

Wave-based resonant microsensors for environmental applications.

Corinne Dejous

▶ To cite this version:

Corinne Dejous. Wave-based resonant microsensors for environmental applications.. École thématique. Sustainable Development in Metropolitan Bordeaux, Bordeaux, France. 2018. hal-02519377

HAL Id: hal-02519377 https://hal.science/hal-02519377

Submitted on 31 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Summer School Bordeaux INP - June 25th to July 6th, 2018 Sustainable development in metropolitan Bordeaux

Wave-based resonant MICROSENSORS for environmental applications

C. Dejous,

Presentation based on the team's research work – L. Bechou*, H. Hallil, S. Hemour, S. Joly, J.L. Lachaud, L. Oyhenart, D. Rebière, O. Tamarin** * Delegation at LN2 – Univ. Sherbrooke, Canada, ** Delegation from Univ. Guyane, Kourou, France

Dejous, Team ONDES (WAVES) / MDA, corinne.dejous@ims-bordeaux.fr

COMMUNAUTÉ D'UNIVERSITÉS ET ÉTABLISSEMENTS D'AQUITAINE

BORDEAUX

Thematic Organization at IMS Lab.

ENSEIRB MATMECA

Up to 350 staff involved in Information Technologies (IT) & Engineering

www.ims-bordeaux.fr/en

ONDES (Waves)

Towards Multi-disciplinary Multi-technology Smart and Sustainable systems Yves Ousten, Professor (C.Dejous, 2011-2017)

MIM : Materials, Interactions, Micro-waves (F.Demontoux, Prof.) MDA : Acoustic wave-based Detection Microsystems (D.Rebière, Prof.) EDMiNA : Evaluation of Micro- Nano- Assembled Devices (L.Bechou, Prof.)

A2M, Spin-off on Non-Destructive Material Micro-wave Characterization (G.Ruffié) OpERaS, Technological platform for Electro-Optical Characterizations (L.Bechou)

Strategic topics

- Microdevices for Optics / Photonics
- Connected Multi-technology Microsensors
- Wireless solutions for micro-energy

Laboratoire de l'Intégration du Matériau au Système

 \rightarrow October, 2016

ONDES / WAVES

Towards Multi-disciplinary Multi-technology Smart and Sustainable systems

July, 2018

From Materials to Devices

MIM, Materials, Interactions, Micro-waves

- Interactions electromagnetic waves (CW to mm-wave) / materials
- Natural materials : wireless active / passive detection
- Structured materials with specific properties: photonic crystal, metamaterials, radar stealth (furtivity) ...

- MDA, Acoustic wave-based Detection Microsystems
 - Resonant devices microsensors, prototypes
 - Using of innovative sensitive materials

Wave propagation in devices, dynamical interaction phenomena with solid, liquid, gaseous medium

$1 \rightarrow ONDES / WAVES$

Matériaux Interactions Micro-Ondes

- **EDMiNA**, Evaluation of Micro- Nano- Assembled Devices
 - Influence on microelectronic / photonic devices :
 - Integration of newmaterials
 - Assembly, interconnection
 - Influence of environmental conditions Reliability

Permanent Staff (18): 6 Prof., 9 Assoc.&Assist. Pr., 3 Ing.

S Laboratoire de l'Intégration du Matériau au Système

ONDES / WAVES

Towards Multi-disciplinary Multi-technology Smart and Sustainable systems

From Materials to Devices... Pluri- Inter-Disciplinarity

Multiphysic Modeling Integration Characterisation Sustainability Application Microwaves-Materials (A2M Spin-Off)

 Innovative transduction (acoustical, optical, high frequency)
 Interface Characterisation
 High resolution Electrical / Optical Characterisation

 Reliability

Micro- Nano-Assembled Sensors and Devices

1 \rightarrow ONDES / WAVES

Heterogeous Integration

 Prototyping
 Evaluation of performances,

 Tests in controlled environment

 Data treatment / inversion

Multi-technology Smart and Sustainable Systems

Materials for High Frequencies and Photonics

Strategic topics

- Microdevices for Optics / Photonics
- Connected Multi-technology Microsensors
 - Wireless solutions for micro-energy

https://www.ims-bordeaux.fr - Research – Research groups - WAVES

IS Laboratoire de l'Intégration du Matériau au Système

July, 2018

Philosophy in agreement with IMS scientific strategy

Four Major Research Projects since 2015

- Two combined paradigms: Interdiscipinarity & Partnership
- The Group is involved into the 4 Major Research Projects at IMS

Wave-based resonant microsensors

Environmental and health related applications

- Introduction: Background, Principle of Wave-based Resonant Microsensors
- Focus on Acoustic Love Wave Devices
 - Principle
 - Examples of Gas sensing applications
 - Introduction of microfluidics and examples of Liquid-phase sensing applications
- Other Resonant Devices and Applications
 - Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films
 - Polymer Optical Microring Resonators & Digital Microfluidics
- Onclusion, perspectives

Chemical sensor market

2014-2021 gas sensors forecast - In US\$ million value

(Source: Gas Sensor Technology and Market Report, February 2016, Yole Développement)

Yole Développement, February 2016, http://www.yole.fr/iso_album/illus_gassensors_forecast_yole_feb2016.jpg

Sensors for healthcare

MIMICKING THE 5 SENSES AND MORE

(Source: Sensors for Wearable Electronics & Mobile Healthcare, Yole Développement, June 2015)

Medical microsystems roadmap

Global miniaturization roadmap

Yole Développement, 2013, www.i-micronews.com/images/Reports/MedTech/Images_reports/Global_miniaturation_roadmap.jpg

Chemical sensor and Energy

New MEMS challenges! Power consumption is becoming a major trend

(Source: Status of the MEMS Industry report, Yole Développement, to be released Q2, 2016)

Yole Développement, March 2016, http://www.yole.fr/iso_album/illus_memsvirtuouscycle_yole_march2016_2.jpg

Issues of chemical detection

System dedicated to an application or a specific compound?

Test cost?

Measuring time?

Duration of phase calibration?

Frequency of maintenance periods?

Sensitive elements form disposable? (typical case for a biomedical application)

Major, minor or trace compound?

Staff qualification (to perform the measurement)?

Trend: a wide variety

Smart (bio)chemical Sensor

Chemical and biological fields

Ultrasensitive Acoustic & Electromagnetic & Optical transducers : Application for gas and bio sensing

Wave-based resonant microsensors

Environmental and health related applications

- Introduction: Background, Principle of Wave-based Resonant Microsensors
- Focus on Acoustic Love Wave Devices
 - Principle
 - Examples of Gas sensing applications
 - Introduction of microfluidics and examples of Liquid-phase sensing applications
- Other Resonant Devices and Applications
 - Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films
 - Polymer Optical Microring Resonators & Digital Microfluidics
- Source Conclusion, perspectives

Acoustic wave transducers

Acoustic or elastic wave: mechanical displacement Generation by piezoelectric effect

Bulk wave transducer (QCM : quartz microbalance)

Surface wave transducer

Motion

Motion

Planar device: collective fabrication

Energy near the surface: sensitivity

SAW Delay Line

Piezoelectric effect

- Acoustic wave propagation using IDTs (Inter Digital Transducers)
- Wave perturbation induces
 - Phase velocity variation
 - Attenuation (Insertion Loss)
- Design Modeling
 - Wave propagation
 - Interaction mechanisms

Love waves delay lines

- Oriented substrate + IDT electrodes: TH waves iquid
- Guiding layer: energy confinement
- sensitivity
- Sensitive layer: amplification, specificity

Sensitivity to mass effect

Theoretical results

Choice and characterization of the guiding material

FEM* Simulation

* Finite Element Method COMSOL Multiphysics

- Collaboration IRD Guyane France (O. Tamarin)
- Toolbox 'Piezoelectric devices'

Inhomogeneous materials such as nanostructured thin films

Couche sensible Guidante Substrat Meshing 'Free tetrahedral', Size 'Normal'

R. Djoumer – Master Thesis - 2012

Meshing 'Free triangular', Size 'Extrafine'

FEM Simulation

- Parametric study, effect of SiO₂ thickness (h) of a structure without any sensitive film
- Gain max: h = 4μm
- Phase velocity decreases from 4900m/s downto 4450m/s with h in the range [2.5µm – 7 µm]

Towards Love-waves devices

- 1. Piezoelectric substrate: AT cut (0°,121.5°,90°)
 - Shear Horizontal polarization
 - > Working in liquid medium
- 2. Interdigital transducers (IDTs) (λ =40 μ m, Lcc=8.4 mm, e=200nm)
- 3. SiO_2 guiding layer (4µm, PECVD)
 - > Trapping Energy \rightarrow near free surface:
 - attractive way for sensing applications

Technology achievements

Delay lines : • Rayleigh waves (SAW)

- SH-APM
- Love waves

Love wave devices : Quartz cut AT, λ =40µm, Électrodes : Al, Ti/Au Guiding layer SiO₂, 4,6 µm

SAW delay-line devices

Quartz substrate: AT-cut Wavelength λ = 40 µm Synchronous frequency f ≈ 117 MHz

From the delay line to the oscillator

Transmission response characterization of a delay line using a network analyzer

Test cell designed and realized according to the one proposed by F.Josse et R.Cernosek, Sandia Labs

Electrical characterizations

using Network Analyser

dépasser les frontières

S₂₁ (magnitude & phase) LOVE Wave delay line

- f₀ = 117 MHz
- Insertion Loss: 25 dB
- Delay: 1.542µs

 $V_{\text{phase velocity}} \approx 4300 \text{m.s}^{-1}$

Read-out electronics

Direct Digital Synthesizer (DDS)

✓ Arduino-based read-out
 ✓ Communicating object (Ethernet)
 ✓ Sensor network ability

Bordeaux INF

Acoustic sensors:

various applications

Gas sensors

- **CO**, CO₂, NO, NO₂, ...
- Volatile organic compounds, organophosphorus & organosulfur, ...
- Electronic noses
 - **Gas mixture, odors, ...**
- Liquid sensors
 - Viscosity meter, conductivity meter, organic compounds, ...
- Biosensors

CINES

dénesser les frontières

- Bacteria, viruses, toxins, heavy metals, hydrocarbons, ...
- Thin film & complex fluid characterization

Sensitive coating

- Material
- Deposition method
- **Structuration**
- Result
 - Sensitivity
 - Selectivity
 - **C** Reversibility
 - Response time
 - **C** Recovery time
 - Reproducibility, Reliability

Technological facilities (TAMIS)

- Clean room class 10 000 (hood 100)
- Thin films microprocessing: spin-coater, spray-coater, Graphtec, mask aligner, hotplates, wet etching of photoresist
- Thick films processing
 screen printers, ovens, inks formulation
- Wire-bonding assembly ball-bonder, wedge-bonder, flip-chip
- AQUITAINE
- **Films and devices characterization:** profilers, AFM, SEM, vibrometer, gain/phase analyzer, network analyzer...
- Soft lithography
- Mechanical micro-fabrication
- Partnerships

➔ Device customization

Wave-based resonant microsensors

Environmental and health related applications

- Introduction: Background, Principle of Wave-based Resonant Microsensors
- Focus on Acoustic Love Wave Devices
 - Principle
 - Examples of Gas sensing applications
 - Introduction of microfluidics and examples of Liquid-phase sensing applications
- Other Resonant Devices and Applications
 - Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films

July, 2018

- Polymer Optical Microring Resonators & Digital Microfluidics
- Source Conclusion, perspectives

Sensitive materials : polymers

Molecular interactions

van der Waals' s forces - Non specifics
 Low energy

• Hydrogen bondings - *specifics*

Intermediate energy level (40 kJ) A preference for good reversibility & selectivity

Low glass transition temperature (T_G)

For a fast diffusion of species in the polymer

Selection tool : solubility energy linear relation Determination of partition coefficients polymer/gas (K) Abraham' s method - LSER

Interaction sensitive layer /gas

Thermodynamic equilibrium partition coefficient

$$K = C_s / C_v$$

Molecules sorbed in the polymer mass effect, rigidity, viscosity, ...

K function of:

- polymer
- nature of gaseous compound
- temperature

Sensitivity to the vapor A : high value of K_A Selectivity with respect to the compound B : $K_A > K_B$

Interest of Polysiloxanes

Ability to interact with compounds acceptors of hydrogen bonds (bases)

-						
		polarisability	polarity	basicity	acidity	dispersion
	C	r	S	۵	b	l
PHG	-0,331	-0,979	0,774	1,324	4,269	0,810
PMHS	-0,077	0,139	0,203	1,025	-0,469	0,846
PLG	-0,296	-1,161	1,325	0,971	4,785	0,674
MTFPS	-0,328	-0,757	1,443	0,112	1,221	0,721
PCPMS	-0,258	0,167	1,480	1,997	0,694	0,674

PLG: Polymethylhydrosiloxane grafting of hexafluorodimethylcarbinol (C(CF3)2OH) : fluorinated linear polymer

A good candidate for the detection of organophosphates

Log K	PMHS	PLG	PHG	PMTFPS	PCPMS
Toluène	2,882	2,659	2,813	2,592	3,675
H ₂ O	0,910	2,650	2,808	1,0280	2,631
DMMP	3,107	7,105	6,775	4,559	4,600

Bordeaux INP ENSEIRB MATMECA Université **BORDEAUX

Works achieved by Thales TRT (formerly Thomson, LCR)

Sensitive layer-gas interaction

Polymer deposition by spray

université

BORDEAUX

Vapor Detection (GB)

f₀ = 109 MHz, SAW Rayleigh wave, Sensitive coating:

- Grafted Polysiloxane PLG, $\Delta f_0 = 138 \text{ kHz}$
 - → emphasize hydrogen interactions (sensitivity / reversibility)
 - → low glass-transition temperature (diffusion @ ambient T°C)

- Initial solution : Surfactant (CTBA) + soluble silica + H₂O + EtOH
- Mesostructure: depends on the sol-gel chemistry (nature of the compound, experimental conditions: Humidity, Temperature)

Bordeaux I

Mesoporous sensitive layer

- CTAB/silica = 0.14
- 2 nm mesopores periodic organization
- Thickness : 50 500 nm

TEM pictures

- High apparent surface (>700 m²/cm³)
- High volume porosity (0.5 cm³/cm³)

High temperature SAW Platform using LGS Harsh environmental applications

SAW delay-line on LGS

- Mesoporous sensitive film
 - ✓ Mesoporous : 2 50 nm
 - ✓ Sol-gel technique, spin or dip-coating
 - ✓ Stability: thermal, mechanical, chemical ...
 - ✓ High specific surface : 10 1000 m²/g

PhD G. Tortissier 2009

- Stainless steel shell
- Inlet/Outlet integrated cover for safe gas detection
 - PCB-SMA RF connector

Mesoporous sensitive layer

Sensitivity to humidity

Solvant and monomers discrimination

Solvant and monomers discrimination Û -20 **Nonpolar molecules** -40 -60 -80 -101 -101 -120 Polar molecules -140 ♦ toluene styrene -160 🛦 butyl acetate -180 🖕 butyl acrylate -200 200 1200 1400 1600 1800 2000 D 400 600 800 1000 gas concentration (ppb)

Polar & Non polar molecules separation in real time

Future : specificity by functionalization of the pores

SAW transducers: Gas sensing with carbon-based materials

Evaluation of the Love wave sensor: Humidity detection

Comparison of Graphene Oxide based-devices (Lamb sensor in Xuan W. *et al* study) with similar conditions under Relative

•	Sensitivity

++ Low RH% !

SAW transducers: Gas sensing with carbon-based materials Evaluation of the GO-LW: Ethanol as OCV

Comparison of Graphene Oxide with alternative functional materials under C₂H₆O vapors

Mesoporous thin film characterization

Kinetics – Monitoring of menthol evaporation

Wave-based resonant microsensors

Environmental and health related applications

- Introduction: Background, Principle of Wave-based Resonant Microsensors
- Focus on Acoustic Love Wave Devices
 - Principle
 - Examples of Gas sensing applications
 - Introduction of microfluidics and examples of Liquid-phase sensing applications
- Other Resonant Devices and Applications
 - Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films
 - Polymer Optical Microring Resonators & Digital Microfluidics
- Source Conclusion, perspectives

Acoustic Waves & Microfluidic Interest of both...

Weibel, D. B. et al. - Anal. Chem. 77, 4726–4733 (2005).

- Microfluidic
 - **C** Small volumes
 - Parallelization

- Acoustic platform
 - High sensitivity
 - Microelectronic fabrication process

PDMS Microfluidic chip

AQUITAIN

- Isolates transducers
- Decreases liquid volume (< µL)</p>
- Limits acoustic losses
- Minimizes acoustic reflections
- □ Low cost and green technology

Hydrostatic configuration

Hydrodynamic configuration

dépasser les frontières

Biological Micro organisms detection

Biological Micro organisms detection

- Toxins (shellfish Quality)
 Image: Second Secon
- Bacteria Escherichia Coli

Heavy metals

Cancer biomarkers : nucleosides

Target species

Bacteria

Unicellular micro-organismes, 1 à 5 mm Simple structure with no nucleus Self-reproduction by cell division ex. : coliforms, streptococci, bacilli

Virus

Intracellular parasitic micro-organisms, 20 to 300 nm Bacteriophage : virus infecting bacteria

Virus

Small molecules

Hormones, toxins, proteins, ... Mass 1/1000 à 1 that of an antibody

10 nm 17

<u>Antibody</u>

dépasser les frontières

Bacteriophage

μm

Current methods of biosensing

Physico-chemical : extraction, separation, detection
 long, expensive, low sampling

- Immunological : antigen antibody reaction
 - Antigen
 - immunogenic
 - antigenic
 - Antibody (Immunoglobulin, IgG)
 - synthesized by the immune system
 - specific antibody-antigen binding, neutralization
 - Generic shape: fixed part, variable ends

Acoustic wave device

Surface Functionalization

Biofunctionalization Bioreceptive antibodies Saturating agent

Application to detection of bacteria Evaluation of characteristics

• Specificity

- Repeatability
- Duration of detection
 - Total duration: 3h
 - Significant duration : 1h
- Detection threshold

Estimated at 10⁶ bactéries/mL

Controls :

- 1 : Without bacteria
- 2 : Nonspecific antibody
- 3 : Nonspecific bacteria

Application : Heavy metals

Whole cell-based biosensor

I.Gammoudi, L.Blanc - Collaboration 2011

CIL

dépasser les frontières

((PAH-PSS)3-PAH) + E.Coli

Bordeaux INP

MATMECA

ΔF(Hz) PAH, Ecoli Figure 3-A ∆F(Hz) PAH Cadmium detection PSS, Cd2+(>10-3 M) PAH Cd2+(10-3 M) Cd2+(10-6M) -2000 PSS. -20000-PAH Cd2+(10-9M 6.0 um 45 3.0 Cd2+(10-12 M E.coli -4000 -40000--6000 9000 3000 6000 0 2000 3000 t(seconds) t(seconds) 1000 Cd²⁺ detection Trapping of *E. coli* bacteria 4.8 jam

10/mx

LMTA

- Perturbation of viscoelastic properties due to modifications of bacterial metabolism
 - Detection threshold lower than 10⁻¹² M (Cd, Hg)

Cancer Biomarkers detection (nucleosides)

- Molecularly Imprinted Polymer (MIP)
 - Thin film, Spin-coated
 - Compatible with acoustic propagation
- Thin film characterization
 - Profilometry, SEM
 - Sensor response to vapor sorption (toluene, ethanol)
- Target species detection
 - Static tests
 - Dynamic with microfluidic handling
- Adaptation to various target biomarkers

SEM pictures : MIP layer morphology Thickness layer : 500 nm to 1µm

Now and then...

- Detection applications
- Mechanical characterization of the medium at the near interface
- A new issue... as a realistic way for *in vitro* assays

Université [®]BORDEAUX

Wave-based resonant microsensors

Environmental and health related applications

- Introduction: Background, Principle of Wave-based Resonant Microsensors
- Focus on Acoustic Love Wave Devices
 - Principle
 - Examples of Gas sensing applications
 - Introduction of microfluidics and examples of Liquid-phase sensing applications
- Other Resonant Devices and Applications
 - Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films
 - Polymer Optical Microring Resonators & Digital Microfluidics
- Conclusion, perspectives

Ultrasensitive Resonant Transducers : Application for gas and bio sensing

CArbon and Microwave-based Ultrasensitive gas Sensors (CAMUS)

Electromagnetic Sensing Principle

Advantages

Carbon materials

- High sensitivity
- Totally integrated
- Room temperature

Inkjet Printing Technologies

- Low cost
- Planar circuits

Microwave Resonator device •Differential detection •Wireless Communication •Autonomy (Passive) •Network of sensors & Easy integration for IoT applications

DUKUEAUA

Realization & Electrical characterization

-REF S21 D2 (dB)

•••• SENS S21 D2 (dB)

Experimental setup for detection of Ethanol & toluene vapors

✓ Dedicated low cost characterization cell (FR4-based) concentration range : 100-2000 ppm ethanol, 100-1200 ppm toluene

CIL

dépasser les frontières

ms

Real-time characterization with ethanol

Frequency range 2 to 4 GHz: shift of the operating frequence (S21)

Bordeaux I

Sensitivity to with ethanol

Polymer optical microring resonator (OMR) Application for environmental detection

Metal ions sensor integrating polymeric optical microresonator (OMR) and digital microfluidics (EWOD*) for environmental applications

Polymer optical microring resonator (OMR) Application for environmental detection

ElectroWetting On Dielectric (EWOD)

ITO Glass

Drop

Top Plate

Bottom plate

Optical Microring Resonator (OMR)

✓ On glass ✓ Visible domain

PhD F.Meziane, 2016 PhD M.Diez Garcia, on-going

Input port SU-8 ring resonator Drop port 0009 10KU X2,200 10Pm WD16 Coll. LAAS-CNRS, Tecnalia Research & Innovation, Spain Bordeaux IN ENSEIRB

Driving Electrodes

Insulator

Glass

Laver

Prospects – a "Graal" ?

Integration of wireless sensor network in communicating systems and Internet of Things (IoT) applications

Conclusion, perspectives

RF Interrogation

Resonant Wave-based Microsensors

- Acoustic, Electromagnetic, Photonic
- ...Sustainable Devices and Systems
- Solution for Micro-energy
 - Wireless implant communication
 - Energy harvesting
- Environment and Health-related Applications

Sensor, Drug Delivery Device, ... Transponder

DC output Energy storage

Bordeaux IN

Work leaded by S.Hemour, LabEx AMADEus Bordeaux

Self-powered implantable chip

Conclusion

- An interdisciplinary approach, A versatile platform
- Trends: "green" materials and technologies, for sustainable environment and environmental health

IMS Bordeaux and Sensors

Sensors... circuits and instrumentation, Students welcome !

Sensor-related scientific communities

Bordeaux Electrical Engineering IEEE Student Branch

environment advanced network healthwave iot gas healthwave iot gas fem acoustic material love sensor surface by the sensor surface sow electromagnetic interaction photonic simulation inter

nanomaterial

25th IEEE Intern. Conf. on Electronics Circuits and Systems Bordeaux, France, 9-12 December 2018 https://www.ieee-icecs2018.org/

https://nuagedemots.co/

Large-Scale Distributed Digital Systems, From Sensors to Decision Processes

Nouvelle-

Aquitaine

- Digital ecological systems
- Smart campus
- Robotics and drones

ims Laboratoire de l'Intégration du Matériau au Système

July, 2018

Cluster SysN

DUNE du PYLA

IIII

IT IS IN THE REAL PROPERTY AND

BORDEAUX FÊTE LE VIN

20 ans

1.001

25th IEEE Intern. Conf. on Electronics Circuits and Systems Bordeaux, FRANCE 9-12 December 2018 https://www.ieee-icecs2018.org/

Thank

La plus haute dune d'Europe

Thanks for your attention !

