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GASTÓN VERGARA-HERMOSILLA

In this paper we develop necessary and sufficient conditions for describe the
family of anti-Hurwitz polynomials, introduced by Vergara-Hermosilla et al. in
[9]. Specifically, we studied a dual version of the Theorem of Routh-Hurwitz and
present explicit criteria for polynomials of low order and derivatives. Another
contribution of this work is establishing a dual version of the Hermite-Biehler
Theorem. To this aim, we give extensions of the boundary crossing Theorems and
a zero exclusion Principle for anti-Hurwitz polynomials.

1 Introduction

In this work we present the first part, of a series of three works, of a new approach
about the classification of the roots of real polynomials in one variable in the right half
complex plane. This new idea arises from the need to obtain simple explicit criteria
for the area of the complex plane not covered by the theory of Hurwitz polynomials
(also known as stable polynomials). In fact, our results are natural extensions of the
classical Theorems of Routh-Hurwitz and Hermite-Biehler for the complement zone;
C+ = {z ∈ C : Re (z) > 0}.

In the literature we highlight as main references for the study of roots of real polynomials
on the left half complex plane and its applications to system theory in a general
framework the books of Gantmacher [3] and [4], and the book of Iooss and Joseph
[6]. Chappellat, Mansour and Brattacharyya present classic stability criteria with
elementary demonstrations in their article [1] while new and interesting ideas about the
demonstration of these results have been developed by Holtz in [5]. For a generalization
to real polynomials in several variables we mention the work of Fettweis in [2]. The
approach introduced in this work consist of a systematic use of the linear transformation
z 7→ −z, on the properties that define the Hurwitz polynomials, which leads us to
use and explore the notion originally introduced by Vergara-Hermosilla et al. in [9]
about anti-Hurwitz polynomials. This notion can be recast as a dual result to the main
necessary and sufficient conditions on stable polynomials. What is more, our Theorems
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and Propositions also depend on the coefficients of the polynomial in question which
makes it more manipulable for applications in science and engineering. To this end,
in Section 5 we will apply our results to a family of polynomials associated with a
system of PDE’s that describe interactions fluid-structure, for details see [9] or Vergara-
Hermosilla [7]. Now, we are in a position of stablish our first main result, which read
as:

Proposition 1.1 Let f (X) = a0Xn + a1Xn−1 + · · · an−1X + an ∈ R[X] of degree ≥ 3.
Then f (X) is an anti-Hurwitz polynomial, if and only if it satisfies the conditions:

(1) (−1)iai > 0, for all i ∈ {0, . . . , n}.

(2) (−1)b
i+1

2 c∆i > 0, for all i ∈ {1, . . . , n}.

Like the practical use of of the Routh-Hurwitz criterion is usually limited, in the context
of direct computations, to polynomials of low degrees (3rd, 4th, or 5th), we develop an
alternative result, which is more versatile and, as in the previous case, this extends to
the dual zone the classical results on Hermite-Biehler theory. In fact, our second main
result reads as:

Theorem 1.2 A real polinomial p(X) is Anti-Hurwitz, if and only if satisfies the
anti-alternancy property.

For the proof of this result is based in the dual version of the boundary crossing
Theorem, a zero exclusion principle for anti-Hurwitz polynomials and the definition of
a anti-alternancy property.

The paper is organized in the following manner.

• In Section 2 we state the main definitions and properties that describe the Hur-
witz polynomials emphasizing the Hurwitz matrix and the Theorem of Routh-
Hurwitz.

• In Section 3 we define the anti-Hurwitz polynomials, demonstrate our first main
result, and establish explicit criteria for real polynomials of less than or equal
order 4 and derivatives.

• In Section 4 we introduce the dual versions of establish a dual versions of
Boundary Crossing Theorems and we proof our second main result.

• Finally, in Section 5 we apply our results for obtain information about the
behavior of the roots of the family of viscous polynomials defined in [9].
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2 Hurwitz polynomials

For n ∈ N we denote by Pn the set of all degree n polynomials with real coefficients
i.e.,

Pn = deg−1({n}) ⊂ R[X].

Definition 2.1 A polynomial f (X) ∈ R[X] is Hurwitz if the real part of all its complex
roots is negative i.e., Re(u) < 0 for any u ∈ Z satisfying f (u) = 0.

Let H denote the set of all Hurwitz polynomials, and we set Hn = H ∩ Pn . The set
of all Hurwitz polynomials in Hn with positive coefficients is denoted by H+

n .

Theorem 2.1 (Stodola condition) If a polynomial f (X) ∈ R[X] is Hurwitz, then all
its coefficients are of the same sign.

Proof The roots of a real polynomial are symmetric with respect to the real line. For
f (X), we can write

f (X) = a0
∏

k

(X − sk)
∏

j

(X − αj − iβj)
∏

j

(X − αj + iβj),

where each sk are real roots, and αj ± iβj are complex roots of f (X) with nonzero
imaginary part. Note that sj, αj are negative. Since the expressions (X − sk) and
X2−2αjX+(α2

j +β2
j ) have positive coefficients, their product has the same property.

Let f (X) = a0Xn + · · ·+ an−1X + an ∈ Pn be a polynomial. The Hurwitz matrix of a
polynomial, denoted as H(f (X)), is the square matrix of size n defined as follows:

a1 a3 a5 · · · 0 0 0
a0 a2 a4 · · · 0 0 0
0 a1 a3 · · · 0 0 0
0 a0 a2 · · · 0 0 0
0 0 a1 · · · 0 0 0
0 0 a0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · an−2 an 0
0 0 0 · · · an−3 an−1 0
0 0 0 · · · an−4 an−2 an


For every k ∈ {1, . . . , n}, let Hk(f (X)) denote the square matrix of size k obtained
from the first k rows and columns of H(f (X)), and we set:

∆k = det(Hk(f (X))).
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Theorem 2.2 (Routh-Hurwitz ) A polynomial f (X) = a0Xn + · · ·+an−1X +an ∈ Pn

with a0 > 0 is Hurwitz if and only if ∆k > 0 for all k ∈ {1, . . . , n}.

For a proof of this result see for instance [3], [6] or [5].

3 Anti-Hurwitz Polynomials

In this section we establish the definition of anti-Hurwitz polynomials and a dual
criterion to the Theorem of Routh-Hurwitz. To this end, we introduce the following
definition.

Definition 3.1 A polynomial f (X) ∈ Pn is said to be anti-Hurwitz if the real part of
all its complex roots is positive, i.e., Re(u) > 0 for all u ∈ Z satisfying f (u) = 0.

Lemma 3.1 A polynomial f (X) ∈ Pn is anti-Hurwitz if and only if f (−X) is Hurwitz.

Proof Let f (X) be an anti-Hurwitz polynomial and u a complex root of f (−X). Then
f (−u) = 0 and Re(−u) > 0, i.e., Re(u) < 0. Therefore f (−X) is Hurwitz. On the
other hand, if f (−X) is a Hurwitz polynomial and u a complex root of f (X), then
f (u) = f (−(−u)) = 0. In this case, Re(−u) < 0, i.e., Re(u) > 0. Hence, f (X) is
anti-Hurwitz.

Lemma 3.2 Let f (X) ∈ R[X] be a polynomial of degree n and ∆i the determinant of
the Hurwitz submatrix Hi(f (X)), for 1 ≤ i ≤ n. Then we have

(3–1) ∆−i = (−1)b
i+1

2 c∆i,

where ∆−i is the determinant of i-th Hurwitz submatrix Hi(f (−X)).

Proof The matrix for Hi(f (−X)) is written as

−a1 −a3 −a5 · · · 0 0 0
a0 a2 a4 · · · 0 0 0
0 −a1 −a3 · · · 0 0 0
0 a0 a2 · · · 0 0 0
0 0 −a1 · · · 0 0 0
0 0 a0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · an−2 an 0
0 0 0 · · · −an−3 −an−1 0
0 0 0 · · · an−4 an−2 an


.
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Comparing it with the matrix of Hi(f (X)), we immediately see that

∆−i = (−1)b
i+1

2 c∆i.

Proposition 3.3 Let f (X) = a0Xn + a1Xn−1 + · · · an−1X + an ∈ R[X] of degree ≥ 3.
Then f (X) is an anti-Hurwitz polynomial, if and only if it satisfies the conditions:

(1) (−1)iai > 0, for all i ∈ {0, . . . , n}.

(2) (−1)b
i+1

2 c∆i > 0, for all i ∈ {1, . . . , n}.

Proof By lemma (3.1), we know that f (X) is an anti-Hurwitz polynomial if and only
if f (−X) is a Hurwitz polynomial. In this case, the coefficient of Xi in f (−X) is
(−1)ian−i . Without loss of generality, we may suppose that a0 > 0. Now the Stodola
Condition (2.1) and Theorem (2.2), gives us that (−1)ian−i > 0, for i ∈ {0, 1, ..., n}
and ∆−i > 0. Hence, we conclude by Lemma (3.2).

3.1 Criteria for polynomials in low degrees and derivatives

In this Section we will establish simple criteria on the property of anti-Hurwitz, appli-
cable to real polynomials of less than or equal order 4 and derivatives of polynomials.
To this end we consider a polynomial p(X) ∈ R[X] and the necessary and sufficient
conditions developed in the Proposition 3.3.

The criteria read as:

• The polynomial p(X) = X2 + a1X + a2 is an anti-Hurwitz polynomial, if and
only if

−a1, a2 > 0.

• The polynomial p(X) = X3 + a1X2 + a2X + a3 is an anti-Hurwitz polynomial,
if and only if

−a1, a2, −a3 > 0 and a2 − a1a2 > 0.

• The polynomial p(X) = X4 + a1X3 + a2X2 + a3X + a4 is an anti-Hurwitz
polynomial, if and only if

−a1, a2, −a3, a4 > 0 and a1a2a3 − a2
3 − a2

1a4 > 0.

• Let p(X) be an anti-Hurwitz polynomial of degree n and let P′(X) denote the
first-order derivative of p(X) with respect to X . Then −p′(X) is again an anti-
Hurwitz polynomial.
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4 A dual version of the Theorem of Hermite-Biehler

In this Section we establish a dual version of the Theorem of Hermite-Biehler for anti-
Hurwitz polynomials. To this end, we need to introduce dual versions of Boundary
Crossing Theorems. We begin the Section with the following definition.

Definition 4.1 Let p(X) ∈ R[X] and w ∈ R. The argument of p(iw) is called the
phase of p(iw).

Lemma 4.1 Let p(X) = an
X + · · ·+a1X +a0 be an anti-Hurwitz polynomial of degree

n. Then, arg p(iw) is a strictly decreasing function. Moreover, the net change in the
phase from −∞ to +∞ is

(4–1) lim
w→+∞

p(iw)− lim
w→−∞

p(iw) = nπ.

Proof By the fundamental theorem of algebra, we can write p(X) as a product of its
roots

p(X) = an(X − α1 − iβ1)(X − α2 − iβ2) · · · (X − αn − iβn).

Plugging X = iw, we get

p(iw) = an(−α1 + i(w− β1))(−α2 + i(w− β2)) · · · (−αn + i(w− βn)),

and so, we obtain

(4–2) arg p(iw) = arg(an) + arctan
(

w− β1

−α1

)
+ · · ·+ arctan

(
w− βn

−αn

)
.

Differentiating the above expression with respect to w, we get

d
dw

arg p(iw) =
1

1 +
(

w−β1
−α1

)2

(
− 1
α1

)
+ · · ·+ 1

1 +
(

w−β1
−αn

)2

(
− 1
αn

)
.

Since p(X) is an anti-Hurwitz polynomial, we have that αk > 0 for k ∈ {1, ..., n}.
Therefore, arg p(iw) is decreasing is a decreasing function in w. Now, from eq. (4–2),
we have

lim
w→+∞

arg p(iw) = arg(αn)− nπ
2

;

lim
w→−∞

arg p(iw) = arg(αn) +
nπ
2
.

The claim now follows.
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In the following we enunciate two classic results on stability, whose demonstrations
can be consulted in the article of Chappellat et al. [1].

Proposition 4.2 Let an 6= 0, p(X) = anXn + · · · + a1X + a0 = an
∏m

j=1(X − ωj)tj ,
and q(X) = (an + εn)Xn + · · · + (a1 + ε1)X + (a0 + ε0). Consider the circle Ck

of radius rk centered at ωk . Let rk be fixed such that 0 ≤ rk < min |ωk − ωj|, for
j ∈ {1, 2, . . . , k − 1, k + 1, ...,m}. Then, there exists an ε > 0 such that for all
|ε1|, |ε2|, . . . , |εn| < ε, q(X) has precisely tk zeros inside the circle Ck .

Corollary 4.3 Fix m circles C1, . . . ,Cm that are pairwise disjoint and centered at
ω1, ω2, . . . , ωm respectively. Then, by repeatedly applying Theorem (4.2), it is always
possible to find an ε > 0 such that for any |ε1|, |ε2|, . . . , |εn| < ε, q(X) has precisely
tk zeros inside each of the circles Ck .

Remark 4.1 In the previous Corollary, we note that q(X) always has t1+t2+· · ·+tm =

n zeros and must therefore remain of degree n, so necessarily we have ε < |an|.

In the following we denote the set of anti-Hurwitz polynomials of degree n by AHn .

Remark 4.2 By Proposition (4.2), Corollary (4.3) and Remark (4.1), we see that if
p(X) = anXn + · · · + a1X + a0 ∈ AHn , then there exists an ε > 0 such that for all
|ε1|, |ε2|, . . . , |εn| < ε, the polynomial q(X) = (an + εn)Xn + · · ·+ (a1 + ε1)X + (a0 +

ε0) ∈ AHn.

4.1 Boundary crossing Theorems

Let p(λ,X) be a family of degree n polynomials with real coefficients, which is
continuous with respect to λ ∈ [a, b]. In other words, p(λ,X) can be written as

p(λ,X) = an(λ)Xn + · · ·+ a1(λ)X + a0(λ),

where a0(λ), a1(λ), ..., an(λ) are continuous functions in λ and an(λ) 6= 0 for all λ.

Theorem 4.4 Suppose that p(a,X) has all its roots in S ⊂ C, where p(b,X) has at
leat one root in U = C \ S . Then, there exist at least one ρ ∈ (a, b] such that

(1) p(ρ,X) has all its roots in S ∪ ∂S .

(2) p(ρ,X) has at least one root in ∂S .
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The proof of the Theorem above can be see in [1]. A direct consequence of the last
Theorem relevant for the case of anti-Hurwitz families of polinomials is given in the
following Corollary:

Corollary 4.5 Suppose {f (λ,X)}λ∈[a,b] is a family of real polinomials in the variable
X wich depends continuously on the λ ∈ [a, b] and that the family is of degree constant.
If p(a,X) has all its roots on C+ and p(b,X) has at least one root on C− , then there
exist ρ ∈ (a, b] such that

(1) p(ρ,X) has all its roots in C− ∪ iR.

(2) p(ρ,X) has at least one root in iR.

Theorem 4.6 Let {fn(X)}n∈N be a sequence of anti-Hurwitz polynomials of degree
least or equal to N such that fn(X)→ q(X). Then, the roots of q(X) remain in C+∪ iR.

Proof We consider the polynomials q(X) = a0 + a1X + · · · anXN , and fm(X) =

am
0 + am

1 X + · · · am
NXN . We suppose that q(X) has a root X ∈ C− . We know that there

is a circle C with center X such that C ⊂ C− . Then, by Theorem 4.2 there is ε > 0
such that if |εi| < ε, for all i = 0, 1, ..., N , then

p(X) = (b0 + ε0) + (b1 + ε1)X + · · ·+ (bN + εN)XN

has at least one root inside of C . How fn(X)→ q(X), then there is fk(X) = ak
0 + ak

1X +

· · · ak
NXN such that

∣∣b0 − ak
0

∣∣ , ∣∣b1 − ak
1

∣∣ , . . . , ∣∣bN − ak
N

∣∣ < ε. Then, the following
polynomial

fk(X) = b0 + (ak
0 − b0) + [b1 + (ak

1 − b1)]X + · · ·+ [bN + (ak
N − bN)]XN ,

has a root in C− , which is a contradiction with the fact that {fn(X)}n∈N is a sequence
of anti-Hurwitz polynomials.

Theorem 4.7 (Zero exclusion principle) Suppose {f (λ,X)}λ∈Ω is a family of real
polinomials in the variable X wich depends continuously on the λ ∈ Ω ⊂ Rn , with Ω

pathwise connected. Suppose moreover that the family f (λ,X) is of degree constant and
there is at least one anti-Hurwitz polynomial. Then, the family {f (λ,X)}λ∈Ω ⊂ AH ,
if and only if p(λ, iw) 6= 0, for all w ∈ R and λ ∈ Ω.

Proof ⇒): This is a direct consequence of Theorem 4.1.
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⇐): Let f (λ,X) ∈ {f (λ,X)}λ∈Ω an arbitrary polynomial and f (λ0,X) the anti-
Hurwitz polynomial on f (λ0,X) ∈ {f (λ,X)}λ∈Ω . We conside the path γ :
[a, b]→ Ω such that γ(a) = λ0 and γ(b) = λ and the subfamily: f (γ(X),X) =

p(λ,X). We can see that p(a,X) = f (λ0,X) is anti-Hurwitz. Suppose that
p(b,X) = f (λ0,X) does not an anti-Hurwitz polynomial, and hence has a root in
C− ∪ iR. If p(b, iw) = f (λ0, iw) = 0 is a contradiction. If p(b,X) has a root in
C− , then by Theorem 4.4 there is ρ ∈ (a, b] such that

(1) p(ρ,X) has all its roots in C− ∪ iR.

(2) p(ρ,X) has at least one root in iR.

By 2) there is w0 such that p(ρ, iw0) = f (γ(ρ), iw0) = 0, but this is a contradic-
tion. Therefore p(b,X) = f (λ,X) is anti-Hurwitz for all λ ∈ Ω.

Given a real polinomial p(X) = a0 + a1X + · · ·+ anXn , we note that

p(X) = (a0 + a2X2 + a4X4 + · · · ) + X(a1 + a3X2 + a5X4 + · · · ).

By evaluate iw, we obtain

p(iw) = (a0 − a2w2 + a4w4 + · · · ) + iw(a1 − a3w2 − a5X4 + · · · ).

Considering this, we consider the following notations

• pe(X) = a0 − a2X2 + a4X4 + · · ·

• po(X) = a1 − a3X2 − a5X4 + · · ·

• peven(X) = a0 + a2X2 + a4X4 + · · ·

• podd(X) = a1 + a3X2 + a5X4 + · · ·

Definition 4.2 A real polynomial p(X) = a0 + a1X + · · · + anXn satisfies the anti-
alternancy property if and only if

(1) The principal coeffients of peven(X) and podd(X) has different sign.

(2) All the roots of pe(X) and po(X) are reals and its negatives roots are interspersed,
i.e.

0 > Xe,1 > Xo,1 > Xe,2 > Xo,2 > · · · .

Theorem 4.8 (Dual version of Hermite-Biehler’s Theorem) A real polinomial p(X)
is Anti-Hurwitz, if and only if satisfies the anti-alternancy property.
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Proof By Theorem 4.1 that the phase of p(iw) strictly decreases for w ∈ R from
nπ
2 to −nπ

2 and the change in the phase is 2mπ , wich is equivalent to m turns in
w ∈ (−∞,+∞), or m/2 turns on w ∈ (−∞, 0). We note that for w ∈ (−∞, 0) the
roots of pe(w) and po(w) must be ordering in the following manner:

(4–3) 0 > Xe,1 > Xo,1 > Xe,2 > Xo,2 > · · · > Xo,m−1 > Xe,m.

In fact, in every turn it goes through by two roots of pe(w), and by two roots of po(w).
Then, in m/2 turns it goes through by m roots of of pe(w) and by m roots of po(w).
We note that, every one is real and negative, and then, we obtain part (2) of property
of anti-alternancy. For the converse, assume that p(X) satisfies the anti-intelacing
property, and suposes without loss of generality of p is of degree n = 2m and that the
coefficient a2m is positive. Let us consider the roots of peven(X) and Podd(X) in the
form

(4–4) 0 > Xp
R,1 > Xp

L,1 > Xp
R,2 > Xp

L,2 > · · · > Xp
L,m−1 > Xp

R,m.

Now, let us consider a polynomial q(X) = q0 + · · · q2mX2m that is known to be
anti-Hurwitz, of the same degree 2m, and with its leader coefficients positive. With
this assumption on q(X), we know from the first part of that q(X) satisfies the anti-
interlacing Theorem so that qeven(X) has m negatives roots and qodd has m−1 negative
roots, both set of roots such that

(4–5) 0 > Xq
R,1 > Xq

L,1 > Xq
R,2 > Xq

L,2 > · · · > Xq
L,m−1 > Xq

R,m.

We note that for q(iw), it has no imaginary roots, then for any w ∈ R, f (iw) 6= 0. By
taking λ ∈ (0, 1), we have

0 > λXp
e,1 + (1− λ)Xq

e,1 > λXp
o,1 + (1− λ)Xq

o,1 · · · > λXp
e,m−1 + (1− λ)Xq

e,m.

Consider now the polynomial pλ(X) given by

pe
λ(X) := ((1− λ)q2m + λp2m)

m∏
i=1

(X2 − ((1− λ)Xq
e,i + λXp

e,i)
2),

po
λ(X) := ((1− λ)q2m−1 + λp2m−1)

m−1∏
i=1

(X2 − ((1− λ)Xq
o,i + λXp

o,i)
2).

We can see that the coefficients of pλ are a family of polynomial functions in λ,
wich are continuous on [0, 1]. Moreover, the coefficient of the leader degree term of
pλ(X) remains positive as λ ∈ [0, 1]. Moreover, we note that for λ = 0, we have
p0(X) = q(X). Then, how q is an anti-Hurwitz polynomial. This implies that the
family pλ(X) has al least an element that is anti-Hurwitz. Hence, by the principle
of exclusion of zero all the elements of the family are anti-Hurwitz polynomials, in
particular p1(X) = p(X).
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5 Applications

In this section we consider a family of reals polynomials called ’viscous polynomials’
introduced by Vergara-Hermosilla et al. in [9]
(5–1)

PT (λ) =

(
1 +

l3

12

)
λ4+l2

√
µλ3+

(
lµ− 2

µ

(
1 +

l3

12

))
λ2− l2
√
µ
λ+

1
µ2

(
1 +

l3

12

)
,

where l and µ are free parameters in R+ . The viscous polynomials arises naturally
when considering the transfer function of a system that models the vertical movement
of a solid floating in a viscous fluid, studied by Vergara-Hermosilla et al. in [8] and
[9], in fact, the name of the family of polynomials is originally due to the fact that
the parameters l and µ represent a measure associated with the size of the floating
structure and the viscosity coefficient, respectively. Our objective in this section is to
use the criteria developed in section 2 to obtain information on the location of the roots.

To this end, we can check easily that:

(1) When dividing PT (λ) by the coefficient of the term with exponent 4, we obtain
the equivalent polynomial
(5–2)

QT (λ) = λ4 +
l2
√
µ(

1 + l3
12

)λ3 +

(
lµ− 2

µ

(
1 + l3

12

))
(

1 + l3
12

) λ2 − l2
√
µ
(

1 + l3
12

)λ+
1
µ2 .

In this polynomial we can see that the coefficients of the terms with exponents 3
and 2 have the same sign, by considering the criteria developed in Section 3.1,
we can conclude that the viscous polynomial is not anti-Hurwitz.

(2) In a similar form, we can see that the there are coefficients in PT (λ) with different
sign, then using the Stodola condition give in Theorem 2.1, we conclude that the
viscous polynomial is not Hurwitz.

In conclusion, due to the polynomial PT (λ) have degree 4, is not Hurwitz and is
not anti-Hurwitz, we will always have two roots in the right complex half plane and
two roots in the left complex half plane. In fact, in the following figure we can see
numerical evidence about the behavior of the roots of the viscous polynomial with
suitable parameters.
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(a) (b)

Figure 5.1: Evolution of the four roots λi in the complex plane, as a function of µ . (a): global
picture with 4 trajectories. (b): zoom in the right-half plane Re(σ) > 0, 2 trajectories crossing
the segment Re(λ) = |=(λ)| for a critical value µc of the viscosity.
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coibungo@gmail.com

mailto:coibungo@gmail.com

	1 Introduction
	2 Hurwitz polynomials
	3 Anti-Hurwitz Polynomials
	3.1 Criteria for polynomials in low degrees and derivatives

	4 A dual version of the Theorem of Hermite-Biehler
	4.1 Boundary crossing Theorems

	5 Applications
	Bibliography

