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ABSTRACT A large number of methods for forensics of image manipulation relies on detecting
fingerprints in residuals or noises. Therefore, these detection methods are bound to be sensitive to noise
generated by the image acquisition process, as well as any pre-processing. We show that a difference in pre-
processing pipelines between training and testing sets induces performance losses for various classifiers.
We focus on a particular pre-processing: resizing. It corresponds to a typical scenario where images may be
resized (e.g., downscaled to reduce storage) prior to being manipulated. This performance loss due to pre-
resizing could be troublesome but has been rarely investigated in the image forensics field. We propose a new
and effective adaptation method for one state-of-the-art image manipulation detection pipeline, and we call
our proposed method Gaussian mixture model Resizing Adaptation by Fine-Tuning (GRAFT). Adaptation
is performed in an unsupervised fashion, i.e., without using any ground-truth label in the pre-resized testing
domain, for the detection of image manipulation on very small patches. Experimental results show that the
proposed GRAFT method can effectively improve the detection accuracy in this challenging scenario of
unsupervised adaptation to resizing pre-processing.

INDEX TERMS Image forensics, manipulation detection, Gaussian mixture model, covariance matrices,
likelihood maximization, domain adaptation.

I. INTRODUCTION
The broad availability of smartphones and digital cameras,
combined with social platforms, has made sharing images
easier than ever. Moreover, image editing software has be-
come easy to use, even for the layman, and it is now available
on smartphones. This situation both accounts for a tremen-
dous revolution for communication and makes it harder than
ever to trust images, as their integrity may be altered easily.
Accordingly, forensics tools have been developed to help
assess the source and integrity of digital images.

We list in Table 1 (Section V) some basic operations for
image manipulation: Gaussian blurring, image sharpening,
JPEG compression, etc. These basic operations are often
(i) combined to build more advanced modifications or (ii)
used to cover malicious operations like splicing or copy-
move. For instance, the popular “Photoshop Clone Stamp
Tool” uses Gaussian blurring to produce smoother fusion and
transitions. Being able to detect these operations is a step
toward detecting more complex and challenging tampering.
Hence, this work focuses on these elementary operations.

A handful of effective detectors have been developed in
the last decade [1], [2], targeting various basic image ma-
nipulation operations. These classifiers often rely on image
statistical models, which may be altered by a resizing prior
to manipulation. Most of public databases (both train and test
sets) for image forensics are full-sized images, which may
not reflect some typical scenarios in the wild. For example,
the image to be manipulated may originate from a social
media platform, where images are typically resized to save
storage space. Note that similar concerns were first investi-
gated in the steganalysis community [3], [4] under the name
cover-source mismatch, though it is a broader problem than
pre-resizing as it considers development process in general.
It is very likely that image forensics researchers also need
to tackle these issues. In this context, our first contribution
in this paper is to provide evidence that such a mismatch
of pre-resizing causes considerable loss in the detector per-
formances. As an example, we observed a drop of 22% in
accuracy when using one of the state-of-the-art methods [5]
to detect JPEG compression (quality factor Q = 90) trained
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on regular patches but tested on samples that have undergone
resizing with a factor of 1.25 before JPEG compression.

In a typical image forensics scenario, only part of an image
would undergo a modification, which conveys a semantic
meaning. Accordingly, forensics analysts are interested in
obtaining a fine-grained forensic decision on patches, prefer-
ably on very small patches, e.g., of 8 × 8 pixels. Hence, our
objective in this paper is to resolve the issue caused by resiz-
ing pre-processing for the detection of image manipulation
operations on such small patches.

In order to solve this problem, one would use a naive
approach which trains a classifier with samples from various
resizing factors. This approach is very resource consuming
and has low flexibility. Moreover, performance drops as
samples from different resizing factors are mixed together
for training (results in Section V-E). Therefore, our work in-
tends to provide adaptation shortcuts, especially in a scenario
where no label is available for samples in the pre-resized
target domain, i.e., the so-called unsupervised adaptation. It
is different from the semi-supervised or weakly-supervised
frameworks where few labeled samples are supposed to be
available in the pre-resized target domain. In semi-supervised
framework unlabeled data on target domain are leveraged
jointly with labeled ones, while in weakly-supervised frame-
work only labeled data are used. Unsupervised framework is
more challenging.

Contributions of this paper are summarized as follows1:
• We demonstrate performance loss due to resizing as

a pre-processing operation prior to the basic image
manipulations that we want to detect;

• We perform statistical tests on patches to better under-
stand the cause of this performance loss;

• We propose an unsupervised method to adapt an already
trained classifier to a new target pre-resized domain.

Section II presents related work on image forensics, ste-
ganalysis, and domain adaptation. Statistical tests about pre-
resized images are reported and analyzed in Section III. Our
proposed method GRAFT (Gaussian mixture model Resizing
Adaptation by Fine-Tuning) is detailed in Section IV. Exper-
imental results and comparisons are presented in Section V.
Finally, we draw conclusions in Section VI.

II. RELATED WORK
A. IMAGE FORENSICS
Image forensics relates to security of digital images and acts
as a passive image authentication approach. Image forensics
problems include camera identification, image manipulation
detection, identification of synthetic images, splicing detec-
tion, copy-move detection, etc. In this paper, we focus on
the detection of elementary image manipulation operations
(median filtering, sharpening, JPEG compression, etc., see
Table 1 of Section V for considered operations). Two types
of methods have been developed for this problem:

1A preliminary and short version of our method was informally presented
in a local workshop (with a 4-page short summary in French, [6] in reference
list). There are no formal published proceedings for this workshop.

1) Methods aimed at detecting a targeted and specific
manipulation [7]–[13];

2) More recently, universal detectors of image manipula-
tions (i.e. same algorithmic pipeline for every manipu-
lations) have been proposed [5], [14]–[16].

In order to tackle the second and more difficult problem of
universal detection, three approaches have been followed:

1) Using explicit image models to capture variations on
small patches of the image (e.g., a Gaussian Mixture
Model, GMM) and carrying out comparison of likeli-
hood values between GMMs trained on manipulated
and pristine patches [5];

2) Computing features borrowed from steganalysis
(mainly SPAM [17] and SRM [18]) as statistics of an
implicit image model and using a classifier trained on
the feature space [14], [15];

3) Using deep learning classifiers with constraints or spe-
cific processing for the first layer of the convolutional
neural network (CNN) to extract residuals [16].

Our work aims at designing a universal manipulation de-
tector in a challenging setting, where the testing set has un-
dergone resizing as a pre-processing operation before image
manipulation. Another challenging aspect is that the method
intends to work with very small patches of 8 × 8 pixels, so
as to have a fine-grained forensic decision. In addition, from
a research point of view, it is also interesting to test limits
of different methods by using smallest patches possible.
We focus on the GMM-based approach of Fan et al. [5]
because (i) the explicit image modeling can be carried out on
8× 8 patches, much smaller than considered patches in other
approaches [14]–[16], and (ii) as shown later in this paper
the original GMM-based method [5] has the best overall
baseline performance (i.e., without resizing pre-processing)
on 8 × 8 patches. We have recently explored this small
patch setting and adaptation to pre-resizing in [19], although
in a less difficult scenario of weakly-supervised adaptation
(i.e., a small number of labeled samples are available for
the pre-resized target domain) and with different algorithms.
Comparisons with [19] are presented in the experimental
study of Section V.

At last, we have lately become aware of an arXiv preprint
on domain adaptation in detecting synthetic images [20]. The
authors of [20] designed an embedding that preserves gener-
alization for an auto-encoder-based detector. Their method
uses a few labeled samples in target domain to extend clas-
sification to a new class. Therefore, the goal of [20] and that
of our work are related but different, and approaches remain
distinct and not directly comparable, i.e. weakly-supervised
with deep learning for detecting full-sized synthetic images
for [20] vs. unsupervised with an explicit image model for
detecting image manipulations on small patches for ours.
These are to our knowledge the only weakly/semi-supervised
methods proposed so far in image forensics.
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B. STEGANALYSIS
As mentioned in Section I, researchers in steganalysis have
carried out studies on the effect of downsampling [3]. They
show some serious drops in performance when using a clas-
sifier on testing images that have been subject to a resizing
before embedding a hidden message. These concerns over
performance drops are known as cover-source mismatch and
have been studied also in [4], [21], [22], in a more general
setting of considering the effects of the whole image devel-
opment process, not only resizing. The main differences with
our adaptation approach are:

• The above steganalysis methods use handcrafted fea-
tures, while we use explicit modeling of image data;

• Steganalysis tries to produce a decision for an image as
a whole, while we work on very small patches;

• Existing solutions in steganalysis mainly consist in
training a classifier with a bigger diversity of sources,
combining different detectors, or training multiple clas-
sifiers and using the most appropriate one during testing,
while we explicitly adapt classification model to the
target domain in an unsupervised fashion.

It is worth mentioning that authors of [4] show that better
results are obtained if they consider specifically the consis-
tency between training and testing data, when compared to
the simple solution of blindly training with a bigger diversity
of the data.

C. DOMAIN ADAPTATION
Basic assumption of machine learning is that training set (in
source/train domain) and testing set (in target/test domain)
are supposed to be close in terms of distribution. In the
case of detecting image manipulations (Gaussian blurring,
sharpening, etc.), variations in the pre-processing pipeline
introduce slight discrepancies between the train and test
domains. However, some relationships, i.e., the manipulation
traces, should have been partially preserved between the two
domains. Accordingly, forensic classification of pre-resized
test samples can be considered as a problem of domain
adaptation instead of a whole new problem to train on. In this
paper, we focus on the adaptation of classification model, i.e.,
in our case the Gaussian Mixture Model [5], to cope with the
changes between source and target domains.

The best known technique for model adaptation is the
fine tuning of a convolutional neural network pre-trained
on ImageNet [23]. Classical CNNs need millions of images
to train on, as in ImageNet, and a considerable amount of
computing time and resources. For other problems, these
conditions may not be satisfied. One possible shortcut is to
use pre-trained weights on ImageNet as an initialization and
then only fine-tune the last few layers. While this technique
is effective, it needs access to labels in target domain to be
applied. The fine-tuning of a dense neural network is used for
image manipulation detection in our previous work [19] to
adapt to pre-resizing in a weakly-supervised setting. We fo-
cus on the adaptation of GMM whose key parameters include

the covariance matrices of Gaussian components. Therefore,
here we briefly present previous works on transformation of
covariance matrix. In [24], [25], the authors use covariance
matrices between signals of several electrodes placed on the
head of the subject as features. These features are used to dis-
tinguish movements made by the subject. Their objective is
to adapt features between experiments to avoid re-calibration,
in a semi-supervised setting. Domain adaptation is performed
through covariance matrix transformations. More precisely,
in [24], [25] they compute centers of mass with geodesic
distance (i.e. the geometric mean in the language of Rieman-
nian geometry) for the training and the testing ensembles
of covariance matrices and minimize the geodesic distance
between the two. It is worth pointing out that for us, covari-
ance matrices are part of the classification model and not the
features, and that we consider the challenging unsupervised
setting and propose a new adaptation method as presented
later in the paper.

III. ANALYSIS OF STATISTICAL DIFFERENCES
BETWEEN TRAINING AND TESTING DATA
A. RESEARCH PROBLEM AND MOTIVATION
Primary motivation of this work is depicted in Fig. 1. A
detector based on GMMs [5] is trained on patches of original-
sized images to classify between manipulated and pristine
patches (details of the classification pipeline are given in
Section IV-A). This detector is then used on a testing set
that has undergone resizing (bi-cubic interpolation) as a
pre-processing operation, prior to applying a manipulation.
Drops in accuracy are observed for several resizing factors.
It is quite intuitive to assume that dependencies and tran-
sitions between neighboring pixels are altered by resizing.
For example, downscaling usually induces sharper transitions
as fewer pixels contribute to each transition. Consequently,
alteration on pixels distribution for resized images would
reduce descriptive power of GMMs and therefore forensic
performances. We observe similar performance drops for
other methods, e.g., the method based on SPAM steganalytic
features [14] and the CNN-based method [16] (results and
discussions are presented in Section V). Finding solutions
to avoid this performance drop is an important problem for
enhancing the practical applicability of forensic detectors;
however, to our knowledge only few efforts have been made
in the literature to solve this kind of problem.

In this work, source denotes the training data (patches)
from original-sized images. Half of these data have under-
gone a manipulation. Target denotes the testing data that
have undergone resizing as a pre-processing operation, i.e.,
patches from pre-resized images. Then, like for the training
set, half of these testing data are manipulated. Our objective
is to distinguish between original (i.e., pristine) vs. manip-
ulated patches. Accuracy should not drop because of pre-
resizing for an ideal classifier. We first study how well (or
how bad) a classifier trained on source data performs on
target data (e.g., results in Fig. 1), and secondly we seek
an unsupervised method to enhance performances on target
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FIGURE 1: Accuracy of GMM-based method [5] under
different resizing factors (bi-cubic interpolation) for several
manipulations. We do not use factors like 0.5 to avoid the
potential side effect of such factors (i.e. pixels sub-sampling
instead of interpolation). 1 means no resizing.

data without retraining the detector from scratch. Indeed, we
intend to propose a method which is flexible, adaptive and
resource-friendly, and which requires no ground-truth label
in the target domain (i.e., unsupervised adaptation).

In this study we mainly consider bi-cubic interpolation
as pre-resizing, because it is probably the most commonly
used resizing operation due to high visual quality of resized
images. Our method also works with other interpolations.
Additional results are presented in Supplementary Material.

B. STATISTICAL TESTS
Decreases in performances seem to indicate a difference
between source and target distributions. GMM trained on
source data exhibits lower likelihood on target data. However
GMM is a parametric model and this could also indicate that
the problem is the parameterization and not the data. Non-
parametric test is suited to investigate differences between
source and target. Work from Gretton et al. [26] on two-
sample problem with Maximum Mean Discrepancy (MMD)
is a good tool for this purpose. MMD is defined as:

MMD[F , p, q] = sup
f∈ F

(Ex∼p[f(x)]− Ey∼q[f(y)]), (1)

with p and q distribution of respectively source and target, x
and y source and target samples, F a unit ball in a universal
Reproducing Kernel Hilbert Space (RKHS) (in our case we
choose Gaussian kernel with σ = 2), sup for supremum, and
E for expectation. If p = q then we have MMD = 0. This
approach aims at finding the biggest difference between any
moments of the two distributions: if it is zero then the two
distributions are equal.

We have implemented a permutation test with MMD to
test H0 hypothesis, i.e., train and test have same distribution.
More details about it can be found in the Supplementary
Material. Typical results are presented in Fig. 2. For original-
sized testing images (Fig. 2.(a)), permutation statistics and

(a) 0

(b) 0

FIGURE 2: Histograms of MMD between training and test-
ing data (both sets contain half of sharpened patches): (a)
with patches of original-sized testing images, and (b) with
patches of testing images subject to resizing pre-processing
(bi-cubic interpolation with factor of 0.53).

test statistics about MMD follow very close empirical his-
tograms, so in this case H0 cannot be rejected. For pre-
resized testing images, there is clear difference between per-
mutation and test statistics (Fig. 2.(b)), therefore hereH0 can
be rejected. The MMD test indicates that pre-resizing could
change the distribution of patches. This is quite intuitive,
nevertheless here we provide a statistical evidence of it.

After that, we have considered Hilbert-Schmidt indepen-
dence criterion (HSIC) test. Test is described in [27]. HSIC
test is basically an MMD two-sample test between joint law
of source and target (PX,Y ) and the product of marginals
(PX ∗PY ).H0 hypothesis is: PX,Y = PX ∗PY , which would
indicate that X and Y are independent. Results are shown in
Fig. 3. Test statistic values are clearly outside permutation
statistic values, so we can reject the null hypothesis. Discard-
ing H0 is a hint in favor of dependence between source and
target domains. This implies that it could be possible to adapt
knowledge of source on target.

To summarize, the first test has given us some non-
parametric arguments in favor of differences in statistical dis-
tributions of original-sized images (source) and pre-resized
images (target) which could explain the observed drops in
performances as shown in Fig. 1; the possible dependency
between the two kinds of images (as reflected by the second
test) has motivated our domain adaptation approach pre-
sented in the next section.
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FIGURE 3: HSIC test for the case with sharpening as manip-
ulation and pre-resizing factor of 0.53.

IV. PROPOSED APPROACH
A. CLASSIFICATION PIPELINE
Classification pipeline is inspired by work of Fan et al. [5].
Authors’ pipeline uses GMM to model zero-mean centered
patches (DC component removed). A comparison of likeli-
hoods between model trained on original patches and model
trained on manipulated patches is made to produce a classifi-
cation decision. As mentioned earlier, we choose the GMM-
based pipeline mainly because of its good performance on
very small patches, better than other methods as show in Sec-
tion V. Another reason is that GMM’s parameters are closely
related to empirical statistics of data, which may facilitate
the adaptation. Technically, GMMs are intended to describe
local dependencies and variations of pixels. Likelihood for
a sample xi (an 8 × 8 patch vectorized) under a GMM is
expressed as:

L(xi|θ) =

K∑
k=1

πkN (xi|µk,Σk), (2)

with πk, µk and Σk respectively the weight, mean and
multivariate (full) covariance matrix for k-th component in
mixture of K. One GMM is trained only on manipulated
patches and the other one only on original patches. Expec-
tation Maximization (EM) algorithm is used to train the
GMMs. Then for each test patch xj , likelihood values of both
GMMs are computed to form a ratio as:

r(xj) =
LGMMmanip

(xj)

LGMMori
(xj)

. (3)

If r(xj) > 1 then the test patch xj is predicted as manipu-
lated, otherwise it is predicted as original.

Fan et al. [5] showed through an experimental study on
leading eigenvectors that covariance matrices of Gaussian
components in GMM are discriminative elements. This has
motivated us to adapt GMM’s covariance matrices to target
data. It is also possible to work on the adaptation of weights
of GMM, as in our recent work [19]. Details about that
method and some comparisons are presented in Section V.

B. GRAFT: GMM RESIZING ADAPTATION BY
FINE-TUNING

1) Objective and main idea
Our goal is to come up with a simple method to adapt quickly
GMM covariance matrices to target dataset (i.e. pre-resized),
starting from a model learned on the source dataset (i.e.
without pre-resizing). Inputs of our method are:

• C1: a set of N = 2 × K covariance matrices from two
GMMs trained on the source dataset (the two GMMs,
each having K components, are trained respectively on
original patches and manipulated patches);

• C2: empirical estimations of the covariance matrices for
original and manipulated patches on target pre-resized
dataset2.

We seek to obtain Cadp1 , a set of N covariance matrices
adapted to the pre-resized target domain. Cadp1 , along with
the weights of original GMMs in the source domain, con-
stitute two adapted GMMs which have improved forensic
performance on the target domain. Cadp1 will be obtained by
transforming C1 using information from C2. Of course, as an
unsupervised adaptation approach, our method does not use
any ground-truth label of the target domain, neither for the
estimation of C2 nor for the transformation of C1.

Formally we have:

C1 = {C(1),ori
1 , ..., C

(1),ori
K , C

(1),mnp
1 , ..., C

(1),mnp
K },

C2 = {C(2),ori
1 , ..., C

(2),ori
M
2

, C
(2),mnp
1 , ..., C

(2),mnp
M
2

}.
(4)

The idea is to find some transformation of |C1| to bring it
“closer” to |C2|, under the constraint of increasing the like-
lihood of adapted GMMs on the target pre-resized dataset.
Here, we have been inspired by the work of Rodrigues
et al. [25] in the brain-computer interface field. Authors
propose the Riemannian Procrustes Analysis (RPA) method,
an adaptation between sets of covariance matrices. In their
work, and unlike in ours, covariance matrices are features
and not parameters of a probabilistic model. They perform
feature adaptation in a semi-supervised manner while we
would like to adapt our GMMs in an unsupervised scenario.
The objectives are not comparable and it is not possible to
directly use their method for our problem. However, our
GRAFT method retains RPA spirit by using a set of basic
geometrical transformations of covariance matrices. So here
we briefly present the RPA procedure which comprises three
main steps (mathematical details can be found in [25]):

1) Translate source and target sets to obtain the identity
as geometric mean (re-centering): Cctr1 = T1(C1) with
C1 the first set of covariance matrices. Let V be the
geometric mean of C1 = {C1

1 , . . . , C
1
K}. Then T1 is

defined asC1,(ctr)
i = V −

1
2C1

i V
− 1

2 . Similarly, we have
T2 for second set C2;

2) Perform rescaling on each axis to get unit variance:
Cstr1 = S1(Cctr1 ) and Cstr2 = S2(Cctr2 ). S1 is defined

2In our algorithm, M estimations are computed in order to improve
robustness against variance of empirical estimation. Details on how to obtain
C2 are presented later in this section.
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such that C1,(str)
i =

(
C

1,(ctr)
i

)p
where p is a proper

scaling factor for the variance normalization;
3) Minimize the geodesic distance between Cstr1 and Cstr2

by finding an optimal rotation U around the origin (the
rotation is applied to Cstr1 only, not on Cstr2 ). C1,(str)

i

are modified so that C1,(rot)
i = UC

1,(str)
i UT with

UUT = I (i.e., the product is identity matrix).
With the RPA procedure, both sets of features become com-
parable: a classifier learned with C1 features is also mean-
ingful with C2 features. RPA uses geodesic distance between
matrices to derive the transformation, while GMMs use like-
lihood to carry out classification (see Section IV-A for GMM-
based classification pipeline). Hence, in GRAFT we shall
use the group of elementary geometrical transformations of
covariance matrices, but combine and optimize them in a
different and appropriate manner.

2) Transformation and interpolation
We in the first place transform our C1 and C2 in Eq. (4)
by using the three geometrical transformations from RPA
procedure (see above). More precisely, we first translate C1
and C2 so that they both have the identity as barycenter. Then
stretching and rotation are performed so that C1 and C2 get
closer in the transformed space in terms of geodesic distance.
The set of transformed covariance matrices corresponding to
C1 are denoted by CRPA1 . We know from the analysis at the
end of last subsection that this transformation is not optimum
for GMM-based classification pipeline, mainly because RPA
does not use likelihood as criterion during the transformation.
Therefore, additional steps are needed.

We then consider another transformation which translates
C1 toward C2, so that the translated version, denoted by
Ctrg1 , has the same center of mass as C2. With a little abuse
of notation, for original patches this means satisfying the
following equation (similarly for manipulated patches):

K∑
i=1

πi × Ctrg,orii =
2

M

M/2∑
j=1

C
(2),ori
j , (5)

where Ctrg,orii is the i-th covariance matrix for original
patches in Ctrg1 , πi are weights of GMM of original patches in
source domain, and C(2),ori

j is the j-th estimated covariance
of original patches in target domain. This transformation
considers the fit of second-order statistics (i.e., the covariance
matrix) to the target dataset. In fact, it can be shown, with the
assumption of a perfect fit of GMM and centered patches,
that the weighted sum of Gaussian components’ covariance
matrices of a GMM (the left-hand side of Eq. (5)) is equal
to the covariance matrix of the data (the right-hand side
of Eq. (5) is an estimation of data covariance).3 Indeed,
as in [28], [5] and [19], our patch samples are centered to
have zero mean (i.e., DC component is removed for each
patch), and accordingly Gaussian components in GMM also

3Detailed proof can be found in our previous work [19] (preprint link is
given in the reference list).

each have zero mean. As proven in [19], the cross terms in
covariance computation disappear with zero-mean Gaussian
components. Then we have [19]:

cov(Xi, Xj) =

K∑
k=1

πk × Σ
(i,j)
k , (6)

where X is the 64-dimensional random variable of pixel
values from the vectorized patches, cov(., .) is the covariance
function, Σk and πk are respectively the covariance and the
weight for the k-th component in GMM, and i, j and (i, j) are
element indices within the corresponding vector and matrix.

Technically, similar to the translation step in RPA [25] (see
step 1) of RPA in the last subsection), the translation to Ctrg1

is realized by simple matrix multiplications on C1.
Neither CRPA1 nor Ctrg1 are optimal in terms of GMM

likelihood (see Fig. 6 in Section V for a concrete example).
The former has the identity as geometric mean, while the
latter only considers fit of covariance matrices on average but
not the GMM likelihood. However, both CRPA1 and Ctrg1 get
closer to the target domain to some extent, and a natural and
simple idea is to interpolate between the two to get a better
solution. This is a heuristics based approach but it has good
intuition and is experimentally effective. Another advantage
is that a simple interpolation between two valid covariance
matrices still leads to a valid solution of symmetric positive
semi-definite matrix.

The interpolation is naturally driven and governed by the
maximization of likelihood of GMMs. The rationale behind is
the fact that GMMs rely heavily on the descriptive capability
(high likelihood) to carry out correct classification. Two dis-
tinct (regarding respectively original and manipulated classes
of patches) interpolation coefficients are computed between
CRPA1 and Ctrg1 :
• α1 is used to interpolate between CRPA,ori1 and Ctrg,ori1

(original patches);
• α2 is used to interpolate between CRPA,mnp1 and
Ctrg,mnp1 (manipulated patches).

Optimal values for α1 and α2 are computed by maximizing
the log-likelihood respectively on the two GMMs. This will
be shown to enhance both the descriptive power by maxi-
mizing the log-likelihood and the discriminative capability
by choosing separate coefficients for original/manipulated
classes. This trade-off between adapting to the new domain
while simultaneously preserving the discriminative power is
also motivated by the theoretical study of [29].

To estimate the covariance matrix on 8× 8 patches of pre-
resized testing images, usual empirical estimator is used:

σij =
1

NP

NP∑
l=1

(xil − µi)(xjl − µj), (7)

where i is the row, j is the column, NP is the number of
patches, and µi, µj are respectively the empirical mean of
row i and column j over the NP samples. This estimator is
unbiased, yet it suffers from a high variance. As explained
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earlier, in order to counterbalance the variance of estimation,
we perform M estimations of empirical covariance matrices
on separate subsets of the target dataset of patches from
pre-resized images. It is worth mentioning that we estimate
matrices separately for the two original/manipulated classes,
by using the so-called pseudo-labels in the target domain.
Pseudo-labels are an important feature of GRAFT and are
described in the next subsection.

3) Pseudo-labels

In the unsupervised framework of GRAFT, we do not have
access to ground-truth labels of target domain. However, it
turns out that the accuracy of the GMM-based classifier does
not drop to 50%, i.e. random guessing. It means that classifier
is still able to label accurately some pre-resized test samples.
From these samples, we derive pseudo-labels. We explain in
the following how these pseudo-labeled samples are selected.

At the beginning of the optimization of α1 and α2, their
initial values are drawn randomly to compute the first two
sub-optimal, interpolated GMMs. We assume that even with
this sub-optimal interpolation, the GMMs can still label cor-
rectly some testing samples. Hence, we need to select almost
surely original and almost surely manipulated patches. Al-
most surely original (resp. manipulated) patches are selected
from the 5–15 (resp. 85–95) percentile of the likelihood
ratio, leading to 20% patches with reliable pseudo-labels
because their likelihood ratio is farthest from 1. The GMMs
are originally trained on the source domain, so most surely
classified target samples are very likely to be closer to the
source domain than to the target domain. It means that they
are not enough representative of the effect of pre-resizing.
Therefore, extreme likelihood ratio values (percentile 0–5
and 95–100) are discarded.

To validate this approach, we have computed the accuracy
of pseudo-labeled samples and it is typically above 95%. Of
course, ground-truth labels on the target domain are not used
in the GRAFT method and have been only used here to vali-
date our hypothesis on pseudo-labels. In the end, 20% (10%
almost surely original + 10% almost surely manipulated) of
the test data are pseudo-labeled. The method is robust regard-
ing the chosen percentages. Selecting percentiles 5–20 and
80–95 (or 10–15 and 85–90) would not significantly impact
the final accuracy. However, the classification accuracy starts
to drop when more than 30% of the test data are pseudo-
labeled because their accuracy drops.

One detail is that we use directly C1 to get the pseudo-
labels used for the estimation of empirical covariance ma-
trices C2 on test samples (see steps 2 and 3 of Algorithm 1).
This is different from the derivation of pseudo-labels via sub-
optimal interpolation mentioned above, but remains reason-
able because at the stage of estimating C2 it is impossible to
use interpolation to get pseudo-labels. In fact, the estimation
of C2 serves to obtain Ctrg1 , one end point of the interpolation.

In

CRPA
1

RPA

Interpolation

C1

Ctrg
1

FIGURE 4: Transformation and interpolation in GRAFT. In
is the identity matrix of dimension n×n, in our case 64×64,
the size of the covariance matrix of vectorized 8× 8 patches.
The interpolation is essential in GRAFT which maximizes
the log-likelihood of GMMs with regard to the target domain.

Algorithm 1 GRAFT algorithm

Input: Source and target data, two GMMs trained respec-
tively on original and manipulated patches of source data

Output: Adapted GMMs
1: Concatenate the two sets of covariance matrices from the

two trained GMMs on source data to form C1
2: Compute pseudo-labels based on ratio of likelihood with
C1 as covariance matrices

3: Use these pseudo-labels to compute estimations of co-
variance matrices of original and manipulated patches on
target data to get C2

4: Recentering: Cctr1 = T1(C1) and Cctr2 = T2(C2)
5: Rescaling: Cstr1 = S1(Cctr1 ) and Cstr2 = S2(Cctr2 )
6: Rotation: CRPA1 and CRPA2

7: Translation of C1 to have the same center of mass as C2
(separately for original and manipulated patches): Ctrg1

8: Initialization of α1 ∼ U [0.1, 0.9] and α2 ∼ U [0.1, 0.9]
9: Perform a first sub-optimal interpolation between CRPA1

and Ctrg1 with these random values of α1 and α2

10: Only keep most confident samples (see text) and con-
struct two pseudo-labeled sets: almost surely original and
almost surely manipulated testing patches

11: Find optimal interpolation coefficients α1 and α2 in
Eq. (8) based on maximization of sum of log-likelihood
on two sets of pseudo-labeled patches: Coriadp and Cmnpadp

12: Repeat steps 8 to 11 for five times and keep the adapted
GMMs with highest sum of log-likelihood

13: return

4) Summary

The main steps of the unsupervised adaptation method of
GRAFT are illustrated in Fig. 4 and its pseudo-code is
presented in Algorithm 1. The red line in Fig. 4 represents
translation toward identity, stretching and rotation. Sets of
covariance matrices within the orange dashed contour have
the identity matrix (In) as geometric mean. In Algorithm 1,
α1 and α2 are the coefficients of an interpolation represented
by the green dotted line in Fig. 4. Formally, the adapted sets
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of covariance matrices are obtained as:

Coriadp = Ctrg,ori1 ∗ (1− α1) + CRPA,ori1 ∗ α1,

Cmnpadp = Ctrg,mnp1 ∗ (1− α2) + CRPA,mnp1 ∗ α2.
(8)

α1 and α2 are computed such that they maximize the sum of
log-likelihood of two GMMs:

argmax
α1,α2

LLoriadp (α1) + LLmnpadp (α2) . (9)

Log-likelihood LLoriadp is computed on almost surely original
patches of the testing set, with adapted covariances and cor-
responding original weights. Similarly, LLmnpadp is computed
on manipulated pseudo-labeled patches of the testing set with
the adapted GMM covariances. Optimal values for α1 and α2

depend on the manipulation and resizing factor, so the full
interval [0, 1] is searched. Like for the EM algorithm, perfor-
mance depends on the initial random values of α1 and α2 for
the first sub-optimal interpolation. Therefore, initialization
is performed multiple times (five times is experimentally a
good trade-off between computation time and performances),
and the one with highest log-likelihood on pseudo-labeled
test samples is selected as the final adapted GMMs. To
summarize, in GRAFT, in order to adapt GMMs to the
new target domain, simple operations (translation, scaling,
rotation and interpolation) are performed to adjust covariance
matrices in an unsupervised manner, and the procedure is
driven by GMMs likelihood maximization on pseudo-labeled
target samples.

V. EXPERIMENTS
A. IMPLEMENTATION DETAILS OF GRAFT
Code is available online4 to reproduce experiments. We use
8 × 8 patches. They are flattened (vectorized) and centered
(mean of each patch is removed), as in [5]. We use Scikit-
learn [30] implementation of Gaussian Mixture Model. Each
GMM has 75 components. This number is a good trade-off
between model complexity for training phase and perfor-
mance on testing phase. In order to counterbalance weak-
nesses of EM algorithm, we perform five times of initial-
ization for mixture weights πk and covariance matrices Σk.
Initialization is done using K-means. The GMM means µk
are initialized to zeros and forced again to be zero after
training [5], [28]. We keep among the five trials the ini-
tialization with the highest log-likelihood on training data.
Grid searches for interpolation parameters α1 and α2 are
performed for speed purposes with black-box optimization
technique from [31]. It does not necessarily produce better
results than regular grid search but is quicker as the more
interesting sub-spaces are selected automatically to then per-
form grid search. For empirical covariance matrices on target
domain, we haveM = 2×30 = 60 estimations. The number
of 30 has been set experimentally to have a stable geometric
mean around different runs. Method is robust against this
number and could work with less.

4https://forge.uvolante.org/darmet/GRAFT

TABLE 1: List of basic image manipulation operations to be
detected.

ORI No image modification
GF Gaussian filtering with 3× 3 kernel and σ = 0.5
MF Median filtering with 3× 3 kernel

USM
Unsharp masking with window size 3× 3, and

parameter 0.5 for the Laplacian filter to generate
the sharpening filter kernel

WGN White Gaussian noise addition with σ = 2
JPEG JPEG compression with Q = 90

B. DATA

Images are from Dresden database [32]. It is a relatively big
source of images with about 1200 images, in RAW format,
coming from 5 different cameras. Images are in relatively
high resolution (typically of 2000× 3000 pixels), with quite
diverse exposures and contents. Some image examples can
be found in Figure 5. We randomly select 30% of images for
testing purposes. These images are resized, before applying
considered manipulation. The remaining 70% of images are
for training and selection of hyper-parameters. This set is
not resized at any stage. As mentioned in Section I, we
have selected a number of manipulation operations that we
consider as elementary. They are summarized and described
in Table 1. We apply manipulations to every training images,
and it allows us to learn on pair of patches: original vs.
manipulated. To prepare experimental data, raw Dresden
images are demosaicked using rawpy (https://github.com/
letmaik/rawpy), then converted to grayscale with Python
interface of OpenCV (https://opencv.org/). Finally we draw
randomly 400000 8 × 8 patches of each class, which makes
800000 training patches (balanced case) for each considered
binary classification problem. We also extract same amount
of testing patches.

(a) Contrasted scenery (b) Bright indoor scenery

(c) Outdoor scenery (d) Bleak scenery

FIGURE 5: Some examples of original Dresden images.
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C. DETAILS OF COMPARISON METHODS

Weakly-supervised GMM adaptation with weights ad-
justment. We have recently considered in [19] a classifi-
cation pipeline that shares similarities with pipeline of this
work. Similarly, two GMMs are trained; however, instead of
computing ratio of likelihood, in [19] features are extracted
from GMMs (the so-called “responsibilites” of Gaussian
components) and used by a Dense Neural Network (DNN)
to distinguish between original and manipulated patches.
Likewise, objective of [19] is to adapt to pre-resizing. It is
achieved through adaptation of GMMs’ weights to better
fit empirical covariance of target domain (feature extraction
adaptation) and then fine-tuning of the DNN for the new
features (classification adaptation). The main difference is
that in GRAFT adaptation is performed in the challenging
unsupervised scenario, while method [19] requires some
labels from target domain. Despite the differences in method-
ologies and scenarios, we compare GRAFT with the weakly-
supervised method of [19] and its unsupervised variant.

SPAM-based method. A branch of methods to detect image
manipulation are based on steganalytic features, typically
the SPAM [17] and SRM [18] features. In this work, We
compare with a SPAM-based method. SPAM features are ex-
tracted with code from http://dde.binghamton.edu/download/
feature_extractors, translated in Python, with a quantization
order T = 4 and two-neighbor co-occurrences. We perform
classification with the popular XGBoost framework [33]. It
is worth mentioning that although existing methods based on
steganalytic features consider larger patches, such methods
can directly cope with 8 × 8 patches because the feature ex-
traction and classifier training still work without any problem
on small patches. This actually leads to acceptable baseline
performances as shown later in this section.

CNN-based method. To the best of our knowledge, no
existing CNN-based methods consider and report results on
small patches of 8× 8 pixels. Nevertheless, for comparisons
purposes and similar to our previous study in [19], we
improve and adapt the state-of-the-art deep-learning-based
method from Bayar and Stamm [16] so that the CNN can
work with very small patches. Indeed, with the four pooling
layers in the original CNN of [16] and 8 × 8 patches as
input, output of these pooling layers drop to 1 × 1 and
following 2D convolution cannot be computed anymore.
It is technically possible to keep one or two of the four
pooling layers to work with 8×8 patches, but experimentally
we have obtained better results without any pooling layer
retained. We think that pooling as spatial reduction may have
a good effect for big patches of for example 256 × 256
pixels, but not anymore on 8 × 8 patches where we should
probably avoid information loss caused by pooling. Learning
rate has also been tuned for better accuracy from 10−3

(value suggested in the original paper [16]) to 10−4. We
use Caffe implementation from authors (https://gitlab.com/
MISLgit/constrained-conv-TIFS2018) on exactly the same
training and testing patches as GMM (same number as well).

TABLE 2: Testing accuracy (in %) without any adaptation
for GMM-based method. The performance drop compared to
the case without pre-resizing (i.e. the row of ×1) is given
in parentheses. The last column gives average values of the
accuracy for five considered manipulations.

GF MF USM WGN JPEG AVG
×1 91 86 97 98 89 92
×0.51 64 (-27) 75 (-11) 73 (-24) 79 (-19) 79 (-10) 74 (-18)
×0.71 78 (-13) 81 (-5) 81 (-16) 91 (-7) 84 (-5) 83 (-9)
×0.91 86 (-5) 83 (-3) 95 (-2) 97 (-1) 87 (-2) 90 (-2)
×1.25 51 (-40) 75 (-11) 74 (-23) 81 (-17) 67 (-22) 70 (-22)

D. PERFORMANCE AND ANALYSIS OF ADAPTATION
1) GRAFT method
Table 2 presents the testing accuracy, without any adapta-
tion, under different resizing factors for GMM-based method
(same results as those shown in Fig. 1 in Section III), where
×1 stands for the case of original-sized testing images with-
out any resizing pre-processing. We can see that there are
obvious accuracy drops for both downscaling and upscaling.
Our objective is to improve the accuracy on pre-resized test-
ing data, in an unsupervised manner, by using the proposed
GRAFT algorithm.

Results of our approach GRAFT are presented in last row
of Table 3 (pre-resizing factor of 0.51), Table 4 (pre-resizing
factor of 0.71) and Table 5 (pre-resizing factor of 1.25, up-
scaling). We also show results of another method: retraining
new GMMs from scratch by using 10% testing samples with
ground-truth labels. It corresponds to a scenario where few
target pre-resized data are available with labels. This scenario
is also a good indicator of the difficulty of the task. Indeed, if
a detector trained with few labeled target data performs bad
on target domain, the problem should be difficult. From the
tables, we can see that GRAFT method gives performance
improvement in all cases, except for two situations, i.e. MF
and JPEG under resizing of 0.71. However, in the first case
of MF, even the retraining method gives no improvement,
which implies that forensics problem becomes more difficult
for GMM-base method. In addition, under many testing sce-
narios there is no big performance gap between unsupervised
GRAFT and the retraining method which does use ground-
truth labels from target domain. In certain cases, retraining
GMMs can lead to big accuracy increase when compared
with GRAFT (e.g., JPEG with resizing of 0.71), though
at the expense of higher computational cost and with the
assumption of gaining access to true labels.

The improved average accuracy of GRAFT (last number at
bottom right in Tables 3, 4 and 5) is quite satisfying, around
85%. For resizing factor of 0.51 (Table 3), we are able to gain
in average +10% of testing accuracy with GRAFT method.
The performance improvement of GRAFT depends on the
manipulation operation, ranging from the smallest increase of
+4% for MF and JPEG to the biggest increase of +15% for
GF and USM. The improvement is to some extent correlated
with the drop in performances induced by pre-resizing. For
resizing factor of 0.71 (Table 4), we can see that even with

VOLUME X, 2020 9

http://dde.binghamton.edu/download/feature_extractors
http://dde.binghamton.edu/download/feature_extractors
https://gitlab.com/MISLgit/constrained-conv-TIFS2018
https://gitlab.com/MISLgit/constrained-conv-TIFS2018


L. Darmet et al.: Unsupervised Adaptation to Resizing for Detection of Image Manipulation

TABLE 3: Testing accuracy (in %) with adaptation of GMMs (resizing ×0.51). The improved accuracy, compared to the case
of “without adaptation”, is given in parentheses.

GF MF USM WGN JPEG AVG
Resizing ×0.51

(without adaptation) 64 75 73 79 79 74

Resizing ×0.51
(retraining with 10%) 77 (+13) 79 (+4) 82 (+9) 84 (+5) 81 (+2) 81 (+7)

Resizing ×0.51
(unsupervised, GRAFT) 79 (+15) 79 (+4) 88 (+15) 89 (+10) 83 (+4) 84 (+10)

TABLE 4: Testing accuracy (in %) with adaptation of GMMs (resizing ×0.71), with improved accuracy in parentheses.

GF MF USM WGN JPEG AVG
Resizing ×0.71

(without adaptation) 78 81 81 91 84 83

Resizing ×0.71
(retraining with 10%) 82 (+4) 81 (+0) 93 (+12) 93 (+2) 89 (+5) 88 (+5)

Resizing ×0.71
(unsupervised, GRAFT) 79 (+1) 81 (+0) 91 (+10) 92 (+1) 84 (+0) 85 (+2)

TABLE 5: Testing accuracy (in %) with adaptation of GMMs (resizing ×1.25), with improved accuracy in parentheses.

GF MF USM WGN JPEG AVG
Resizing ×1.25

(without adaptation) 51 75 74 81 67 70

Resizing ×1.25
(retraining with 10%) 70 (+19) 80 (+5) 95 (+21) 89 (+8) 80 (+13) 83 (+13)

Resizing ×1.25
(unsupervised, GRAFT) 83 (+32) 84 (+9) 83 (+9) 96 (+15) 88 (+21) 87 (+17)

TABLE 6: Testing accuracy (in %) with adaptation of the GMM-based method by GRAFT for the case of mixed pre-resizing
factors. The pre-resizing factors are drawn following uniform law within the specified interval.

GF MF USM WGN JPEG AVG
Resizing ×[0.48, 0.72]

(without adaptation) 71 81 76 72 87 77

Resizing ×[0.48, 0.72]
(unsupervised, GRAFT) 80 (+9) 82 (+1) 89 (+13) 77 (+5) 89 (+2) 83 (+6)

Resizing ×[1.12, 1.27]
(without adaptation) 53 78 81 83 74 74

Resizing ×[1.12, 1.27]
(unsupervised, GRAFT) 63 (+10) 79 (+1) 89 (+8) 95 (+12) 76 (+2) 80 (+6)

the retraining method only limited improvements can be
achieved. This case is more difficult than resizing ×0.51 or
×1.25, which explains the moderate gains in performance
with our GRAFT method, though the average accuracy after
adaptation remains satisfying. Our method is not limited to
downscaling and also provides good results with upscaling,
as shown in Table 5 with the case of resizing factor of 1.25.
A considerable average accuracy improvement of +17% is
achieved by our GRAFT method. At last, it can be observed
from Table 3 and 5 that sometimes GRAFT can achieve
higher accuracy than the retraining method. One possible
explanation is that the knowledge gained from original-sized
source domain is beneficial to improve the performance of
the same task in the new pre-resized domain.

In Table 6 target data are not pre-resized with a specific
factor but a random factor drawn in some interval. As de-
picted in the table, GRAFT approach is able to cope with a
testing set composed of a mix of pre-resizing factors. It is a
more difficult problem as the target domain is more diverse.

Hence, performance gain in average is +6%. An explanation
is that our method relies on likelihood maximization and
with a mix of factors likelihood is optimized on average.
Therefore when testing with a patch at a specific factor it is
not as optimal as previously. Yet our method remains useful
in particular for unsharp masking (USM) detection, and the
average accuracy after the improvement of GRAFT is higher
than or equal to 80% for both cases.

In order to show the effectiveness of interpolation of co-
variance matrices in GRAFT, Fig. 6 illustrates the evolution
of testing accuracy as a function of the interpolation coeffi-
cients α1 and α2. For this case of adapting a detector of GF
to a resizing of ×0.51 as pre-processing, the derived optimal
values are around 0.2 for both α1 and α2. The upper right
corner (1, 1) corresponds to CRPA and the lower left corner
(0, 0) to Ctrg. None of these two points are optimal in terms
of accuracy or likelihood, and the interpolation between the
two can improve the detection performance.

At last, we would like to mention that our method is
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FIGURE 6: Testing accuracy as a function of interpolation
coefficients α1 and α2. The manipulation is Gaussian blur-
ring and the resizing factor is 0.51.

much less time consuming than the 150 iterations of EM
algorithm for the GMM training. We were actually looking
for shortcuts to perform lightweight and flexible adaptation
as in the proposed GRAFT algorithm. Regarding computa-
tion time, on our machine with Intel Xeon E5-2630 CPU,
it takes approximately 15min for GRAFT procedure, while
it needs about 5h to train one GMM with 400000 samples.
The weakly-supervised GMM adaptation takes about 3min
(1min for the optimization problem and 2min for DNN fine-
tuning). Training of the CNN-based method of Bayar and
Stamm takes around 2h for each binary problem on an Nvidia
1080 Ti GPU (it would be much longer on CPU). Finally,
extraction of SPAM features is quite fast (about 1h) as it can
be done in parallel on the 40 cores of our CPU. However
training of the classifier is about 10h as feature dimension is
very large.

2) Comparisons with weakly-supervised GMM adaptation
with weights adjustment and its unsupervised variant
As explained in Section V-C, our recent method of [19]
requires some labels on target domain, while the proposed
GRAFT method in this paper performs unsupervised adapta-
tion. Results of weakly-supervised method [19] are presented
in Table 7, on the row of “weakly sup. [19]”, with compar-
isons to GRAFT. It can be observed that the GRAFT method
achieves comparable or even slightly better performances
though considering a more challenging setting of unsuper-
vised adaptation. Average accuracy after applying method
of [19] with a pre-resizing factor of×0.51 is 80% while with
GRAFT method it is 84%. Average accuracy for upscaling of
×1.25 is also in favor of GRAFT with 87% compared to 83%
for weakly-supervised adaptation.

Instead of using few labels as in the original method of [19]
for adaptation, we have implemented an unsupervised ver-
sion that uses pseudo-labels instead. Pseudo-labeled samples

TABLE 7: Testing accuracy (in %) of the weakly-supervised
method from [19] and its unsupervised variant, with compar-
isons with GRAFT. “sup.” and “unsup.” stand respectively
for “supervised” and “unsupervised”.

GF MF USM WGN JPEG AVG
Resizing×0.51

(weakly sup. of [19]) 78 76 92 70 86 80

Resizing×0.51
(unsup. version of [19]) 71 75 82 65 84 75

Resizing×0.51
(unsupervised, GRAFT) 79 79 88 89 83 84

Resizing×1.25
(weakly sup. of [19]) 66 80 95 95 78 83

Resizing×1.25
(unsup. version of [19]) 64 75 91 92 68 78

Resizing×1.25
(unsupervised, GRAFT) 83 84 83 96 88 87

are determined similarly as in our GRAFT method. Results
of this unsupervised variant are presented in Table 7, on
the row of “unsup. version of [19]”. The unsupervised ver-
sion has lower accuracy than the original weakly-supervised
version, which is understandable because less information
on target domain is available. GRAFT method outperforms
the unsupervised variant of [19]. The better performance
of GRAFT may be due to the formulation of adaptation as
GMM likelihood maximization, instead of only considering
the fit of covariance statistics in [19].

3) Results of SPAM-based and CNN-based methods

SPAM features have been originally designed for the ste-
ganalysis field, though they are also very powerful for im-
age forensics problems. Results of SPAM-based method are
presented in Table 8. GMM-based method provides better
base score (i.e., accuracy on testing set without pre-resizing)
than SPAM-based method. It is +8% on average for GMM
(92% for GMM vs. 84% for SPAM in terms of average
accuracy, see the row of “×1” in Tables 2 and 8). We also ob-
serve performance drop under pre-resizing for SPAM-based
method, although not as big as for GMM approach. However,
the decreased average accuracy is comparable between the
two methods (please compare results in Table 2 and Table
8). It is interesting to notice that after applying GRAFT
adaptation, GMM approach has improved accuracy which
is as competitive as the base score of SPAM (the average
improved accuracy of GRAFT is around 85%, see Tables 3–
5, compared with 84% for SPAM without pre-resizing). We
also notice that SPAM-based method is quite robust for MF,
therefore fusing results of the two approaches could be an
interesting solution to be explored in the future.

As described in Section V-C, we have modified Bayar and
Stamm’s CNN [16] so that the network is now able to detect
manipulation on 8 × 8 patches. We would like to emphasize
here that manipulations considered in this work are more
challenging than in their paper [16] (smaller magnitude,
smaller kernel for median filtering, etc.) and that patches are
much smaller. Therefore performances of the network are
reduced compared to performances reported in Bayar and
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TABLE 8: Testing accuracy (in %) for SPAM-based method.
The performance drop compared to the case without pre-
resizing (i.e. the row of ×1) is given in parentheses.

GF MF USM WGN JPEG AVG
×1 73 95 89 87 78 84
×0.51 60 (-13) 95 (-0) 78 (-11) 68 (-19) 70 (-8) 74 (-10)
×0.71 68 (-5) 96 (+1) 83 (-6) 76 (-11) 73 (-5) 79 (-5)
×0.91 71 (-2) 95 (-0) 87 (-2) 83 (-4) 73 (-5) 82 (-2)
×1.25 56 (-17) 90 (-5) 84 (-5) 86 (-1) 70 (-8) 77 (-7)

TABLE 9: Testing accuracy (in %) for the CNN-based
method. The performance drop compared to the case without
pre-resizing (i.e. the row of ×1) is given in parentheses.

GF MF USM WGN JPEG AVG
×1 79 85 91 86 79 84
×0.51 68 (-11) 82 (-3) 80 (-11) 66 (-20) 76 (-3) 74 (-10)
×0.71 73 (-6) 83 (-2) 89 (-2) 80 (-6) 79 (-0) 81 (-3)
×0.91 61 (-18) 78 (-7) 81 (-10) 88 (+2) 71 (-8) 76 (-8)
×1.25 55 (-22) 72 (-13) 74 (-17) 82 (-4) 55 (-22) 68 (-16)

Stamm’s paper [16]. Accuracy of the CNN-based method
is presented in Table 9. CNN’s base performance without
resizing is lower than GMM,−8% in average (84% for CNN
vs. 92% for GMM). CNN also suffers from accuracy decrease
under pre-resizing. Similar to the comparison with SPAM,
GMM with GRAFT achieves after adaptation to pre-resizing
average accuracy values (around 85%) comparable to the
base average score of CNN when there is no pre-resizing.

We have made efforts to carry out unsupervised adaptation
to pre-resizing for SPAM- and CNN-based detectors (to our
knowledge no such methods exist in the image forensics
literature). We have applied the adaptation methods based on
optimal transport [34] and Transfer Component Analysis [35]
to SPAM and tried to use pseudo-labels for both SPAM and
CNN, but for each case there is no noticeable accuracy im-
provement after adaptation. One possible explanation is that
it seems more difficult to perform unsupervised adaptation
for discriminative classification pipelines such as SPAM and
CNN than for pipeline based on generative model such as
GMM. For example, pseudo-labeled samples have very little
impact on SPAM- and CNN-based classifiers because pseudo
labels are determined by these classifiers and in turn refining
classifiers with these samples in the discriminative training
setting has limited effect. By contrary, GMM’s descriptive
capability for pseudo-labeled samples can be effectively im-
proved, which leads to performance improvement. We leave
for future work the development of successful adaptation
algorithms for SPAM- and CNN-based methods.

E. TRAINING WITH A MIX OF RESIZED DATA
As discussed in Section I, a method that comes firstly in
mind to mitigate this problem of pre-resizing is to mix a
lot of different resizing factors in the training set. However,
results in Table 10 seem to indicate that this is not the
optimal solution for both CNN- and GMM-based meth-
ods. CNN- and GMM-based detectors have been trained
on Dresden database, with each image (both train and test)

TABLE 10: Testing accuracy (in %) for GMM- and CNN-
based methods. We compare testing accuracy when training
set contains original-sized images and when it contains re-
sized images of a mix of resizing factors. Factors are selected
randomly from a set of values (see text). Testing set is
consistent with training set.

GF MF USM WGN JPEG AVG
GMM original-size 91 86 97 98 89 92

GMM on mix 65 85 89 86 80 81
CNN original-size 79 85 91 86 79 84

CNN on mix 65 74 84 89 74 77

having been resized with a factor randomly selected in
[0.48, 0.57, 0.63, 0.68, 0.72, 0.79, 0.85, 0.91, 1, 1.12, 1.17,
1.22, 1.27] where 1 indicates no resizing. For detectors
trained with patches of resized images, the testing accuracy
is 11% lower on average for GMM-based and 7% lower
for CNN-based method, when compared with training on
patches of original-sized images (see Table 10). In addition,
we can notice that the improved accuracy after unsupervised
GRAFT adaptation to pre-resizing is higher than the testing
accuracy when we train GMMs on mixed data (around 85%
for GRAFT in Tables 3–5 vs. 81% for “GMM on mix” in
Table 10). We also keep in mind that the solution of training
“GMM on mix” is more computationally expensive and less
flexible than GRAFT adaptation. Moreover, we assume that
there would be more accuracy decrease for “GMM on mix”
if we consider more scaling factors and more interpolation
algorithms during training. One explanation is that training
on a mix of resized data is harder as it introduces a lot of vari-
ability in patches. This variability has then to be disentangled
from manipulation fingerprints. Authors of [4] notice similar
behaviour in the close field of steganalysis. Their conclusion
is that training on a mix of development processes is not as
powerful as identifying the specific development process and
conducting training specifically for it. Extension of this idea
to image forensics could be an interesting future work.

F. SUMMARY
From the above experiments and analysis, we can see that
GMM adaptation is effective for the forensics problem of de-
tecting manipulation on patches of pre-resized images. It also
seems to be a better approach than training on a mix of re-
sizing factors. After applying our proposed GRAFT method,
the detector provides in general satisfying testing accuracy,
especially under upscaling, where the accuracy improvement
can be as high as +32% for GF. Additional experimental
results (e.g., under nearest neighbor interpolation, base scores
obtained by training GMMs from scratch on patches of
pre-resized images, etc.) are included in the Supplementary
Material. At last, the different behaviours of GMM, SPAM
and CNN under different resizing factors (and also under
different manipulations) suggest that an appropriate fusion
of the three approaches could lead to better performances.
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VI. CONCLUSIONS
This study highlights some concerns on how resizing, a
common pre-processing operation, alters performances of
detectors based on local statistical model of images, on clas-
sical steganalytic features and on convolutional neural net-
work. Yet, these detectors are state-of-the-art approaches for
detecting image manipulations. We expose some statistical
differences between training and (pre-resized) testing sam-
ples, as an explanation to this performance drop of various
detectors. We then propose an effective adaptation algorithm
named GRAFT for GMM-based detector. GRAFT is able to
improve results in the challenging scenario of unsupervised
adaptation, without using any ground-truth label in target
domain. In addition, according to our experiments, GRAFT
also provides better result than training models from scratch
on a mix of original-sized and resized images. The good
performance of GRAFT is mainly due to the formulation
of unsupervised adaptation as a problem of likelihood maxi-
mization of GMMs on pseudo-labeled target samples.

This work raises new questions on the weaknesses of
existing forensics detectors regarding their generalization ca-
pabilities to pre-processing and more generally image devel-
opment processes, which is a timely and important research
problem. It would be interesting to study the effect of pre-
resizing on detection of more complex tampering operations
like splicing or copy-move. In machine learning, in order to
obtain better accuracy and generalization, one usually uses
larger and more diverse databases. However, this may not be
the best answer here and is even sometimes impossible due
to lack of labeled target samples. An alternative and flexi-
ble solution is therefore needed as illustrated in this paper.
Semi/weakly-supervised approaches are also promising ideas
for future work toward this direction. This would make a
step forward in moving image forensics toward real-world
applications.
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