3 

60 First flowers open 1 

62 20% of flowers on main raceme open 1 

63 30% of flowers on main raceme open 5 

64 40% of flowers on main raceme open 5 

4 

65 Full flowering 7 

67 Flowering declining: majority of petals fallen 7 

69 End of flowering 12 

Development of 

fruit 
5 

77 70% of pods have reached their final size 1 

79 Nearly all pods have reached final size 12 

Ripening 
6 80 Beginning of ripening 25 

7 89 Fully ripe 19 
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3. Methods 

We developed a method to analyze temporal behaviors of S-1 and S-2 features and predict phenological 

stages of wheat and rapeseed (Fig. 3). First, the SAR S-1 and optical S-2 signals were preprocessed and the 

median was computed at the field scale with a negative buffer of 15m. Second, temporal profiles were plotted 

based on the mean and standard deviation derived from the median for all sampled wheat and rapeseed fields. 

Field surveys were used to analyze the temporal profiles of the spectral bands and vegetation indices derived 

from S-2 and radar backscattering coefficients and polarimetric indicators derived from S-1. Finally, we assessed 

the potential of S-1 data alone, S-2 data alone, and combined S-1 & 2 data to predict principal and secondary 

phenological stages of wheat and rapeseed using an incremental method developed by Mercier et al. (2019) and 

field data were used as reference data to train the classifier. 

Figure 3. Flowchart of the image processing procedure applied to S-1 and S-2 time series to identify wheat and 
rapeseed secondary phenological stages. 

3.1 SAR Sentinel-1 image preprocessing 

3.1.1 Backscattering coefficients 

Backscattering coefficients from S-1 images were extracted using the Sentinel-1 Toolbox (ESA, 

http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically calibrated to 

transform the digital number (DN, amplitude of the backscattering signal) of each pixel into backscattering 

coefficients (σ◦VV, σ◦VH) on a linear scale using the following equation (Miranda and Meadows, 2015): 



�����(�) =
|��|

�²
 (1) 

where A is the information necessary to convert SAR reflectivity into physical units provided in the 

Calibration Annotation Data Set in the image metadata. 

A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise (Lee et al., 1994). 

The images were geocoded using Shuttle Radar Topography Mission data to correct topographic deformations 

(geometric correction accuracy < 1 pixel). A backscattering ratio was calculated by dividing σ◦VH by σ◦VV. All 

images were then converted from linear to decibel (dB) scale using the following equation: 

��(��) = 10 × �����(��) (2)  

3.1.2 Polarimetric indicators 

A 2 × 2 covariance matrix (��) was first extracted from the scattering matrix S of each SLR image using 

PolSARpro version 5.1.3 software (Pottier and Ferro-Famil, 2012). A refined Lee filter was then applied in a 

window of 7 × 7 pixels to reduce speckle noise (Lee et al., 1994). Then, we calculated the  total scattered power 

called span in the case of a polarimetric radar system (Ferro-Famil and Pottier, 2014). Shannon Entropy (SE), 

which measures the randomness of scattering of a pixel (e.g. due to variation in backscattering power or 

polarization), was calculated from the covariance matrix (��) using the following equation: 

�� = log( ���|��|) =  ��" + ��$ (3) 
where ��"  is related to the intensity and ��$ to the degree of polarization. 

Finally, ��, ��"  and ��$ were normalized as �� &�'(, ��"  &�'( and ��$ &�'( using PolSARpro version 

5.1.3 software. 

3.2 Optical Sentinel-2 image preprocessing 

Twelve vegetation indices were calculated since their potential to monitor crop parameters (LAI, chlorophyll 

content and phenological stages) using S-2 data has been demonstrated (Daughtry et al., 2000; Frampton et al., 

2013; Herrmann et al., 2011; Clevers and Gitelson, 2013; Clevers et al., 2017). We calculated NDVI, the Green 

Normalized Vegetation Index (GNDVI), the Red-Edge Inflation Point (REIP) index, the Inverted Red-Edge 

Chlorophyll Index (IRECI), the Sentinel-2 Red-Edge Position (S2REP) index, the Modified Chlorophyll 

Absorption in Reflectance Index (MCARI), the MERIS Terrestrial Chlorophyll Index (MTCI), the Soil-Adjusted 

Vegetation Index (SAVI), the Modified Soil-Adjusted Vegetation Index (MSAVI), the Weighted Difference 

Vegetation Index (WDVI), the Pigment Specific Simple Ratio (PSSRa) and the Normalized Difference Index 

(NDI). Based on analysis of their temporal profiles and on correlation matrices (Appendix A), we ultimately 

selected four of these indices: NDVI, S2REP, MCARI and WDVI (Table 5). First, we selected NDVI because it 

is a very commonly used vegetation index sensitive to chlorophyll content, calculated from bands 4 and 7 of S-2 

(Hermann et al., 2011; Frampton et al., 2013). Second, we chose the S2REP because this index is a version of 

the REP estimate for S-2 derived from a linear interpolation that incorporates bands 5 and 6 positioned on the 

red-edge slope (Guyot and Baret, 1988; Clevers et al., 2002). MCARI and WDVI were also selected, because 

they had the lowest correlations with the other features derived from S-2 for both crop types. The MCARI, 

which was developed to study variations in chlorophyll and minimize effects of non-photosynthetic materials, 
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was derived from bands 3, 4 and 5 of S-2 (Daughtry et al., 2000). The WDVI, which is related to the chlorophyll 

content of the canopy was used to estimate LAI to avoid destructive measurements. It is a two-dimensional 

greenness index derived from bands 4 and 8 of S-2 (Bouman et al., 1992). 

 
Table 5. Vegetation indices calculated from Sentinel-2 images. G = Green, R = Red, RE = Red-Edge, NIR = 
Near-infrared, NDVI = Normalized Vegetation Index, S2REP = S-2 Red-Edge Position index, MCARI = 
Modified Chlorophyll Absorption in Reflectance Index, WDVI = Weighted Difference Vegetation Index. 

Index Equation S-2 bands used Original author 

NDVI (NIR-R)/(NIR+R) (B7-B4)/(B7+B4) (Rouse et al., 1973) 

S2REP 705 + 35 - ((((NIR + R)/2) - RE1)/(RE2 -

RE1)) 

705 + 35 * ((((B7 + B4)/2) B5)/(B6 
B5)) 

(Guyot and Baret, 

1988) 

MCARI [(RE - R) 0.2(RE - G)] * (RE - R) [(B5 - B4) - 0.2(B5 - B3)] * (B5 - B4) (Daughtry et al., 2000) 

WDVI (NIR – 0,5 * R) (B8 – 0,5 * B4) (Clevers, 1988) 

 
LAI, a biophysical variable that describes the state of vegetation cover and provides information on the 

density of green vegetation, was also derived from S-2 images using the PROSAIL radiative transfer model 

implemented in SNAP v6.0 software. The spectral bands, vegetation indices and LAI were interpolated daily 

using a spline method to match the dates of SAR S-1 acquisition using the stats package of R software. All S-1 

and S-2 images were projected onto the RGF93/Lambert-93 system (EPSG 2154) and resampled to the 

resolution of 10 m. In total, we preprocessed 120 S-2 features (10 spectral bands, 4 vegetation indices and 1 

biophysical variable × 8 dates) and 56 S-1 features (2 backscattering coefficients, 1 backscatter ratio and 4 

polarimetric indicators × 8 dates). Due to strong correlations between the S-2 spectral bands, we subsequently 

selected a sub-set of bands for the incremental classification based on their temporal behaviors. 

3.3 Incremental classification 

From an operational point of view, it is necessary to minimize the time between data acquisition and delivery 

of results to decision-makers (Hatfield et al., 2019). The time-consuming processing of multi-temporal remote 

sensing data is a limitation for this purpose. Therefore, we used an incremental procedure based on the 

importance rank of the input features to find a trade-off between accuracy and processing time (Mercier et al., 

2019). This method automatically selects important features to maintain a minimum but sufficient number of 

features to classify the phenological stages of wheat and rapeseed. This method was applied to predict the 

principal and sub-classes of secondary phenological stages of wheat (Table 3) and rapeseed (Table 4) (Fig. 4).  

 



Figure 4. Detailed flowchart of the incremental classification procedure applied to S-1 data alone, S-2 data 
alone and combined S-1 & 2 data. 

 

  Incremental classification was performed using a Random Forest (RF) classifier applied to S-1 data alone, 

S-2 data alone, and combined S-1 & 2 data. A total set of 50 pairs of training and validation fields in a 70:30 

ratio were randomly selected to classify all wheat and rapeseed phenological stages. For each of the pairs, the 

selected fields were the same for S-1 data alone, S-2 data alone, and combined S-1 & 2 data. A maximum 

number of randomly selected samples per class was set to rebalance the classes, since the RF classifier 

underperforms with unbalanced classes (Khoshgoftaar et al., 2007). The number of samples per pair ranged from 

21 (5 principal phenological stages) or 18 (7 sub-classes of secondary phenological stages) to 52 for wheat, and 

from 13 to 35 for rapeseed (both types of phenological stages) (Table 6). 

 

Table 6. Number of samples per pair (training + validation samples) used to classify phenological stages of 
wheat and rapeseed. OS = observed samples in the field, SS = selected samples for classification 

 Wheat fields Rapeseed fields 

Class code 
Principal stages Sub-classes Principal stages Sub-classes 

OS SS OS SS OS SS OS SS 

1 105 52 49 49 18 18 18 18 

2 72 52 56 52 36 35 36 35 

3 21 21 72 52 38 35 12 12 

4 52 52 21 21 13 13 26 26 

5 35 35 52 52 44 35 13 13 

6   18 18   25 25 

7   17 17   19 19 

 
Two output analysis – mean rank of importance of each input feature and mean kappa index (Cohen, 1960; 

Rosenfield and Fitzpatrick-Lins, 1986) as a function of the number of features – were used to select the most 

important features to include in the final classification. Incremental classification is used to assess mapping 

quality as the types and numbers of features increase. Thus, it determines the combination and number of 



12 
 

features in the classification necessary to obtain acceptable quality (Inglada et al., 2016). For each training and 

validation set (50 pairs), an RF algorithm was first applied to all of the features to rank them in order of 

importance based on the mean decrease in the Gini index which assessed the reliably of the incremental 

classification (Calle and Urrea, 2011). The mean rank of importance of each feature was derived from the 50 

ranks obtained from the 50 pairs of training and validation samples. We then ran as many RF algorithms as the 

number of features, starting with the two most important features and then adding the less important features 

until all features were processed. The number of features selected for the final predictions was determined 

automatically: when kappa increased by less than 0.02 for three consecutive feature additions, the first of the 

three features marked the end of the selection for prediction. To visualize differences in performance between 

classes, we calculated user’s accuracy (UA) and producer’s accuracy (PA) (Congalton, 1991) as a function of the 

number of features. We used the RF algorithm to select and classify features and to calculate the final prediction. 

In both cases, the number of trees was set to 100 (Pelletier et al., 2016). The analysis were performed using the 

randomForest package of R software. 

4.  RESULTS 

4.1 Analysis of time-series of Sentinel-2 features 

For wheat and rapeseed, the highest signal variations in temporal profiles for S-2 reflectance were observed 

for bands 6 and 7 (red-edge) and bands 8 and 8A (near-infrared) (Fig. 5).  

Figure 5. Mean temporal profiles of Sentinel-2 reflectance and main phenological stages for (a) wheat and 
(b) rapeseed (Bleiholder, et al., 2001) (B02 = blue, B03 = green, B04 = red, B05 = Red-edge 1, B06 = Red-edge 
2, B07 = Red-edge 3, B08 = NIR wide, B8A = NIR narrow, B11= SWIR1, B12= SWIR2). 

 

For wheat, all S-2 bands saturated before and during the maximum peak corresponding to stem elongation 

(DoY 100-124), inflorescence and flowering (DoY 152) (Fig. 5a). For rapeseed, all S-2 bands saturated during 

 
(a) 

 
(b) 



flowering and development of fruit (DoY 100, BBCH stages ~ 60-65, DoY 124, BBCH stages ~67-69, and DoY 

152 and 163, BBCH stage ~80) (Fig. 5b). Based on these observations, we selected S-2 bands 3, 5, 6, 7, 8 and 

8A as input for the incremental classification. 

 
In the temporal profiles of S-2-based vegetation indices and LAI for wheat and rapeseed, the standard 

deviation peaked on DoY 146, which corresponded to the end of inflorescence for wheat (DoY 124, BBCH stage 

~55) and the end of development of fruit for rapeseed (DoY 124, BBCH stages ~67-69) (Fig. 6).  

For wheat, LAI, NDVI and MCARI began to increase at the beginning of tillering, and S2REP and WDVI at 

the end of tillering. They all decreased during ripening. 

For rapeseed, decreases are observed during ripening. NDVI increased until the development of fruit. 

However, it is not possible to observe its saturation due to the poor number of S-2 dates. LAI and WDVI were 

similar: they began to increase at the beginning of inflorescence (DoY 46) until the beginning of flowering (DoY 

86). WDVI was the only vegetation index sensitive to leaf development (DoY 18-45). 

For both crop types, MCARI had a high standard deviation. Thus, MCARI can produce inaccurate predictions 

of phenological stages.  

 
 

Figure 6. Mean temporal profiles of Sentinel-2 vegetation indices and LAI and main crop phenological stages 
for wheat and rapeseed (Bleiholder, et al., 2001) (NDVI = Normalized Vegetation Index, S2REP = S-2 Red-
Edge Position index, MCARI = Modified Chlorophyll Absorption in Reflectance Index, WDVI = Weighted 
Difference Vegetation Index, LAI = Leaf Area Index). Error bars indicate 1 standard deviation. 
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4.2 Analysis of time series of Sentinel-1 features 

 
For wheat, while trends in the temporal profiles for ��)* and ��)) were similar, ��)) was influenced more 

by wheat growth than ��)* (Fig. 7). Both polarizations increased during tillering (DoY 18-72). Both �0)* and 

�0)) decreased throughout stem elongation (DoY 72-124) but increased from inflorescence to ripening. The 

��)*: ��)) ratio has varied little during tillering stages. The ratio increased strongly during stem elongation 

and slightly from the beginning of inflorescence to ripening. The polarimetric indices were also sensitive to 

wheat phenological stages, according to their temporal behaviors (Fig. 7). The temporal behaviors of �,-., 

��)* and ��)) were similar. The normalized SE index and its intensity (��"  &�'() were similar. The 

influence of polarization (��$&�'() on SE was weak, with values ranging from -0.9 to 0.8 dB, while ��"  &�'( 

ranged from -5 to -1 dB. �� &�'( and ��"  &�'( initially increased at tillering but then decreased during stem 

elongation and inflorescence. ��$ &�'( initially varied little but then significantly increased during stem 

elongation. ��$  &�'( decreased linearly from the end of flowering to ripening. 

For rapeseed, the trends for ��)* and ��)) were similar, showing that they were sensitive to phenological 

stages, while the ��)*: ��)) ratio was affected only slightly (Fig. 7). VH and VV polarizations increased 

slightly during leaf development, varied little during inflorescence and decreased during flowering. Both 

polarizations increased from development of fruit to the beginning of ripening. They decreased until the end of 

ripening. Like for wheat, the temporal profiles of span, ��)* and ��)) for rapeseed were similar. ��$  &�'( 

varied little throughout the rapeseed cycle. Temporal changes in �� &�'( and ��"  &�'( were similar to those 

of wheat, ��"  &�'( increased during flowering and decreased during ripening. 

SAR S-1 features were more sensitive to the development of fruit stage for rapeseed (Fig. 7) than optical S-2 

features, which saturated from development of fruit (DoY 86) to beginning of ripening (DoY 163) (Fig. 5 and 6). 



 

Figure 7. Mean and standard deviation of the Sentinel-1 backscattering coefficients and polarimetric 
indicators and main crop phenological stages for wheat and rapeseed (Bleiholder, et al., 2001) (VH = ��)*, VV 
= ��)), VH:VV = ��)*: ��)), �,-. = total scattered power, �� &�'( = normalized Shannon entropy, 
��"  &�'( = normalized Shannon entropy Intensity, ��$ &�'( = normalized Shannon entropy Polarization). 
Error bars indicate 1 standard deviation. 

4.3  Contribution of Sentinel 1 & 2 time series to monitoring wheat and rapeseed phenology 

4.3.1 Contribution of Sentinel 1 & 2 time series to identifying principal phenological stages of wheat and 
rapeseed 

The combined use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting the principal crop 

stages of wheat and rapeseed (maximum mean kappa index of 0.82 and 0.91, respectively) (Fig. 8). However, 

considering the standard deviation of the mean kappa index, results of the combined use of S-1 & 2 data were 

similar to those of S-2 data alone. The number of features automatically selected to predict the principal 

phenological stages were 4, 6 and 6 for wheat and 4, 5 and 5 for rapeseed for S-1 data alone, S-2 data alone and 
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their combined use, respectively. For wheat, the mean kappa indices of S-1 and S-2 data alone were equal up to 3 

input features, after which the S-1 mean kappa index changed little (0.60 ± 0.07), while that for S-2 continued to 

increase up to 5 input features (0.74 ± 0.07) (Fig. 8a). Using the top 6 S-1 & 2 features out of all 18 features 

increased the mean kappa index by ca. 0.24 (i.e. from 0.53 ± 0.11 for 2 features to 0.77 ± 0.07 for 6 features). 

For rapeseed, S-1 data alone underperformed S-2 data alone based on the standard deviation of the mean kappa 

index (Fig. 8b). Using the top 5 S-1 & 2 features out of all 18 features increased the mean kappa index by ca. 

0.16 (i.e. from 0.74 ± 0.12 for 2 features to 0.90 ± 0.07). 

 

 
(a) 

 
(b) 

Figure 8. Mean kappa index of incremental classifications of principal phenological stages for Sentinel-1 data 
alone, Sentinel-2 data alone, and combined Sentinel-1 & 2 data as a function of the number of input features for 
(a) wheat and (b) rapeseed. The dashed lines indicate the number of features automatically selected for the 
predictions. The combined use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting the 
principal crop stages of wheat and rapeseed. 

 
When using S-2 data alone for wheat (Fig. 9b), LAI was the most important feature, followed by S2REP, red-

edge2 (B06) and WDVI, NDVI and red edge1 (B05). For rapeseed (Fig. 9e), the top 3 features were NDVI, 

S2REP and band 3 (green) (mean ranks of 1.4, 2.1 and 4 respectively). They were followed by LAI and WDVI 

(mean ranks of 4.3 and 5.3 respectively).  

When using S-1 data alone, the ��)*: ��)) ratio ranked first for both crops, while ��)) ranked third for 

wheat (Fig. 9a and 9d). Polarimetric indicators were important for wheat and rapeseed: several of them were 

among the 4 input features selected for predictions for both crops. For wheat, the polarization of the SE 

(��$&�'() ranked second (Fig. 9a), for rapeseed, the intensity of the SE (��" &�'() ranked fourth (Fig. 9d).  

When using combined S-1 & S2 data, an S-1 feature was the most important for both crops: ��)*: ��)) for 

wheat (Fig. 9c) and ��)* for rapeseed (Fig. 9f). Among the top 10 important features, 6 were S-1 features for 

both crop types. For S-2 features, LAI was the most important for wheat and the NDVI and S2REP for rapeseed, 

since they were the only features out of the 6 and 5 features selected for prediction using the combined use of 

S-1 & 2 data. MCARI was the least important S-2 index for both crops. 

 



 
(a) S-1 wheat 

 
(b) S-2 wheat 

 
(c) S-1&2 wheat 

 
(d) S-1 rapeseed 

 
(e) S-2 rapeseed 

 
(f) S-1&2 rapeseed 

Figure 9. Mean rank of importance of the most important features to identify the 5 principal phenological 
stages of (a, b, c) wheat and (d, e, f) rapeseed for (a, d) Sentinel-1 data alone, (b, e) Sentinel-2 data alone and (c, 

f) combined Sentinel-1 & 2 data. The ��)*: ��)) ratio was a relevant feature using S-1 data alone for both 
crops, while LAI and NDVI were the most important features using S-2 data alone for wheat and rapeseed, 
respectively. 

 
Concerning classification results for wheat, tillering was the phenological stage most accurately classified 

using S-1 data alone, S-2 data alone and their combined use (Fig. 10a-c and 11a-c). Based on the UA and PA 

results, similar results were obtained using S-1 or S-2 data alone for the stem elongation stage. The tillering stage 

was identified better using S-1 than S-2 data, while the flowering, development of fruit and ripening stages were 

identified better using S-2 than S-1 (Fig.10a and 10b). Combined use of S-1 & 2 data improved the UA of 

tillering, stem elongation and ripening; only the PA of the stem elongation and flowering stages underperformed 

that of S-2.  

For rapeseed, development of fruit was the most difficult phenological stage to identify using S-1 data alone 

and the combined use of S-1 & 2 data, due to confusion with ripening (Appendix B, Table B4 and B6 and Fig. 

10d and 10f, 11d 0and 11f). S-2 data alone provided better results than S-1 data alone for all classes (Fig 10d-e, 

11d-e), while their combined use improved the PA of the leaf development stage from 0.8 (S-2) to 1 (S-1 & 2) 

(Fig. 10e-f, 11e-f). 
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Figure 10. Mean user’s accuracy (UA) of incremental classifications as a function of the number of input 
features to identify the 5 principal phenological stages of wheat and rapeseed. The colored lines refer to the crop 
phenological stages. 

 

 
(a) S-1 wheat 

 
(b) S-2 wheat 

 
(c) S-1&2 wheat 

 

 
(d) S-1 rapeseed 

 
(e) S-2 rapeseed 

 
(f) S-1&2 rapeseed 

Figure 11. Mean producer’s accuracy (PA) of incremental classifications as a function of the number of input 
features to identify the 5 principal phenological stages of wheat and rapeseed. The colored lines refer to the  crop 
phenological stages.  

 

 
(a) S-1 wheat 

 
(b) S-2 wheat 

 
(c) S-1&2 wheat 

 

 
(d) S-1 rapeseed 

 
(e) S-2 rapeseed 

 
(f) S-1&2 rapeseed 



4.3.2 Contribution of Sentinel 1 & 2 time series to identifying secondary phenological stages of wheat and 
rapeseed 

The number of features automatically selected to predict secondary phenological stages were  4, 4 and 7 for 

wheat (Fig.12a) and 4, 4 and 5 for rapeseed (Fig. 12b) for S-1 data alone, S-2 data alone and their combined use, 

respectively. For S-2 data alone, the mean kappa indices of wheat were similar to those for the principal 

phenological stages using the number of features automatically selected (0.72 ± 0.05 and 0.74 ± 0.06), whereas 

the secondary phenological stages of rapeseed were identified weaker than principal phenological stages (0.77 ± 

0.07 and 0.86 ± 0.07, respectively). S-1 data alone did not discriminate secondary phenological stages well, since 

their mean kappa indices were significantly lower than those for the principal phenological stages (0.53 ± 0.06 

and 0.60 ± 0.07, respectively, for wheat and 0.55 ± 0.07 and 0.63 ± 0.06, respectively, for rapeseed). For 

combined S-1 & 2 data, mean kappa indices for secondary phenological stages were also lower than those of 

principal phenological stages (0.72 ± 0.07 and 0.77 ± 0.06, respectively, for wheat and 0.79 ± 0.06 and 0.9 ± 

0.07, respectively, for rapeseed). The use of S-1 & 2 data combined was similar to those of S-2 data alone for 

both crops (Fig. 12a and 12b). Several S-1 features were present in the top ranks of importance for the combined 

S-1 & 2 data (Fig. 13c and 13f). Considering standard deviation of the mean kappa index, the classification 

accuracy using S-2 data alone or combined S-1 & 2 was not significantly different. For rapeseed, the mean kappa 

index was very similar regardless of the number of input features. For wheat, S-2 data alone results were 

superior to combined S-1 & 2 results until 5 inputs features. 

 

 
(a) 

 
(b) 

Figure 12. Mean kappa index of incremental classifications of secondary phenological stages for Sentinel-1 
data alone (green), Sentinel-2 data alone (red), and combined Sentinel-1 & 2 data (blue) as a function of the 
number of input features for (a) wheat and (b) rapeseed. The classification accuracy using S-2 data alone or 
combined S-1 & 2 was not significantly different. 
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(a) S-1 wheat 

 
(b) S-2 wheat 

 
(c) S-1&2 wheat 

 
(d) S-1 rapeseed 

 
(e) S-2 rapeseed 

 
(f) S-1&2 rapeseed 

Figure 13. Mean rank of importance of the most important features to identify the 7 secondary phenological 
stages of wheat and rapeseed. The ��)*: ��)) ratio was the most important feature using S-1 data alone for 
both crops, while LAI, NDVI and S2REP were the most important features using S-2 data alone. 

 
When using S-2 features alone, LAI, NDVI and S2REP for both crop types remained, like those for the 

principal phenological stages, the most important features (Fig. 11e and 13e). For rapeseed, band 3 (green), 

which had been ranked third for identifying the principal phenological stages (Fig. 10e) decreased to the sixth 

rank for identifying the secondary phenological stages (Fig. 13e). 

The ��)*: ��)) ratio was the most important feature using S-1 data alone for both crops (Fig. 13a and 13d), 

and the first and seventh feature using S-1 & 2 data combined (Fig. 13c and 13f) for wheat and rapeseed, 

respectively.  

When using S-1 features alone, ��)) and ��$ &�'( for wheat (Fig. 13a) and ��)) and �� &�'( for 

rapeseed (Fig. 13d) were also highly important for identifying secondary phenological stages. �� &�'( 

appeared more important for discriminating secondary phenological stages than principal phenological stages, 

increasing by 3 ranks for both crops, while the rank of span decreased from third and first for wheat and 

rapeseed, respectively.  

 

 



 

 
(a) S-1 wheat 

 
(b) S-2 wheat 

 
(c) S-1&2 wheat 

 

 
(d) S-1 rapeseed 

 
(e) S-2 rapeseed 

 
(f) S-1&2 rapeseed 

Figure 14. Mean user’s accuracy of incremental classifications as a function of the number of input features 
to identify the 7 secondary phenological stages of wheat and rapeseed. The colored lines refer to thesecondary 
phenological stages. 

 

 
(a) S-1 wheat 

 
(b) S-2 wheat 

 
(c) S-1&2 wheat 

 

 
(d) S-1 rapeseed 

 
(e) S-2 rapeseed 

 
(f) S-1&2 rapeseed 

Figure 15. Mean producer’s accuracy of incremental classifications as a function of the number of input 
features to identify the 7 secondary phenological stages of wheat and rapeseed. The colored line refer to the 
secondary phenological stages. 
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For classification results for wheat, S-1 data alone (Fig. 14a and 15a) underperformed S-2 data alone (Fig. 14b 

and 15b) and combined S-1 & 2 data (Fig. 14c and 15c) in classifying flowering, development of fruit and the 

beginning and end of ripening. However, by combining S-1 & 2 features (Fig. 14c and 15c), the accuracy of the 

secondary phenological stages was either similar to those of S-2 data alone (Fig. 14b and 15b) or higher, except 

for the flowering and the end of ripening stages based on the PA.  

For classification results for rapeseed, the leaf development, the beginning/middle of flowering and the end of 

development of fruit were the stages least well predicted using S-1 data alone (Fig. 14d and 15d) or S-2 data 

alone (Fig. 14e and 15e). Combined use of S-1 & 2 data increased the accuracy of identifying the leaf 

development stage (Fig. 14f and 15f).  

 

5. DISCUSSION 

5.1 The relationship between Sentinel-2 features and phenological stages of wheat and 

rapeseed 

For both crop types, the temporal profiles of S-2 bands were consistent with those observed by Ashourloo et 

al (2019). Saturation was observed from stem elongation to flowering for wheat and from flowering to 

development of fruit for rapeseed (Fig.5). However, it should be noted that the analysis of the temporal profiles 

was done from only 5 dates due to the heavy cloud cover over the study area between DOY 72 and 152, i.e. 

during the stem elongation, booting and early flowering stages for wheat and the flowering and development of 

fruit stages for rapeseed. Wilson et al. (2014) mentioned signal saturation for wheat and rapeseed when using 

hyperspectral data within a 400-900 nm range and identified optimal bands for identifying crops in green, 

red-edge and near-infrared wavelengths. Based on this study and our observations, we selected S-2 bands 3, 5, 6, 

7, 8 and 8A as input for the incremental classification  

  

In the temporal profiles of S-2-based vegetation indices and LAI, the standard deviation peaked at the end of 

inflorescence for wheat and the end of development of fruit for rapeseed  (Fig. 6). Thus, the heterogeneity in 

crop phenology among fields during the field surveys peaked earlier during the middle of stem elongation for 

wheat and the beginning of development of fruit for rapeseed. All vegetation indices saturated when the LAI was 

high (1-2 for wheat and 3-4 for rapeseed, depending on the vegetation index), which confirms observations of 

Haboudane et al. (2004) for wheat. 

For wheat, the vegetation indices and LAI began to increase when the chlorophyll content increased at the 

tillering stage. They all decreased during ripening, as plants dried.  

For rapeseed, decreases are observed during ripening due to the decrease in chlorophyll content as plants 

dried. LAI and WDVI began to increase at the beginning of inflorescence until the beginning of flowering as 

plant area expanded. WDVI decreased during the leaf development as leaves unfolded. 

 



5.2 The relationship between Sentinel-1 backscatter coefficients and phenological stages of 

wheat and rapeseed 

 
For wheat, while trends in the temporal profiles for ��)* and ��)) were similar, ��)) was higher than 

��)* especially during the first phenological stages (i.e. tillering and stem elongation), since ��)) is 

influenced more by wheat growth than ��)* (Fig. 7). This is consistent with observations of Cookmartin et al. 

(2000) who showed that �0)) is particularly sensitive to vegetation wetness and of Fieuzal et al (2013) who 

observed maximum water content at the stem elongation stage. Both polarizations increased during tillering 

(DoY 18-72). The increase in the number of stems per plant and the length of stems results in an increase in VH 

polarization, which is dominated by double-bounce and volume-scattering mechanisms (Lopez-Sanchez et al., 

2013; Wiseman et al., 2014; Veloso et al., 2017) and a strong increase in VV polarization, which is dominated 

by the influence of soil and canopy. Both �0)* and �0)) decreased throughout stem elongation but increased 

from inflorescence to ripening, as observed by Fieuzal et al. (2013), due to an increase in crop absorption when 

vegetation was wet, and decreased as vegetation dried. VV polarization is attenuated by vertical transformation 

of the structure of wheat during stem elongation (Brown et al., 2003). The ��)*: ��)) ratio has varied little 

during tillering stages, which does not help identify secondary phenological stages. This ratio correlates more to 

fresh biomass than to photosynthetic activity (Veloso et al., 2017). For rapeseed, VH and VV polarizations 

increased slightly during leaf development as biomass increased. They varied little during inflorescence and 

decreased during flowering. Indeed, rapeseed’s vertical transformation from a thick rosette of leaves to a 

flowering stalk attenuated VV polarization, while its low density attenuated VH polarization. Both polarizations 

increased from development of fruit to the beginning of ripening, which was also observed in other studies 

(Fieuzal et al., 2013;  Lopez-Sanchez et al., 2013; Wiseman et al., 2014; Veloso et al., 2017). The progressive 

development of structure without preferred orientations results in a more complex geometry, inducing a strong 

increase in the volume-scattering mechanism (Betbeder et al., 2016). VH and VV polarizations decreased until 

the end of ripening due to the decrease in water content in the top layer of rapeseed. VV polarization is 

particularly sensitive to the water content of vegetation (Cookmartin et al., 2000), and VH is attenuated by the 

increase in wave penetration into the soil. 

5.3 The relationship between Sentinel-1 polarimetric indicators and phenological stages of 

wheat and rapeseed 

For both crop types, the temporal behaviors of �,-., ��)* and ��)) were similar since span is the total 

scattered power. For wheat, �� &�'( and ��"  &�'( initially increased at tillering but then decreased during 

stem elongation and inflorescence. The increase in ��"  &�'( was related to stem development during tillering. 

This complexity of plant structure increased the disorder encountered in the radar signal. The opposite was 

observed during stem elongation, due to the less complex structure of wheat, which resulted in a decrease in 

backscatter power. Betbeder et al. (2016) demonstrated a strong positive correlation (r²=0.7) between topsoil 

moisture and ��"  during leaf development and tillering due to a low wave penetration into the soil. ��$  &�'( 

initially varied little but then significantly increased during stem elongation, indicating that polarization varied 

greatly due to heterogeneity in plant structures in wheat fields. ��$ &�'( decreased linearly from the end of 
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flowering to ripening, as wheat was becoming homogeneous at the field scale. �� &�'( and ��"  &�'( could 

identify the development of fruit stage, unlike the other S-1 features, since they decreased slightly during this 

stage. For rapeseed, the temporal changes in �� &�'( and ��"  &�'( were similar to those of wheat. As 

mentioned by Betbeder et al. (2016), the intensity of SE was sensitive to different phenological stages. The slight 

increase in ��$  &�'( during flowering was associated with changes in rapeseed structure from a thick rosette of 

leaves to a flowering stalk, resulting in a strong variation in backscattering polarization (Betbeder et al., 2016). 

��"  &�'( increased as rapeseed biomass increase; thus, it increased during flowering and decreased during 

ripening (Betbeder et al., 2016). 

5.4 Relative contributions of S-1 and S-2 data to mapping of wheat and rapeseed 

phenological stages 

Concerning the prediction of principal phenological stages of wheat using S-2 data alone (Fig. 9b), LAI was 

the most important feature, followed by S2REP, red-edge2 (B06) WDVI, NDVI and red edge1 (B05). For 

rapeseed (Fig. 9e), the most important 5 features were NDVI, S2REP, band 3 (green), LAI and WDVI. Principal 

and secondary phenological stages of wheat and rapeseed were well identified by LAI derived from S-2 data, 

since this index is related to the density of green vegetation. The incremental classification results demonstrated 

the relevance of the S2REP index for both crop types, which is consistent with results of Frampton et al. (2013). 

S2REP, which is highly sensitive to chlorophyll content, is calculated from red-edge bands of S-2 that respond to 

high large changes in leaf reflectance (Hatfield et al., 2008). The importance of the S-2 red-edge bands has been 

demonstrated for predicting green LAI in crop fields, including wheat in Spain and Germany (Delegido et al., 

2011). We noted the potential of WDVI for predicting rapeseed phenology based on our analysis of temporal 

profiles; it was the only index sensitive to the leaf development stage. Wilson et al. (2014) explained that 

rapeseed had higher reflectance in the green and red portions of the spectrum than other crops because of its 

yellow flowers.  

 

Concerning principal and secondary phenological stages classification of wheat using S-1 data alone, the 

��)*: ��)) ratio ranked first for both crops, while ��)) ranked third (Fig. 9a and 9d). Previous studies 

demonstrated the suitability of backscattering coefficients (��)*, ��))) and the polarization ratio 

(��)*: ��))) for estimating biomass and LAI of wheat (Dente et al., 2008; Jin et al., 2015; Betbeder et al., 

2016) and maize (Gao et al., 2013). Veloso et al. (2017) concluded that the influence of the ground was similarly 

reduced for wheat using ��)*: ��)) compared to ��)* and ��)), and was generally more consistent for 

wheat and rapeseed. For rapeseed, the ��)*: ��)) ratio was the most important feature using S-1 data alone for 

classify principal and secondary phenological stages. The ��)*: ��)) ratio had shown high performance in 

identifying principal phenological stages of both crops, confirming its high reliability for identifying principal 

and secondary phenological stages. 

Consistent with results of Betbeder et al. (2016), polarimetric indicators were important for wheat and 

rapeseed: several of them were among the 4 input features selected based on the threshold automatically defined 

for predictions of principal and secondary phenological stages for both crops. SEp and span were selected to 



predict principal phenological stages of wheat and SEi was selected for rapeseed, while for secondary 

phenological stages, the selection included SEp and SE for wheat and SEi and SE for rapeseed. 

 

This study aimed to evaluate the potential of S-1 data alone, S-2 data alone, and their combined use to predict 

wheat and rapeseed phenological stages. For wheat, the combined use of S-1 & 2 data outperformed use of S-1 

or S-2 data alone in detecting the principal phenological stages of wheat and rapeseed. The secondary 

phenological stages of wheat were identified better using S-2 than S-1 data. Based on the standard deviation of 

the mean kappa index, similar results were obtained using S-2 data alone or combined S-1 & 2 data for the 

secondary phenological stages of wheat. The tillering was the principal and secondary phenological stage most 

accurately classified using S-1 data alone, S-2 data alone and their combined use (Fig. 10a-c and 11a-c).  From 

DOY 18 to 72, wheat was at tillering stage and a specific temporal behavior of S-1 and S-2 features was 

observed in comparison to all other phenological stages. However, the tillering stage was identified better using 

S-1 than S-2 data, while the flowering, development of fruit and ripening stages were identified better using S-2 

than S-1 (Fig.10a and 10b). The SAR signal is sensitive to the geometry (e.g. roughness, texture, internal 

structure) and wetness of the observed targets, while optical reflectance is influenced by their physiology. Thus, 

we can conclude that the tillering stage of wheat was better discriminated by the structure of the wheat field 

rather than its physiology. From the stem elongation stage, the  geometry of the wheat became vertical and 

varied little until ripening, while chlorophyll content increased and then decreased. Thus, S-2 features were more 

efficient than S-1 features to discriminate these phenological stages of wheat. For principal phenological stages 

of wheat, combined use of S-1 & 2 data improved the UA of tillering, stem elongation and ripening; only the PA 

of the stem elongation and flowering stages underperformed that of S-2. This is consistent with previous studies 

that have shown saturation of the C-band (El Hajj et al., 2019) and optical bands (Haboudane et al., 2004) at high 

levels of wheat biomass. 

 

For rapeseed principal phenological stages, the mean kappa index using combined S-1 & 2 data was higher 

and strongly higher than those obtained with S-2 data alone and S-1 data alone respectively. For secondary 

phenological stages, results of the combined use of S-1 & 2 data were similar to those obtained with S-2 data 

alone.  However, combined use of S-1 & 2 data increased the accuracy of identifying the leaf development stage 

of rapeseed thanks to the capture of additional information about physiology from S-2 and geometry from S-1. 

Development of fruit was the most difficult principal phenological stage to identify using S-1 data alone and the 

combined use of S-1 & 2 data, due to confusion with ripening (Appendix B, Table B4 and B6 and Fig. 10d and 

10f, 11d and 11f). The most important features using S-1 data alone were ��)*, ��)*: ��)) and ��)). The 

temporal profiles showed that the ��)*: ��)) ratio was stable between development of fruit and ripening, 

while ��)* and ��)) slightly increased. The structure of rapeseed stages is very similar during development of 

fruit and ripening, with randomly oriented canopy components. This high similarity can be explained by the fact 

that field observations were conducted during successive phenological stages (i.e. the end of development of 

fruit (BBCH = 77 and 79) and the beginning and end of ripening (BBCH = 80 and 89)). However, while, the 

development of fruit was considerably better classified using combined S-1 & 2 data (UA max = 0.87, PA max = 

0.75) than using S-1 data alone (UA max = 0.32, PA max = 0.21), this phenological stage was the least well 

predicted. The most important features using combined S-1 & 2 data were ��)* derived from S-1 followed by 
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NDVI and S2REP derived from S-2 and then �� &�'(, span, ��"  &�'(, ��)*: ��)) and ��)) derived from 

S-1. Thus, SAR S-1 features increased confusion between development of fruit and ripening stages. The 

development of fruit was the most difficult secondary phenological stage to identify using S-1 data alone while 

the beginning and middle of flowering was the least well predited using S-2 data alone and combined S-1 & 2 

data (Fig. 14e and 14f, 15e and 15f). Prediction errors occurred between the two secondary phenological stages 

of flowering (Appendix C, Tables C5 and C6), the first corresponding to first flowers open until 40% of flowers 

on main raceme open and the second to the the full flowering until the end of flowering while the petals are 

fallen. It should be noted that this period coincided to the lack of S-2 data due to cloud cover, while S-1 temporal 

profiles showed little variation. 

 

Classification results for combined use of S-1 & 2 data pointed out the large contribution of S-1 features for 

rapeseed. Combined used of S-1 & 2 data identified better principal phenological stages of rapeseed than S-2 

data alone; moreover, the identification of the leaf development stage was improved adding S-1 features (Fig. 

11c, 11f). Results were more balanced for secondary phenological stages of wheat since S-2 data alone results 

were similar to those of combined S-1 & 2 data, except for the tillering stage.  

6. Conclusion 

This study evaluated the potential of SAR S-1, optical S-2 time-series and the combined use of S-1 & 2 data 

to identify principal and secondary phenological stages of wheat and rapeseed. More specifically, we have 

shown that:  

• Combined use of S-1 & 2 data (mean kappa = 0.53-0.82 and 0.74-0.92 for wheat and rapeseed, 

respectively) was more accurate than using S-1 data alone (mean kappa = 0.48-0.61 and 0.61-0.64 

for wheat and rapeseed, respectively) or S-2 data alone (mean kappa = 0.54-0.75 and 0.67-0.86 for 

wheat and rapeseed, respectively), in identifying principal and secondary phenological stages for 

both crops. 

• S-2 data alone provided better results than S-1 data alone for both crop types. 

• Concerning S-1 features, the ��)*: ��)) ratio and polarimetric indicators were important for 

obtaining accurate classifications of phenological stages for both crops. These features were the most 

important for discriminating both crop types using S-1 data alone and combined S-1 & 2 data.  

• Concerning S-2 features, LAI, NDVI and S2REP were the most important features for both crop 

types while the MCARI was less important. 

• The number of Sentinel features automatically selected to predict phenological stages of wheat and 

rapeseed ranged from 4 to 7. 

Overall, this study highlighted the value of using polarimetric indicators (Shannon entropy and span) and 

combining S-1 and 2 data to monitor wheat and rapeseed phenology. 

To confirm these results, this method should be based on a larger sample size, especially for identifying 

secondary phenological stages. Also, to test the robustness of combining S-1 & 2 data to predict principal and 

secondary phenological stages, the final predictive models should be applied to other study sites. 
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Figure A1. Correlation matrix of features devived from S-2 images for wheat 
 

Figure A2. Correlation matrix of features devived from S-2 images for rapeseed 
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Appendix B 

Table B1. Confusion matrix of the principal phenological stages of wheat classification derived from the 4 
most important features of S-1 data alone (lines) and the validation (columns). The classification was performed 
using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Tillering 1 13    1 14 

Stem elongation 2  9 1 2  12 

Flowering 3  2 1 2 1 6 

Development of fruit 4  1 5 8 2 18 

Ripening 5     7  

Total  14 13 8 14 11  

Kappa index 0.54       

Overall Accuracy 63%       

 

Table B2. Confusion matrix of the principal phenological stages of wheat classification derived from the 8 
most important features of S-2 data alone (lines) and the validation (columns). The classification was performed 
using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Tillering 1 13     13 

Stem elongation 2  11  1  12 

Flowering 3   6 1  7 

Development of fruit 4  2 2 12 4 20 

Ripening 5 1    7 8 

Total  14 13 8 14 11  

Kappa index 0.77       

Overall Accuracy 82%       

 

Table B3. Confusion matrix of the principal phenological stages of wheat classification derived from the 9 
most important features of combined S-1 & 2 data (lines) and the validation (columns). The classification was 
performed using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Tillering 1 13    1 14 

Stem elongation 2  8  2  10 

Flowering 3   6   6 

Development of fruit 4  4 2 12 1 19 

Ripening 5 1 1   9 11 

Total  14 13 8 14 11  

Kappa index 0.75       

Overall Accuracy 80%       

 
  



Table B4. Confusion matrix of the principal phenological stages of rapeseed classification derived from the 4 
most important features of S-1 data alone (lines) and the validation (columns). The classification was performed 
using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 4  2   6 

Inflorescence emergence 2  11 1  1 13 

Flowering 3 2  9   11 

Development of fruit 4    1 1 2 

Ripening 5  1  4 8 12 

Total  6 12 12 5 10  

Kappa index 0.65       

Overall Accuracy 73%       

 

Table B5. Confusion matrix of the principal phenological stages of rapeseed classification derived from the 6 
most important features of S-2 data alone (lines) and the validation (columns). The classification was performed 
using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 5     5 

Inflorescence emergence 2  11 1  2 13 

Flowering 3   11   11 

Development of fruit 4    4  4 

Ripening 5 1 1  1 8 11 

Total  6 12 12 5 10  

Kappa index 0.83       

Overall Accuracy 87%       

 

Table B6. Confusion matrix of the principal phenological stages of rapeseed classification derived from the 
10 most important features of combined S-1 & 2 data (lines) and the validation (columns). The classification was 
performed using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 6  1   7 

Inflorescence emergence 2  12    12 

Flowering 3   11   11 

Development of fruit 4    4  4 

Ripening 5    1 10 11 

Total  6 12 12 5 10  

Kappa index 96%       

Overall Accuracy 0.94       
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Appendix C 

Table C1. Confusion matrix of the secondary phenological stages of wheat classification derived from the 4 
most important features of S-1 data alone (lines) and the validation (columns). The classification was performed 
using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Beginning of tillering 1 11 2    1  14 

Middle/end of tillering 2 2 16      18 

Stem elongation 3   9  2   11 

Flowering, anthesis 4   2 1 2 2  7 

Development of fruit 5   2 6 9 2 1 20 

Middle of ripening 6     1 1  2 

End of ripening 7    1  3 1 5 

Total  13 18 13 8 14 9 2  

Kappa index 0.55         

Overall Accuracy 62%         

 
Table C2. Confusion matrix of the secondary phenological stages of wheat classification derived from the 5 

most important features of S-2 data alone (lines) and the validation (columns). The classification was performed 
using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Beginning of tillering 1 11 2      13 

Middle/end of tillering 2 1 16    1  17 

Stem elongation 3   12     12 

Flowering, anthesis 4    6 1   7 

Development of fruit 5   1 2 12 4  19 

Middle of ripening 6     1 2  3 

End of ripening 7 1     2 2 5 

Total  13 18 13 8 14 9 2  

Kappa index 0.75         

Overall Accuracy 79%         

 
Table C3. Confusion matrix of the secondary phenological stages of wheat classification derived from the 9 

most important features of combined S-1 & 2 data (lines) and the validation (columns). The classification was 
performed using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Beginning of tillering 1 12 1      13 

Middle/end of tillering 2 1 17    1  18 

Stem elongation 3   9 1 2   12 

Flowering, anthesis 4    5    5 

Development of fruit 5   3 2 12 1  18 

Middle of ripening 6   1   4  5 

End of ripening 7      3 2 5 

Total  13 18 13 8 14 9 2  

Kappa index 0.75         

Overall Accuracy 79%         

 



Table C4. Confusion matrix of the secondary phenological stages of rapeseed classification derived from the 
4 most important features of S-1 data alone (lines) and the validation (columns). The classification was 
performed using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Leaf development 1 3  2 1    6 

Inflorescence emergence 2  11 1     12 

Beginning/Middle of flowering 3 1   2    3 

End of flowering 4 2   6    8 

Development of fruit 5      1  1 

Beginning of ripening 6     5 6 1 12 

End of ripening 7       5 5 

Total  6 11 3 9 5 7 6  

Kappa index 0.59         

Overall Accuracy 66%         

 
Table C5. Confusion matrix of the secondary phenological stages of rapeseed classification derived from the 

5 most important features of S-2 data alone (lines) and the validation (columns). The classification was 
performed using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Leaf development 1 2     1  7 

Inflorescence emergence 2 4 10      11 

Beginning/Middle of flowering 3   3 2     

End of flowering 4  1  7    8 

Development of fruit 5     3   3 

Beginning of ripening 6  1   2 6  9 

End of ripening 7       6 6 

Total  6 11 3 9 5 7 6  

Kappa index 0.74         

Overall Accuracy 79%         

 
Table C6. Confusion matrix of the secondary phenological stages of rapeseed classification derived from the 

10 most important features of combined S-1 & 2 data (lines) and the validation (columns). The classification was 
performed using the first pair of randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Leaf development 1 6       6 

Inflorescence emergence 2  11      11 

Beginning/Middle of flowering 3   2 1    3 

End of flowering 4   1 8    9 

Development of fruit 5     3   3 

Beginning of ripening 6     2 7  9 

End of ripening 7       6 6 

Total  6 11 3 9 5 7 6  

Kappa index 0.90         

Overall Accuracy 91%         
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Appendix D 

Figure D1. Classification of the 5 principal phenological stages of wheat in the open field study site using 
combined Sentinel-1 & 2 data. 

Figure D2. Classification of the 5 principal phenological stages of wheat in the bocage study site using 
combined Sentinel-1 & 2 data. 

 



 
Figure D3. Classification of the 7 secondary phenological stages of wheat in the open field study site using 

combined Sentinel-1 & 2 data.  

 
Figure D4. Classification of the 7 secondary phenological stages of wheat in the bocage study site using 

combined Sentinel-1 & 2 data. 
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Figure D5. Classification of the 5 principal phenological stages of rapeseed in the open field study site using 

combined Sentinel-1 & 2 data. 

 
Figure D6. Classification of the 5 principal phenological stages of rapeseed in the bocage study site using 

combined Sentinel-1 & 2 data. 

 



 
Figure D7. Classification of the 7 secondary phenological stages of rapeseed in the open field study site using 

combined Sentinel-1 & 2 data.  

 
Figure D8. Classification of the 7 secondary phenological stages of rapeseed in the bocage study site using 

combined Sentinel-1 & 2 data. 
 




