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a b s t r a c t

The Acoustic Black Hole (ABH) is a technique for passive vibration control that was recently

developed within the Structural Dynamics and Vibroacoustics communities. From a general

perspective, the ABH effect is achieved by embedding a local inhomogeneity in a thin-walled

structure, typically a beam or a plate. This inhomogeneity is characterized by a variation of

the geometric properties (although material variations are also possible) according to a spa-

tial power law profile. The combination of a local stiffness reduction, due to the power law

variation of the wall thickness, and of a local increase in damping, provided by the concur-

rent application of viscoelastic layers, gives rise to a significant reduction of the wave speed

and to a remarkable enhancement of the attenuation properties. As an elastic wave travels

within an ABH, its speed experiences a smooth and continuous decrease. In the ideal case,

that is when the wall thickness vanishes at the ABH center, the wave speed decreases to zero.

In the non-ideal case, that is when the ABH has a non-zero residual thickness at its center, the

wave speed still decreases smoothly but it never vanishes. In this latter case, which is of great

importance for practical applications, the ABH is typically combined with lossy media (e.g. vis-

coelastic layers) in order to achieve significantly enhanced structural loss factors. If the speed

of an incoming wave can vanish inside the ABH, it follows that this object behaves as a wave

trap that extracts elastic energy from the host medium without, in principle, ever releasing it.

Several characteristic properties are generally observed in structures with embedded ABHs:

significant reduction in vibration and acoustic radiation levels, low reflection coefficient at

the ABH location, localized vibration and trapped modes, and existence of cut-on frequencies.

Contrarily to passive vibration methods based on viscoelastic materials, the ABH was devel-

oped and applied to reduce vibrations and structure-radiated noise without increasing the

total mass of the system. More recently, applications to other areas including elastic metas-

tructures, energy harvesting, vibro-impact systems, and cochlear systems were also investi-

gated. This review is intended to provide a comprehensive summary of the state-of-the-art of

ABH technology, spanning from theoretical and numerical contributions to practical applica-

tions.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. The fundamental principle of an acoustic black hole (ABH)

The design of lightweight and stiff panels having high vibration damping properties is an important and long lasting chal-

lenge in mechanical engineering. Composite materials were a first attempt to provide a response to this problem. Other more

recent approaches were based on the concept of “architected materials”, for which the material properties are obtained as a

result of strategically placed geometric or material inserts (either at the macro or micro scales) instead of fundamental material

constituents. The insertion of acoustic black holes (ABH), that are traps for flexural elastic waves based on local heterogeneities

(either in terms of stiffness or damping), is also a recent attempt to achieve efficient passive structural vibration control.

Since its initial formulation, about four decades ago, the concept of the ABH has attracted growing interest within the engi-

neering community. The basic operating principle exploited in an ABH finds its roots in the properties of retarding structures

as described in the seminal work of Mironov [3]. He studied the behavior of flexural waves traveling in a beam terminated by

a wedge having a power-law decreasing thickness profile. By using an analytical approach, Mironov showed the possibility of

achieving a non-reflecting or, equivalently, a fully absorbing termination. Assuming an ideal design of the tapered wedge (that

is the thickness vanishes at the tip of the wedge), the velocity of the incoming flexural wave can be reduced to zero so that the

wave never reaches the tip of the wedge and hence it is never reflected back. If the wedge is not coupled with any dissipative

mechanism (e.g. viscoelastic material), the flexural wave is trapped inside the wedge and, given that the total mechanical energy

must be conserved, the particle displacement grows unbounded and the tip of the wedge becomes a point of singularity. How-

ever, most of the wave can be absorbed if the wedge is coupled with energy dissipation mechanisms. In both cases, the flexural

wave enters the wedge and it is never reflected back into the original structure, hence giving rise to a zero reflection coefficient.

About a decade later, the concept of a retarding structure was extended by Krylov [4] to two-dimensional configurations by

embedding axisymmetric circular pits with power-law varying thickness into plates. As with the retarding wedges, the circular

tapered pit was able to slow down and trap flexural waves, hence serving as an omni-directional wave absorber. In the ideal case,

and in the absence of dissipative mechanisms, the center of the ABH is associated with a singularity of the particle displacement

which goes to infinity. The analogy of these properties with those of an optical black hole led Krylov to coin the term “acoustic

black hole”.

The physical concept of such a wave trapping has been developed in the context of structural dynamics. Strictly speaking, the

denomination of “Vibration Acoustic Black Hole” would be more appropriate. This denomination would also help differentiating

the application of this concept to acoustic ducts with variable area terminations. Despite these somewhat purely semantic

differences, the term ABH is currently commonly used and accepted by the community to refer to power-law type absorbing

terminations or indentations. Some examples of typical geometries employed to achieve ABH structures are shown in Fig. 1,

including typical 1D ABH made with wedge-shaped beam (a), a spiral ABH [1](b), an acoustic waveguide with varying wall

impedance made with branch discs of increasing diameters [2] (c), a 2D ABH made with an axisymmetric pit (d), or slots (e,f). In

(a) and (b) ABHs are located on the edge of the host structure while in (d), (e), and (f) they are embedded in the host structure.

1.2. Birth and growth of the ABH research field: a short historical perspective [5–7]

Following the initial study from Mironov, the ABH field has seen a steady growth which has rapidly accelerated during

the last decade. Fig. 2(a) shows the number of either peer-reviewed journal articles or conference proceedings per year since

1988. Particularly striking is the marked increase in the number of publications over the last five years [8] which witnesses the

Fig. 1. Examples of, so-called, retarding structures based on the concept of power-law taper: (a) tapered wedge, (b) Spiral ABH (from Ref. [1]), (c) Acoustic tube with axially

varying impedance made with a collection of branch discs of increasing diameters (from Refs. [2]), (d) two-dimensional circular acoustic black hole, (e) one-sided, and (f)

two-sided ABH slots.
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Fig. 2. Summary of the available literature related to the Acoustic Black Hole effect: (a) histogram of the journal and conference papers published since 1988 (updated from

Ref. [8]), (b) classification and numbering of the published journal articles according to the sections of this review article.

growing interest of the engineering community in this topic and its applications. To date, the exhaustive list of ABH related

publications includes 101 peer-reviewed papers. Fig. 2(b) proposes a classification, which reflects also the general outline of

the present review paper. In general, this paper focuses on the work presented in journal publications hence, other than for a

few exceptions, conference proceedings will not be discussed in this review. In the historical development of the ABH concept,

several phases can be distinguished. These phases approximately correspond to the main ideas at the basis of the ABH effect

whose applications can be summarized as follows:

∙ The original idea consisted in using a retarding structure to build a zero-reflection termination. Mironov proposed this idea

initially for flexural waves in a tapered beam [3] and later extended it to an acoustic tube with an axially varying wall

impedance [9]. Such implementations mostly concerned the ideal ABH effect with no dissipation. The effect was purely

reactive.

∙ A first important extension of the original idea consisted in adopting an absorbing layer to contrast and, possibly, to eliminate

the wave reflection associated with the non-vanishing thickness (hence the non-zero wave speed) at the end of the ABH

termination. The idea of exploiting an absorbing layer in conjunction with the ABH effect was introduced by V. Krylov in

2004 [10] and experimentally demonstrated in 2007 [11].

∙ Another significant step in the development of the ABH effect concerned the extension of the absorbing wedge concept to

2D configurations. More specifically, a pit of power law profile was explored as a way to integrate the absorbing effect inside

the plate surface. In this latter case, we refer to an embedded ABH or an ABH indentation. Later on, several studies have

highlighted some features of this tapered scatterer, namely wave focusing, low reflectivity, enhanced local damping and

energy harvesting.

Please cite this article as: A. Pelat, et al., The acoustic black hole: A review of theory and applications, Journal of Sound and
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∙ In recent years, the study of embedded ABHs has grown significantly and many researchers addressed the most diverse tech-

nical aspects including the dynamic response of beams and plates of different shapes, applications to composite structures,

the effect of geometrical and material imperfections, ABH parametric analysis, synthesis of metamaterial systems with peri-

odic ABH lattices, hysteric non-linearity (i.e. the non-linear acoustic black hole), and guided wave propagation. The use of

ABHs was also explored for several practical applications including vibration attenuation, sound radiation control, energy

harvesting, wave tailoring, and artificial cochlea.

This article provides an overall perspective of the state of the art of the acoustic black hole effect within a structural acous-

tics context and provides a possible guideline for the reader interested in exploring the 101 peer-reviewed articles published

over the period 1988–2020. Following the classification of the articles in Fig. 2(b), the outline of the paper is structured in four

sections. Section 2 presents the basic principles and the main elements for the physical understanding of the ABH effect when

inserted at the end of a beam. Section 3 describes the features of 2D ABHs when embedded into panels, in terms of structural

dynamics and vibro-acoustics. Sections 2 and 3 are largely based on the modelling strategies that have been developed specif-

ically for the physical analysis of ABHs. Section 4 is dedicated to experimental methodologies that were developed to evaluate

the performance of ABH structures. Section 5 reviews the different types of applications of the ABH concept and shows practical

examples of the theoretical, numerical, and experimental techniques presented in previous paragraphs. Some conclusions are

finally presented in section 6.

2. Physical interpretation of the ABH effect in wedge-shaped structures

In its general one dimensional form, an Acoustic Black Hole is realized in a beam-like structure by imposing spatial varia-

tions of the thickness and damping properties. Such a system is a complex inhomogeneous structural waveguide which can be

represented by several kinds of models of increasing complexity.

2.1. ABH principle

2.1.1. Ideal zero-reflection wedges [3,12,13]

The phase and group velocities of flexural waves in a beam decrease with the decreasing thickness. Thus, if the thickness

varies smoothly and reaches a zero value, the corresponding wave velocities also reduce to zero. It follows that the wave can

never reach the tip of the wedge, hence it cannot be reflected. This concept of a retarding structure, originally proposed by M.

Mironov [3], was implemented in a tapered beam of power law profile whose thickness variation is given by h(x) = 𝜖xm, where

m is a real constant defining the power-law profile, x is the axial coordinate along the wedge, 𝜀 is a constant (Fig. 3(a)). The case

of a quadratic wedge was studied by V. Krylov [12]. This class of profiles was chosen in order to satisfy a condition of sufficient

smoothness, that is the variation of the flexural wave number must be small over a distance comparable to the wavelength. In

the framework of the Euler-Bernoulli assumptions and in the harmonic regime (implicit time factor ej𝜔t is supposed, 𝜔 being

the circular frequency), the equation of motion is written as

−𝜌L(x)𝜔2w(x) + 𝜕2

𝜕x2
D(x)𝜕

2w(x)
𝜕x2

= 0, (1)

where w(x) is the beam flexural displacement, 𝜌L(x) the linear mass density, D(x) = E(x)h(x)3∕12(1 − 𝜈2) the bending stiffness,

h(x) the thickness, E(x) the Young’s modulus, 𝜈 the Poisson’s ratio. The Wentzel, Kramers, and Brillouin (WKB) method can be

used to provide analytical solutions of the differential equation (1) with different orders of approximation [13]. The first-order

WKB approximation, called the geometrical acoustics approximation, provides the variation of the local phase velocity c𝜙(x),

c𝜙(x) =
(

E𝜔2

12𝜌(1 − 𝜈2)

)1∕4√
h(x), (2)

and the local group velocity cgr(x) = 2c𝜙(x), as well as a varying amplitude term A(x) of a propagating wave (see Fig. 3, xABH

being the abscissa marking the start of the ABH)

A(x) = A(xABH)
(

h(xABH)
h(x)

)3∕4

. (3)

It is observed that the phase velocity tends to zero if the thickness h(x) tends to zero. As a consequence, it is shown that if m > 2,

the travel time of a wave packet from a starting location in the uniform region to the wedge tip tends to infinity as the wave

approaches the tip of the wedge. The incident wave amplitude also tends to infinity. Such an ideal wedge does not produce any

reflection, therefore the wave appears to be fully absorbed. From an energy conservation perspective, this mechanism gives rise

to a process of energy accumulation inside the taper where both the strain energy density and the particle displacement tend to

infinity at the tip of the wedge. Under these conditions, the tip of the wedge becomes a point of singularity. Note that in practical

structures, it is not possible to fabricate a wedge having residual thickness equal to zero. Even realizing finite but very thin

wedges poses significant complexities due to the deformation produced by the mechanical and thermal loads associated with

the manufacturing case. An easy way to circumvent this difficulty is to modify slightly the profile by setting h(x) = 𝜀(x + x1)m.

Please cite this article as: A. Pelat, et al., The acoustic black hole: A review of theory and applications, Journal of Sound and
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Fig. 3. (a) practical ABH termination in a beam where the power-law profile is truncated and coated with a thin viscoelastic layer. (b) comparison of the modulus of the

reflection coefficient of an ABH termination predicted by the geometrical acoustics model without (full line, from Ref. [3]) and with (dashed dotted line, from Ref. [10])

added damping layer, and by the plane wave model (dashed line, from Ref. [14]). Significant decrease of the reflection coefficient is obtained from the ABH effect without

increasing the mass of the system.

It is important to highlight that the residual thickness h1 = 𝜀xm
1

discriminates between an ideal and a realistic implementation

of the zero-reflection wedge and that both profiles are not equivalent. The residual thickness has a detrimental influence on

the absorption performance of the wedge because it drastically increases the coefficient of reflection. As an example, in metallic

structures, a residual thickness equal to 0.1% of the thickness of the uniform part can generate a reflection of about 70% of the

incoming wave [3]. Note that the ABH profile includes a sharp edge between the wedge and the uniform beam, at x = xABH ,

which could also cause back scattering. In practice, simulations show that this effect is weak and can be ignored.

2.1.2. Practical ABH wedges with absorbing layer [10,15]

Considering the limitations of the ideal ABH, V. Krylov [10,15] explored the effect of absorbing layers applied to tapered

wedges in order to reduce the effects produced by the finite residual thickness. The thickness of the added layer is considered

thin with respect to the plate thickness so that the Ross-Ungar-Kerwin model [16], used to describe sandwich structures, can be

simplified to provide the following equivalent material loss factor

𝜂(x) = 𝜂p +
3hlEl

h(x)Ep

𝜂l, (4)

where Ep and 𝜂p are the elastic Young’s modulus and the loss factor of the plate, respectively. El and 𝜂l are the elastic

Young’s modulus and the loss factor for the viscoelastic layer. Under these conditions, the reflection coefficient can be ana-

lytically derived from the WKB approach by integrating the complex wave number k(x)

R = exp

(
−2∫

x

x0

Im(k(x))dx

)
. (5)

The main effect of the viscoelastic layer is that of drastically reducing the reflection coefficient even in presence of a truncated

profile. Eq. (4) is valid only when the layer is much thinner than the plate which, of course, is an assumption that is not valid

everywhere along the wedge, particularly near the tip of the wedge where the thickness of the plate is also very small [15]. As

an example, Fig. 3(b) shows the variations of R computed from Eq. (5) for an aluminium beam with m = 2, a minimum thickness

ht = 10 𝜇m (corresponding to a typical thickness obtained with CNC machining), a profile given by 𝜖 = 0.35, xi = 0.0653 m,

xt = 0.0053 m. Both cases with and without damping layer are considered; the damping layer has the following characteristics:

El = 7 GPa, 𝜌l = 1000 kg m−3, 𝜂l = 0.4, hl = 0.1 mm. The reflection coefficient in this case reaches 0.5 at 4 kHz. It is also noted

that geometrical acoustics leads to monotone variations of R with frequency. Even if the use of exact models (presented in the

next section) highlight more complicated variations of R, its estimation from the geometrical acoustics theory captures its main

trend and it is useful for an early stage design of an ABH termination.

2.2. Analysis of the ABH effect based on linear models of increasing complexity

2.2.1. Reflection coefficient via the plane wave approximation [14,17,18]

Evanescent waves are ignored in the geometrical acoustics approach. Exact solutions allowing estimation of the wave field

inside the medium, modeled as an inhomogeneous structural waveguide, can be obtained using several methodologies like

the transfer matrix method or the scattering matrix method [19,20], and the Rayleigh-Ritz method [18]. On the other hand,

the impedance matrix method is known as the most robust and efficient way to solve exactly waveguide problems without

experiencing numerical instabilities. The impedance matrix method has been widely studied and applied to acoustic waveguides

[21] and, later, adapted to structural waveguides under plane wave approximation [14]. The key idea is to turn a Boundary Value

Please cite this article as: A. Pelat, et al., The acoustic black hole: A review of theory and applications, Journal of Sound and
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Fig. 4. (a) dispersion curves of the ABH: wavenumbers ki (full line: real part; dashed line: imag. part) associated to the waves i = [1–4] as function of the wavenumber k0

defined in the uniform area, LABH = xABH − x0 is the ABH length for dimensionless representation (from Refs. [23]); (b) parametric study of the cut-on frequency defined

by Eq. (6) for an ABH placed in a thin aluminium structure.

Problem (BVP) into an Initial Value Problem (IVP). The governing equations are rewritten as a Riccati equation, verified by the

local impedance matrix. Starting from the initial value at the tip, the Riccati equation is numerically integrated using a Magnus

scheme, yielding the frequency- and spatially-dependent impedance matrix of the beam. Based on the impedance matrix, either

the reflection matrix of the extremity or the scattering matrix of any segment can be obtained.

Typical results for the reflection coefficient of an ABH beam termination obtained via the impedance matrix method are

compared to those from geometrical acoustics in Fig. 3(b). The exact solution is characterised by a typical oscillatory trend

of the reflection coefficient versus frequency. These oscillations occur around the monotonic decreasing solution provided by

geometrical acoustics. Each sudden decrease in amplitude corresponds to the resonance of a trapped mode localized in the ABH

profile [22]. These modes are complex valued and are discussed in section 2.2.5 based on more detailed numerical models.

The exact solution of the Euler-Bernoulli equation for an ABH having arbitrary power-law profile h(x) = 𝜖xm can be obtained

in the case of conservative ABHs (i.e. with no added damping) [17]. For m = 2, the Euler-Bernoulli equation is a Cauchy-Euler

equation, and the exact solution without damping is given by a linear combination of four monomials. For m > 2, the Euler-

Bernoulli equation was transformed into the generalized hypergeometric differential equation via changes of variables, and the

exact solution was derived in linearly independent and regular form without singularities. Such analytical solutions provide

reference solutions for wedge-shaped beams without damping and under plane wave approximation.

2.2.2. Cut-on frequency of the ABH effect

All experimental characterizations of ABH structures (see section 4) show that no wave absorption is achieved below a cut-

on frequency, which is defined as the frequency below which the wavelength of the incoming wave is much larger than the

characteristic length of the ABH (typically the length of the wedge or the diameter of the axisymmetric taper). In practice,

the knowledge of this cut-on frequency is of particular important during the design of ABH devices in order to achieve wave

absorption in the desired frequency range.

It is possible to determine the cut-on frequency from the analysis of the wave dispersion inside the ABH. Initially, this analysis

was performed for a 2D circular ABH of quadratic profile seen as a penetrable scatterer [23]. However, by reducing the problem

to only the circumferential order n = 0 (i.e. the case of an incoming cylindrical wave to a circular scatterer), the model is

equivalent to the 1D case. In this latter scenario, the analysis of the wave dispersion is reported in Fig. 4(a). Two evanescent

waves are found: convergent in (a.1), divergent in (a.2), based on the sign of very small real part. More interestingly, k3 in

(a.3) and k4 in (a.4) exhibit a cut-on wavenumber below which the two associated waves are evanescent (similarly, the two

waves become propagating at wavenumbers above the cut-on value). In particular, k4 corresponds to a convergent exponentially

amplified wave which typically represents the ABH effect. The analytical expression of the corresponding cut-on frequency is

found to be

fcut−on = h0

2𝜋L2
ABH

√
E0 [40 − 24𝜈]
12𝜌(1 − 𝜈2)

, (6)

where h0 is the uniform thickness outside the ABH, LABH = xABH − x0 is the ABH length (see Fig. 3(a)), E0 is the Young’s

modulus, 𝜌 is the density, 𝜈 is the Poisson’s ratio. Eq. (6) is valid for m = 2. Remarkably, the expression shows that in a structure

with a given uniform thickness and material, the cut-on frequency only depends on the length of the full ideal ABH length

LABH = xt − x0 and not on the truncation radius. Fig. 4 gives a representation in the form of a cut-on frequency chart for ranges

of beam thicknesses and TNA length usually encountered.

Please cite this article as: A. Pelat, et al., The acoustic black hole: A review of theory and applications, Journal of Sound and
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Fig. 5. Analysis of the critical coupling conditions for a beam termination made with (a) a uniform beam of small thickness h1 compared to the thickness h2 of the host beam

(from Refs. [24]), and (b) an ABH termination (from Refs. [25]). The analysis is presented using (1) a schematic drawing, (2) a representation of log10 (|R|) in the complex

frequency plane, (3) the value of |R| for real values of the frequency.

2.2.3. Interpretation of the ABH damping effect from the critical coupling conditions [24,25]

The decrease of ‖R‖ can be analyzed using the concept of critical coupling, applied to a so-called open resonator. The

approach can be introduced and illustrated by considering the case of an elementary resonator (Fig. 5(a1)) consisting of a thin

beam of uniform thickness h2 placed at the end of a host beam of greater thickness h1 [24]. The modes localized in this ele-

mentary termination are similar to those of a clamped/free beam. The reflection conditions of a bending wave on this locally

resonant termination are examined through the reflection coefficient that can be calculated for complex values of the frequency,

allowing performing an analysis in the complex plane. In this plane, the reflection coefficient gives rise to zeros, associated with

conditions of perfect absorption, and poles corresponding to the resonance frequencies of the termination. When the system is

conservative, these poles and zeros are found in pairs, symmetrical with respect to the axis of the real frequencies (Fig. 5(a2),

𝜂l = 0). On the real axis, ‖R‖ = 1. The introduction of losses via damping layers breaks the symmetry of the pole/zero pair and

tend to bring the zeros closer to the real axis (Fig. 5(a2), 𝜂l = 0.02). Thus, ‖R‖ becomes less than 1 for real frequencies near the

complex zero. Tuning the losses allows placing the zero exactly on the real axis (Fig. 5(a2), 𝜂l = 0.15). In this case, the inter-

nal losses of the resonator equal the energy leakage by radiation into the host beam. This situation corresponds to the critical

coupling conditions that induce a perfect impedance adaptation between the support beam and the resonator. These conditions

result in unit absorption or zero reflection for an incident wave as shown in Fig. 5(a.3). Note that, when losses increase fur-

ther, the zero required for critical coupling crosses the real axis and these conditions are lost. This may seem counter-intuitive

because the increase in losses leads to a reduction in absorption but underlines a fundamental point in the design of this type of

absorber: the need for a balance between dissipative mechanisms internal to the termination and those induced by its radiation.

This analysis can be applied to the case of an ABH beam termination approximated by a piece-wise constant thickness profile

(see Ref. [25] and Fig. 5(b1)). In the conservative case, where both the losses of the beam (𝜂 = 0) and of the layer (𝜂l = 0) are

ignored, the complex frequency plane exhibits a large number of modes trapped in the ABH (Fig. 5(b2)). The increase in layer

losses 𝜂l brings all the zeros back to the real axis. For example, for 𝜂l = 2 only the 5th mode is critically coupled to f = 3108 Hz

and all other modes are close to the real axis. A significant overlap of zeros is also highlighted, resulting in a very low reflection

of the ABH termination over a wide frequency range (Fig. 5(b.3)). Finally, the very good damping performance of ABHs can

be explained by the spectrum of their complex modes: an ABH is by nature an excellent critical coupling element of local

resonances. The critical coupling conditions provide the conditions for optimum damping design.

2.2.4. Interpretation of the ABH trapping effect from the multimodal approach [26,27]

In the terminal area of a 1D ABH where the thickness is the lowest (see Fig. 1-a), the wavelength may become no longer

large compared to the beam width [28]. The resulting wave field is then two-dimensional and 2D models are more adequate to

describe these plate-like motions.

The multimodal approach is well adapted to study the ABH beam seen as a 2D inhomogeneous structural waveguide. On

one hand, when considering the hypotheses of slowly varying properties [26], this approach provides a more reliable model

in the high frequency range, compared to 1D models. On the other hand, 2D models can be used to extend the 1D impedance

Please cite this article as: A. Pelat, et al., The acoustic black hole: A review of theory and applications, Journal of Sound and

Vibration, https://doi.org/10.1016/j.jsv.2020.115316



A. Pelat et al. / Journal of Sound and Vibration xxx (xxxx) xxx8

Fig. 6. (a) view of an ABH thickness profile where the different colors represent the areas in which the modes q = 3 (orange), q = 5 (blue), q = 7 (pink) are evanescent at

the selected frequency f = 1000 Hz; (b) modulus of reflection coefficients ‖Rq‖ associated with the modes q = 1,3,5,7 along the ABH termination at f = 1000 Hz (from Ref.

[27]). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. (a) poles 𝛼k of a finite beam without (circles) and with (dots) an ABH termination and examples of associated modal shapes; (b) modal overlap factor of the ABH

beam compared to the reference, obtained from numerical simulations and experiments (from Refs. [28]).

matrix method regardless of the specific taper coefficient of the ABH profile [28]. Each quantity of the system state vector

(displacement, slope, moment, and force) is developed on the basis of the transverse modes defined over the beam width. Each

mode is associated with a set of forward and backward waves, either propagating or evanescent. The reflection coefficient ‖Rq‖
associated to a transverse mode q can then be calculated.

Fig. 6 shows a numerical study of ‖Rq‖ for the first transverse modes numbered by q = 1, 3, 5, 7 propagating along the

ABH profile and without considering the reflection at the free edge. Each propagating mode q is associated with a reflection

coefficient ‖Rq‖ that, at a given frequency, depends on the abscissa where it is calculated. Fig. 6(b) shows an abscissa xq, called

a cut-on abscissa, which separates the zone ]0, xq] where R < 1 and the zone [xc, ∞[ in which R = 1. The abscissa xq depends

on the frequency (f = 1000 Hz is considered in 6). A careful study of the dispersion relations for each mode q [28] shows that it

is associated with evanescent waves in [xq,∞[, while it is associated with propagating waves in ]0,xq]. These zones are depicted

using different colors in Fig. 6(a). Therefore, it is possible to minimize the reflection coefficient of the plane mode by transferring

part of its energy by modal coupling to the other upper modes locally trapped in the ABH. For example, this can be done by

adding a defect (point weight added) to the end of the black hole. In this case, it is shown in Refs. [27] that a 10% reduction in

the reflection coefficient can be obtained.

2.2.5. Free and forced responses of ABH beams of finite length from finite difference and finite elements methods [1,28–33]

The dynamic behavior of ABH thin structures of finite length can be studied using a Kirchoff plate numerical model based

on the finite difference method [28]. The model is able to describe any arbitrary variations of the mechanical properties along

the ABH taper, as well as the possible 2D wave field effects in the beam width, as discussed in the previous section 2.2.4. The

problem is reduced to a homogeneous linear system whose inversion provides the set of the eigenvalues 𝛼k of the system,

defined as 𝛼k = −j𝜔k

√
1 − 𝜉2

k
− 𝜔k𝜉k with 𝜔k the eigen-pulsation and 𝜉k the modal damping ratio. Fig. 7(a) shows a typical

spectrum of eigen-values in the complex plane with some examples of eigen-shapes.
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In the case of a reference beam having uniform thickness and losses, all modes are distributed according to a line so that they

are all associated with the same modal damping ratio 𝜉k = 𝜂∕2, where 𝜂 is the loss factor of the beam (Fig. 7(a), green circles).

First, the ABH termination produces a global damping effect. Most of the eigenvalues are organized in the complex plane

along a line whose angle with the imaginary axis can be interpreted as a homogeneous equivalent loss angle in the beam

(Fig. 7(a), green points). Results show that this loss angle is multiplied by a factor of %10 with respect to the loss angle of the

reference beam. Second, a local damping effect is also recognizable by the appearance of isolated eigenvalues characterised by

a particularly large modal damping factor. These so-called “hyper-damped” modes (modes 23 and 41, for example) differ from

the previous modes (mode 42, for example) based on their modal shapes that are either i) oscillatory over the beam width or ii)

very localized in the ABH.

The consequence of these two effects can be analyzed using the Modal Overlap Factor MOF, which is an indicator of the

smooth or resonant feature of the mobility transfer function, defined as the ratio between the frequency bandwidth at the half

amplitude of a resonance peak and the average modal spacing. It is shown that MOF = d𝜂f, where d is the modal density. This

indicator is very well suited to define low (MOF < 30%), mid (30% < MOF < 100%) and high frequency (MOF > 100%) ranges.

Fig. 7(b) compares the numerical and experimental MOFs obtained for ABH and reference beams. Results show a large increase

in the MOF that can reach the typical values of the mid frequency range, which is inherently more damped. This effect is directly

related to the increase in modal damping ratio discussed above, as the modal density is only slightly modified by the insertion

of the ABH [28]. The MOF increase occurs only above the ABH cut-on frequency, discussed in section 2.2.2.

In a more general way, Finite Element (FE) simulations using 3D elastic elements have also been performed to investigate

the effects on the reflection coefficient of tapers with exponent larger than m = 2 [30]. In particular, the variations of the

“normalized wavenumber” [29] along the taper appears to be directly linked to the performances. Similar types of FE simulations

were applied to parametric variations [32] and multi-objective optimization [31].

Spiral ABHs, whose baseline is rolled into an Archimedean spiral configuration, were introduced as an alternative to the

straight ABH when the available space to apply an ABH termination is limited. Both 3D FE simulations [1] and experimental

characterizations [33] showed encouraging damping performance even at low frequencies due to the increased length of the

taper.

2.2.6. Wavelet decomposition and fractional order models [34–39]

By expanding the transverse displacement field of the beam over the basis of a set of Mexican hat wavelets, the equation of

motion can be turned to a set of linear equations, which is solved to simulate both the free and the forced structural responses.

This semi-analytical model has been well validated in the case a classical Euler-Bernoulli ABH beams with a rectangular cross-

section [34], with a circular cross section [38], and in the case of a sandwich beam with an aluminum core and steel upper/lower

layers [37]. The wavelet decomposition model was also adapted to the case of plate embedding 2D ABH strips indentations under

the general Rayleigh-Ritz framework by using Debauchies wavelets scaling functions. This modeling technique appears to be

able to overcome major technical difficulties in modeling ABH structures, particularly to address the typical drastic wavelength

fluctuation induced by the power-law profile [34]. It is also useful to demonstrate and predict the loss of the ABH effect in a beam

of finite size [35]: this phenomenon occurs at specific frequencies which correspond to local resonances between the structure

boundaries and the excitation point.

A very recent approach to the simulation of the ABH effect relies on the use of fractional order integro-differential operators

[39]. This approach, currently limited to 1D structures, exploits the unique properties of these operators in order to recast the

wave equation, describing the wave field within the ABH area, by using fractional order spatial derivatives. While the original

wave equation in an inhomogeneous medium is of the second order in space and it is characterized by spatially varying coeffi-

cients, the fractional formulation results in a governing equation with fractional order and constant coefficients. Although this

approach is still at a very early stage, the most immediate advantage is the ability to capture the ABH absorbing effect without

the need to model its intrinsic three-dimensional nature. This aspect is particularly important for the simulation of either large

structures or systems with a large number of ABHs due to the significant computational burden involved.

2.3. Nonlinear effects in ABH wedges [40–42]

The main weakness of linear ABH devices is their ineffectiveness at low frequency. It is possible to design an ABH which

exploits geometric non-linearities to transfer energy from low to high frequencies, where the ABH is effective [40,41] (see

section 3.2). In addition, material nonlinear effects can also become significant when high amplitude motion interacts with

material micro-inhomogeneities [42]. Both phenomena can lead to additional wave absorption.

In classical ABH designs, a balance between large displacements and high dissipation near the tip maintains the system

dynamics in a linear regime. However, when considering sufficiently long ABH, geometrical non-linearities may appear and

induce energy transfer from low to high frequencies. This energy transfer results in an enhancement of the damping properties

below the ABH cut-on frequency [40]. The response of such beam harmonically excited with an increasing driving force shows

a progressive spectral enrichment and a transition to a turbulent regime characterized by a broadband spectrum (Fig. 8(a2)).

Numerical analyses based on a Von Kàrmàn plate model of variable thickness [40] show that an optimal topology consists of

an ABH profile connected to an extension in the form of a constant-thickness beam (see the extension in Fig. 8(a.1)). The gain

produced by non-linearities strongly depends on the damping layer, which on one side is essential for the ABH effect but on
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Fig. 8. (a) measured spectrogram (dB scale) of the response of a beam with 35 cm long ABH harmonically excited at 102 Hz with a force ramp [0–15]N over a period of 40s

(from Ref. [40]); (b) simulated time response of a vibro-impact ABH beam (from Ref. [41]). For both non-linear ABH, energy transfer from low to high frequency is achieved

with a resulting enhancement of the ABH efficiency.

the other reduces the effect of the non-linearities. The ideal configuration includes coating only the ABH profile so that non-

linearities can develop in the extension.

Even if geometric non-linearities have shown some success in enhancing the ABH performance by means of targeted energy

transfer [40], the overall gain is still limited. Another opportunity to achieve broadband performance comes from vibro-impact

designs as shown in Fig. 8(b1) in which contact non-linearities induce very fast energy transfers [41]. As a result, the energy

decay time can be drastically reduced (Fig. 8(b)). When such beam is excited by a noise in the band [0–500]Hz, the energy at

low-frequency is redistributed almost instantaneously over the whole spectrum at each impact and it is quickly attenuated by

the ABH effect (Fig. 8(b.2)). Numerical analysis of the system highlights the central role of contact stiffness, which must be high

to cause energetic impacts. In the most favorable cases, a reduction of about 10 dB is observed on resonances below the ABH

cut-on frequency.

On the other hand, the quadratic hysteretic nonlinearity characteristic of micro-inhomogeneous materials is known to cause

softening of the material and diminishing the wave speed. In this case, the elastic modulus becomes strain-dependent. When

considering the propagation of flexural waves in a host structure with an embedded ABH, the asymptotic theory [42] shows

significant differences between the power law and the linear profiles when the structure operates in the non-linear regime. This

difference is, of course, in addition to those produced by the different taper profile. For ABH profiles, the higher the effect of the

non-linearity, the slower the decay of the bending wave approaching the edge of the wedge. However, non-linear effects cannot

cause complete absorption of the bending wave in the ABH, hence indicating the need to also properly combine the effect of

linear absorption.

2.4. ABH effect in acoustic ducts [2,9,43]

The ABH effect can also be achieved in acoustic waveguides in order to achieve, for example, anechoic terminations or muf-

flers. The reduction of the speed of sound of a pressure wave propagating in an acoustic tube can be achieved using an spatially

varying wall impedance [9]. Practically, this varying impedance can be achieved by placing in a section of the duct a set of rings

whose inner radii decrease to zero according to a power law variation (Fig. 1(c)). The result is a retarding effect similar to that

observed in beams and plates with embedded ABHs. If the number of ring-cavities is large enough (so that the spacing is small

compared to the wavelength), the wave propagation inside the waveguide can be treated as a continuous problem. In that case,

the transfer matrix method can provide good results approaching the solution of the continuous problem [43]. This approach can

then be used to analyse the influence of the design parameters (e.g. number of rings, ring thickness, ring minimum inner radius,

damping) for both linear and quadratic ABHs [2]. Such a retarding effect is also known as “slow sound” and can be obtained by

using an array of side branch tubes of increasing lengths [44,45].
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Fig. 9. (a) scheme of a typical 2D circular ABH with a central plateau; (b) snapshots at different times showing the focusing effect for an incoming wavefield (the ABH limits

are denoted by a dotted line). The colormap represents experimental results and red lines denote numerically calculated ray trajectories; (c) ray trajectories in the cases of

(c.1) an ideal ABH with zero thickness at the center, (c.2) an imperfect ABH with residual thickness h1 = 1 mm, (c.3) ABH with central plateau of thickness h1 = 0.2 mm

and (c.4) h1 = 1 mm (right). The thickness in the uniform plate is h = 5 mm (from Ref. [47]). (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article.)

3. Analysis of circular ABH indentations embedded in thin plates

For many practical applications, manufacturing an ABH at the edge of the structure is not a viable option (e.g. due to the

required boundary conditions). The natural 2D extension of the 1D ABH consists in an axisymmetric indentation with a radial

power-law profile embedded in a thin-walled structure (e.g. thin plate). After Krylov proposed such layout [4], Georgiev et al.

[14] set up a first experimental demonstration of a 2D ABH. Since then, various geometrical layouts have been proposed. As an

example, 2D ABH with either a central hole, or a central plateau, or a central added mass. Several modeling strategies have been

developed to treat this class of problems and they are briefly reviewed in this section.

3.1. Lensing and focusing features [46–50]

Considering 2D circular ABHs, focusing and lensing effects are due to the radial decrease in celerity. Following numerical

studies [46], the lensing and focusing effects were shown experimentally [48] by using a laser line source to excite Lamb waves

in a plate with embedded 2D circular ABH. Following early works from Mironov and Krylov on 1D ABH, the effect of 2D circular

ABHs on the propagation of flexural waves in the high frequency regime was studied using geometrical acoustic theory [49,50].

Both cases of an ABH with and without a central hole were considered. In the case of a central hole, the conversion of incoming

Lamb waves into either a standing wave within the pit or an edge-localized wave were observed.

The analysis of the focusing effect can be performed based on the usual 2D equation of motion for a thin inhomogeneous

plate under geometrical acoustics assumptions [47]. A ray trajectory equation in a medium with a gradient index is then derived:

d

ds
(n(x, y)s) = ∇n(x, y) (7)

where s is the ray coordinate defined along the ray trajectory, ds a differential element on the trajectory from a given point of

coordinates (x, y), and n(x, y) =
√

h0∕h(x, y) the local index of refraction with h0 the uniform thickness outside the ABH. This

equation is analogous to the optical ray equation and describes the ray trajectories only as a function of the local index, that is

independently of the frequency.

Eq. (7) can be solved numerically by considering a Taylor expansion truncated to the second order term and by providing

proper initial conditions on the vector s. Typical results obtained from this approach in the case of a 2D circular ABH with a

central plateau (Fig. 9(a)) are reported in Fig. 9(b). Due to the thickness profile, the rays are strongly deflected from their initial

straight trajectory once they enter the ABH. Experiments confirmed that the wavelength decreases as the thickness decreases,

that is as the wave approaches the ABH center. Both results show the focusing effect taking place not exactly at the ABH center.

Fig. 9(c) shows the influence of the geometric parameters on the focusing capabilities of ABH indentations. In the ideal case

(i.e. vanishing thickness at the ABH center, see Fig. 9(c1)), it is shown that there exists a critical trajectory that discriminates

rays that converge to the center and those that diverge. The critical trajectory depends on the power of the profile: the higher

the power m, the higher the critical angle. The total focusing is reached with m = 3. In the practical case of ABH with non-zero
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Fig. 10. (a) schematic of a circular plate with an ABH in the center and of the corresponding experimental setup (from Ref. [52]); (b) experimental and simulated mobility

from the “composite loss factor model” (from Ref. [52]); (c) Plot of the scattering cross-section as a function of the dimensionless wavenumber of a circular ABH (blue line)

compared to the one of a simple hole (gray line) (from Ref. [23]); (d) 3 examples of measured ABH trapped modes (from Ref. [56]); (d) unwrap phase of the cross mobility

of an ABH plate compared to the reverberant and the propagating theoretical cases in order to identify the cut-on frequency (from Ref. [53]). (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)

residual thickness at the center (Fig. 9(c2)), focusing leads to a confined high intensity area that is shifted area from the ABH

center and that results from ray concentration. The partial focusing is enhanced when using larger m and smaller h1. In the case

of ABH with a central plateau (Fig. 9(c3 and c4), only a portion of the rays converges to the plateau. The percentage of focused

energy only depends on the plateau thickness h1 while the rays curvature still depends on the profile power m.

3.2. Damping, scattering, and resonant features [23,51–55]

In the case of a circular plate with an embedded ABH in the center, as shown in Fig. 10(a), an analytical solution of the

equation of motion of a radially variable thickness plate can be found when the pit power-law profile is m = 2 [51]. After a

change of variables, the problem can be reformulated in the form of root extraction of a polynomial, which can be accomplished

analytically. The losses are represented by a uniform equivalent loss factor, which is clearly an oversimplification since a radial

loss factor gradient is essential for the ABH effect [28]. Despite such simplification, the numerical simulation of the plate driving

mobilities exhibit a general trend in good agreement with experimental data.

To represent more realistically the losses, a numerical approach consists in approximating the circular ABH by a sequence of

annular slices [52]. Each slice has constant thickness and is associated with a constant composite loss factor, so that the radial

gradient of the loss factor is approximated. Results show good agreement with the mobility experimental data (Fig. 10(b)). The

model also shows that the modal loss factors of the ABH plate are significantly greater than the loss factors of a simply coated

plate, which is consistent with similar results obtained for 1D ABH [28]. Such damping features are also well observed by the

Rayleigh–Ritz method in other types of ABH indentations, called power-law profiled grooves [54].

To study more in depth the scattering properties of a second order power-law circular indentation with central hole and

without coating layer, the model in Ref. [51] is generalized to a circumferential order greater than n = 0 [23]. Notably, the

scattering cross-section that corresponds to the integration of the scattered far field shows strong perturbations compared

to the case of a simple hole (Fig. 10(c)): the peak values are associated to the resonances of modes trapped within the ABH

(Fig. 10(d)). The study of the scattering features has been generalized to any arbitrary power-law profile of circular ABH using

hypergeometric governing equations [55], similarly to Ref. [17].

When a plate of finite size is highly damped, the contributions of all resonances are greatly reduced and the finite structure

behaves almost as an infinite structure. On the contrary, in a very weakly damped finite plate, the resonances are very pro-

nounced and lead to a highly reverberant field. The case of ABH plates can be analyzed in relation to these two extreme cases

by studying the phase variations of cross-mobility[53], defined as the ratio between the velocity at one observation point and

the force applied at the excitation force in the frequency domain. The phase variation is a specific signature of the structure

and highlights two opposite behaviors. At low frequency, modes are resonant and the measured phase follows the phase given

by an “idealized reverberant plate” model. At high frequencies, the ABH effectively dissipate energy and the measured phase is
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similar to the phase of the infinite plate. Finally, the frequency at which the sudden change in behavior appears provides another

definition of the cut-on frequency.

3.3. Fluid-structure interaction features

3.3.1. Acoustic radiation in free field [56–63]

Vibration reduction is the main feature of the ABH effect. The consequence of this reduction on the acoustic radiation into

the domain surrounding the plate is discussed in several experimental and numerical studies.

In the case of a multi-indentation rectangular plate, an experimental analysis conducted according to ISO 3744 [57] demon-

strates that the cumulative damping added by each indentation provides a substantial reduction in both the flexural vibrations

and the radiated sound power. This result occurs in spite of the high vibration amplitudes at the center of the ABHs. Such obser-

vation is confirmed by parametric analyses performed via Finite Element simulations [56] that provide the panel response, the

localized modes, the modal loss factors, and the surface-averaged mobilities. Vibration reduction is observed. The sound power

radiated by an ABH panel in free field conditions is measured according to ISO 9614-3 (consisting in time and space averaged

radiated sound intensity measurements through a surface) by a moving intensity probe. It is shown that panels with periodic

2D ABHs exhibit 5–20 dB reduction in the radiated sound power, resulting from the high mechanical damping added by the

ABH effect, and from the reduction in radiation efficiency due to the reduction in the wave speeds within the ABHs. An initial

analysis of these two mechanisms is proposed in Ref. [58] using both finite element and boundary element analyses. The relative

importance of both mechanisms depends on the ABH diameter, on the presence of internal holes in the centers of the ABHs, and

on a characteristic frequency for which the free plate bending wavelength is equal to the ABH diameter. According to Ref. [23],

such characteristic frequency is another possible definition of the cut-on frequency.

A sound radiation model for a 1D ABH is proposed in Ref. [59]. Considering an infinitely baffled tapered beam, the Transfer

Matrix method, combined with a spatial wavenumber transform allows the computation of the modal radiation efficiency. For

a uniform beam, the modal radiation efficiency reaches a maximum close to the critical frequency, defined as the frequency for

which the wavelengths in the structure and the fluid coincide. A beam mode is called a critical mode if its resonance frequency

is close to the frequency for which the modal radiation efficiency reaches its maximum. If its resonance frequency is lower than

this maximum, the mode is called subsonic and it is not radiating. If its resonance frequency is larger than the maximum, it is

called supersonic and it does radiate. The total radiation efficiency of a beam is maximum around the first critical mode. For an

ABH profile, due to the ABH wave speed reduction, the first critical mode is shifted to an order and higher frequency than that

of the host medium beam. The direct consequence is the reduction of the total radiation efficiency of the ABH beam. The ABH

effect transforms supersonic bending waves into subsonic ones, leading to acoustic radiation efficiency reduction.

Further, the radiation efficiency of a 2D circular ABH embedded in an infinite plate can be studied using a wavelet expansion

combined with the Rayleigh integral [60]. The ABH cut-on frequency and the critical frequency of the host plate, separating the

subsonic and the supersonic frequency ranges, are the two key-parameters explaining the variation of the radiation efficiency.

The radiation efficiency for the ABH panel is reduced due to structural-acoustic decoupling resulting from the reduction of wave

speeds inside the ABH regions. In the case of structures that may have band gaps, such as with ABH tunneled, sound radiation

reduction can also be achieved in the low frequency range below the characteristic frequency [63].

ABH wedges without visco-elastic coating were used to maximize sound radiation in the ultrasonic range [61]. It is expected

that, in the absence of damping, the sound radiation is increased due to the large vibration amplitude localized in the wedge.

In the ultrasonic range, ABHs have also been used in an Acoustic Emission (AE) setup [62]. Acoustic emission is a phenomenon

of elastic wave generation due to mechanisms of relaxation of residual stresses within the material that induces local micro-

motions. In a finite size structure, the reflected AE wave at the edges increases error and prevents accurate analysis. The use

of ABH wedges at the edges helps increasing the Signal to Noise Ratio (SNR), hence facilitating the analysis of the direct AE

component.

3.3.2. Noise reduction inside cavities [64–66]

ABHs have been proposed to reduce the noise inside cavities bounded by elastic panels with multiple two-dimensional (2-

D) ABH indentations. The indentations lead to significant noise reduction inside the cavity. This is a direct consequence of the

vibration reduction of the plate on which the ABH is embedded, and a reduction in the coupling strength between the plate and

the cavity. The spatial coupling coefficients, that capture the degree of morphological matching between structural modes and

acoustic modes over interface, were found to play an important role in determining the overall noise reduction.

ABHs indentations are also shown to be good candidates to increase the TL of panels: TL measurements on panels with

multiple indentations [64] show that they simultaneously increase TL and decrease mass, compared to a uniform plate. At

coincidence, the damped ABH plate increases the TL by 6–9 dB despite having less mass than the uniform plate. This effect is

interpreted by the authors as a structural acoustic decoupling due to the ABH effect. It is shown that most of the benefit was

gained near and above the coincidence dip of the TL curve, while the response below coincidence generally followed mass law

behavior.
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4. Experimental evaluation of ABH performances

4.1. Field measurement

4.1.1. Mobility measurement [11,67,68]

The first experimental studies of the ABH effect focused on point mobility measurements performed on structure with and

without ABHs. The reduction of the mobility peaks is shown for tapered plates in Ref. [11], for indentations (pits) in Refs. [14,67],

and for slots in Refs. [68]. The configuration described in Refs. [11], consisting in a steel plate with a quadratic wedge covered

by a strip of absorbing layer at one edge, leads to a significant reduction in mobility. This effect was clearly observable by

comparison with the case of either an undamped or a damped plate with constant thickness (see Fig. 12 (a)). In Ref. [14,67], the

same type of comparison is performed on tapered indentations (pits) of power-law profile, where the centers of the indentations

were covered by a small amount of absorbing material (see Fig. 12 (b)). Configurations without and with a small central hole

produced a rather low reduction in resonant peak amplitudes. This result was attributed to the small effective absorption area.

The ABH effect could be increased by extending the size of the central hole in the pit. When multiple indentations are used, the

resulting damping increases substantially due to the cumulative damping performance of each pit. In Ref. [68], the reduction

of the resonant peaks of the mobility was demonstrated for slots of power-law profile. Such ABH slots had the advantage of

locating the ABH within the plate, as opposed to on the plate outer edges, while providing damping that is comparable to the

outer wedges of power-law profile.

4.1.2. Full field measurement [69–71]

The absorption induced by the ABH effect results from the interaction of the incident waves with the ABH, which can be

seen as a complex scatterer combining both local thickness and damping heterogeneities. At steady state, operational deflection

shapes obtained using scanning laser vibrometry display locally trapped field of high amplitude within the scatterer (Fig. 10(d)).

This is clearly due to the presence of localized modes within the indentation. During the transient regime, full field measure-

ments are required to well capture the wave interaction with the indentations. Full field measurements with high space-time

resolution can be achieved by combining optical digital holography and high speed cameras. The principle of high-speed holo-

graphic metrology, its limitations, and its application to the investigation of traveling elastic waves propagating in beams and

plates are presented in Ref. [69,70]. The interaction of an incident flexural wave with a 2D ABH is shown in Fig. 13. A short video

sequence, extracted from Fig. 17 in Ref. [69] and reported in this manuscript in Fig. 13, reveals the main features of the wave

field interacting with the ABH. More specifically, the deviation of the wave fronts due to the scattering associated with the ABH,

the local decrease of the wavelength, the local increase of the field amplitude, and the effect of the local damping.

Thermal full field measurements can also reveal ABH damping properties. The local dissipative mechanism leads to a tem-

perature increase, which can be captured using a highly sensitive infra-red camera. To the best of our knowledge, such mea-

surements were provided for the first time in Ref. [71]. For the 1D ABH configuration described in Refs. [71], the order the local

temperature increase is found to be 500 mK in a region close to the ABH extremity, where the strain is maximum.

4.2. Post-processing for the identification of ABH features

4.2.1. Reflection coefficient [22,72,73]

The effectiveness of the acoustic black hole effect can be demonstrated experimentally by observing the decrease in ampli-

tude of the resonance peaks and the smoothing of measured transfer functions (mobilities), which ultimately reveal a signif-

icant increase in modal damping. The quantitative evaluation of the efficiency of a black hole termination can be performed

using reflection coefficient measurements. In the case of ABH beam terminations, a Kundt-like measurement method has been

used [72]. The measurement was made in the far field in order to evaluate the reflection coefficient associated only with the

propagating waves. In the case of the free end, the reflection coefficient is R = −j. Results for several ABH extremities showed

a clear decrease of the modulus of the reflection coefficient R. The phase of R due to the decreasing thickness profile was also

investigated and interpreted by defining a correction length for the tapered termination. Results highlighted that the decrease

was not monotone and that local modes of the termination were responsible for local reduction in the reflection coefficient [22].

These local reductions were also connected to the critical coupling mechanism [24].

As an alternative to frequency-domain approaches, time-domain experimental techniques have also been proposed. These

techniques are effective in investigating the wave propagation and attenuation in a one-dimensional ABH plate [73] because

the separation of the incident and reflected waves enables the extraction of the reflection coefficient. The reduction in phase

velocity, the progressive attenuation, and the low reflection of the incident wave can be analyzed in space/time diagrams. Such

analysis is experimentally viable in the high frequency range where wave separation can be achieved by accounting for the

length of the incident wave front and the characteristic size of the system.

4.2.2. Wavenumber analysis [74,75]

Wave number analysis refers to different post-processing techniques of experimental data able to identify the dynamic and

vibro-acoustic features of a vibrating structure. In the case of a 1D exponentially tapered rod, a methodology based on five
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Fig. 11. (a) aluminum plate with an array of embedded ABHs; (b) wavenumber spectrum of an undamped ABH plate at 2500 Hz one third octave band with infinite plate

wavenumbers for uniform plate thickness (inner circle) and minimum ABH thickness (outer circle). The vibration energy is spread out over different wavenumbers due to

the ABH effect and it is effectively bounded by the wavenumber of the minimum ABH thickness; (c) radiation efficiency of uniform, undamped, and damped ABH plates.

Embedding ABH tapers increases the critical frequency of the plate. At 2 kHz the radiation efficiency of the damped ABH plate is 6 dB less than the uniform plate (from Ref.

[56]).

Fig. 12. (a) picture of a steel plate with an ABH wedge at a free edge; (b) picture of the setup to measure the mobility of an ABH plate covered by a thin adhesive tape; (c)

measured mobility as function of frequency: free quadratic wedge (solid line) and wedge covered by a thin tape (dotted line). Significant vibration attenuation (5–15 dB at

resonance peaks) is observed (from Ref. [11]).

equally spaced vibration measurements is proposed in Ref. [74] in order to identify both the axial and flexural wavenumbers.

When applied to plates with embedded ABHs, the spatial Fourier transform was also proven to be helpful in revealing char-

acteristic features in the wavenumber domain. The analysis based on spatial Fourier transform applied to plates with embedded

ABHs shows that the vibration energy is distributed over a large range of wavenumbers which however is characterized by an

upper and a lower bound. Experimental results [75] show that the wavenumber is effectively bounded by the wavenumber of

the minimum ABH thickness and the one of the uniform zone thickness (see Fig. 11). Such representation is useful to visualize

multiple aspects of ABHs including changes in bending wave speed, in transverse vibration amplitude, and in energy dissipation;

all these elements are key to characterize, design, and optimize ABHs for practical systems. The wavenumber analysis can be

used to examine the structural acoustic coupling in the wavenumber domain.

4.3. Manufacturing related aspects [76–78]

The experimental literature shows that the vibration damping increases when using longer and thinner ABH wedges. How-

ever, fabricating long and thin ABHs (essentially approximating the ideal design case) involves important and somewhat insur-

mountable technical difficulties. Several studies evaluated the influence of geometric or material imperfections on the vibration
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Fig. 13. Snapshots in time showing the scattering of an incident flexural wave on a 2D circular ABH achieved via high-speed holography (from Ref. [69]).

damping performance. Bowyer et al. [76] studied experimentally the effects of deviations of real manufactured ABH structures

from the ideal design.

Tip damage as tears, curling, or small holes (usually observed when machining thin ABHs) are found not to be detrimental

for the damping performance. In fact, these defects could even enhance the damping due to increased scattering. This is studied

in more detail by Denis et al. [27] where numerical analyses, performed via a multimodal structural guide model, highlighted

that the reflection coefficient can be reduced by 10% due to the introduction of a controlled defect at the tip.

The influence of terminations glued and welded to the host structure were also investigated. The resulting damping can be

of the same order as in the case of ABH machined directly on the host structure, as long as the attachment does not induce a

mechanical impedance mismatch. Measurements also highlight that the bonding conditions of the damping layer can alter the

performance. It was concluded that the ABH effect is robust enough to induce consistent vibration damping even in the presence

of geometrical and material imperfections; however, some reduction in efficiency can be expected. Hence, ABH techniques can

be used for practical applications without the need for high precision manufacturing.

Bowyer & Krylov [77] also investigated the damping performance of various types of glass fiber composite structures such as

beams with a 1D ABH wedge, plates with a 2D circular ABH, multilayered ABH plates, composite panels with an enclosed ABH,

and honeycomb panels with an ABH on the skins. The comparison was mostly performed in terms of mobility measurements.

The measurements showed a further increase in damping due to the ABH, in addition to the already substantial damping due to

the inherently large loss factor of composites. The conclusion was that the ABH effect is robust in all its different implementa-

tions, which is a key aspect for practical applications as discussed in section 5.2.

Huang et al. [78] investigated the influence of the ABH geometrical parameters on the energy focusing effect in the case of an

ABH with a central plateau, seen as an imperfect ABH. This alternative configuration was proposed to limit machining difficulties

and to reduce structural integrity issues associated with the ABH. Using both numerical and experimental approaches, they

showed that the ABH configuration maintains, practically intact, its energy focusing properties if compared to the ideal ABH.

However, the point of energy accumulation tends to shift downstream with respect to the ABH center. The influence of the

power index of the profile, and of the plateau thickness on the location of the focal point, were also evaluated.

5. Applications

This section presents an overview of the main applications that were developed during the past couple of decades based

on the general idea of ABHs and structure-embedded geometric tapers. Although the most immediate application of wedge

terminations and ABHs has certainly been to control and attenuate structural vibrations, more recently, new applications have

emerged.

5.1. Passive attenuation of industrial-like systems [79,80]

In order to apply the concept of ABH for vibration damping to industrial structures, is it important to identify structural areas

that can sustain the thickness reduction without inducing stability or durability issues. Structures that are naturally designed

with thin edges, cut-outs, or locally thin areas are typically good candidates for ABH-based methods.

The first application in an industrial context [80] focused on damping vibrations of turbine blades (Fig. 14(a)) with a tapered

trailing edge. The modal response of a simplified blade model was simulated by using the Finite Element Method (Fig. 14(a)).

Not surprisingly, an effective reduction of the blade vibrations was observed in the frequency range of interest.

In [80], Bowyer et al. studied experimentally blades with more realistic geometries (Fig. 14(b)). In addition to more traditional

vibration measurements that showed a significant gain in damping, measurements in a closed circuit wind tunnel were also

carried out in order to study the aerodynamic implications of the ABH wedge. It was shown that trailing edges of power-law

profile treated with damping layers are efficient in reducing aerodynamically-induced vibrations.
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Fig. 14. (a) schematic of a turbine blade considered for the ABH application and corresponding simplified model (from Ref. [79]); (b) turbofan blade with an ABH at the

trailing edge and visualization of air-flow in cases of (b.1) the initial blade, ABH blade (b.2) without damping layer, (b.3) with uniform damping layer, (b.4) with shaped

damping layer (from Refs. [80]).

5.2. Design and optimization of systems based on the ABH effect [81–93]

Based on the physical understanding of the ABH effect that followed the pioneering studies of Mironov and Krylov (see

sections 2-4), the engineering community started exploring several practical applications. Most of these studies and applications

conceived in recent years and some examples can be found in Fig. 15.

Following the classical ABH concept, different types of designs can be envisioned in order to enhance the dynamic or vibro-

acoustic performance of the host structure. The use of a constrained visco-elastic layer, instead of the more common visco-

elastic layer, leads to significantly enhanced damping [52,86]. On the other hand, parametric numerical optimization can also be

conducted in order to minimize the average kinetic energy of a beam with ABH terminations [90]. Similarly, a multi-objective

optimization according to the “Pareto optimality” concept was also applied in order to find the lowest frequency capable of

achieving low reflection while still satisfying the smoothness condition [31]. In plate-like structures, topological optimization

was also shown to be useful to find a geometrical layout of the damping layers in order to minimize the radiated sound [89].

Some geometrical modifications of the original concept of an ABH were also explored in an effort to achieve better perfor-

mances. In Ref. [82], the authors present a modified power-law profile extended by a platform of constant residual thickness

(Fig. 15(b)). Results show a systematic increase in damping in the mid-to-high frequency range and also a gain in the low fre-

quency. This design does not require exceedingly low residual thickness at the tip. Fig. 15(b) shows the increase in the modal

loss factors 𝜂 when the platform length lp increases.

Compound ABHs are a way to compensate for the inherent structural weakness of classical ABH profiles and typically consist

of multi-layered layout (Fig. 15(c)). Such configuration showed very low reflection coefficient when placed at a beam extremity

[22]). When enclosed in a beam [83], the compound design is capable of improving both static (structural stiffness and strength)

and dynamic (20 dB amplitude reduction at resonances in Fig. 15(c)) properties.

Functionally Graded ABH designs (FG-ABH) have been recently explored and combine the geometric profile with a spatial

gradient of selected mechanical properties of the constitutive material. By leveraging 3D printing techniques, it is possible to

manufacture a beam wedge with piece wise varying material properties, with both axial or thickness gradient [87]. Results

show that FG-ABHs exhibit a lower reflection coefficient than conventional ABH designs, as it can be seen in the space/time

representations of Fig. 15(e). FG-ABH structures have also been proposed based on the use of graded porous material in which

the porosity follows a local power law profile [93]. The control of material properties can also affect the loss factor of the damping

layer, however this aspect has not entirely explored. A recent study explored the use of an active control of the temperature of

the viscoelastic material around its glass transition [91]. This approach provides a large range of loss factor values so to tune the

damping behavior of the resulting ABH device.

Another alternative design based on the ABH concept is the ABH Resonant Beam Damper (ABH-RBD) [84]. This design com-

bines the principles of both dynamic vibration absorbers and waveguide absorbers. It consists of an add-on device attached to

a primary structure (Fig. 15). Owing to the robustness of the ABH effect, the added ABH-RBD device is very efficient on various

host structures and over a wide frequency range. The design also has the benefit of not requiring tedious parameter tuning.

The modal damping coefficients of the combined structure (Fig. 15) are mostly controlled by the ABH-RBD effect and not by the

intrinsic damping mechanisms of the primary structure.

Other designs derived from the classical 2D circular ABH have also been proposed for vibrations isolation. A gradient index

device consisting in a shaped pit (Fig. 15(a)) shows good insulating performance to external waves [81]. An extension of this

idea led to ring-shaped ABH devices [88] consisting of concentric annular ABHs, ring arrangement of traditional circular ABHs,

or inclusion of radial stiffeners. This design was mainly applied to isolate a vibration source in thin plates.

The concept of ABH effect was also explored in underwater acoustic applications, where broadband omnidirectional

absorbers were designed based on an arrangement of cylinders of progressively decreasing radii [92].
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Fig. 15. (a) Taper embedded in a flat plate structure and typical simulated displacement field for the dimensionless wavenumber kr = 15 (from Ref. [81]); (b) modified

power-law ABH profile with extended layer of constant thickness and plot of the modal loss factors of the host structure as function of the frequency (from Refs. [82]);

(c) compound double-layered ABH and resulting mobility measured on a beam sample (from Ref. [83]); (d) scheme of the ABH Resonant Beam Damper (ABH-RBD) and its

effect on the modal loss factor when attached to a primary structure (from Refs. [85]); (e) profile views of functionally graded ABH: thickness graded (right), axially graded

(center) and usual ABH (left) and their associated space/time representation of the reflection of an incoming wave (from Ref. [87]).

5.3. Multi-ABH and metamaterial structures

Other studies investigated the use of multiple ABHs assembled in periodic lattice configurations embedded in either 1D or

2D structures. These designs explored both the steady stated and the transient response of either finite or infinite structures.

Ultimately this led to the characterization of the effect of periodic ABH configurations either for vibration control or wave

propagation.

5.3.1. ABH grids for low frequency vibration mitigation [94–101]

The dynamic performance of constant-section beam structures with embedded periodic ABHs was initially investigated in

Ref. [94]. Given that the resulting structure was considerably weakened by the design, the use of enclosed compound ABH

[95,100] was later considered (Fig. 16(a)). In both cases, the periodic distribution of ABHs creates large bandgaps in which the

waves cannot propagate. More specifically, in the case of compound configuration, the ability of connecting the top and bottom

tapers via a reinforcing stud enlarges the bandgaps due to added local resonances. The same type of periodic arrangement of

compound ABH units can also be considered in the case of V-folded beams that consists of a beam of rectangular cross-section

folded along its length so that the neutral axis displays a series of V-shaped patterns [96,100]. The additional folding allows

creating full bandgaps for both flexural and longitudinal waves while reducing the overall length of the beam structure.
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Fig. 16. Various types of multi-ABH structures. (a) top: beam with a grid of enclosed compound ABHs with or without reinforcing stud; bottom: comparison between the

transmission obtained via numerical and experimental approaches (from Refs. [95]). (b) top: side view of a plate with a grid of embedded ABHs where PZT patches are

glued in correspondence of the tapers and shunted on external resistors; bottom: comparison of acceleration spectra (from Refs. [97]); (c) top: schematic of a phononic

ABH plate; bottom: simulated displacement field showing a bi-refractive behavior (from Refs. [102]).

Fig. 17. (a) top: front and back view of a quasi 1D ABH structure using shunted PZT patches to harvest mechanical energy; bottom: resulting displacement fields at f= 10 kHz

and f = 20 kHz acquired via a laser Doppler vibrometer; (b) normalized energy ratio showing the performance of the piezo transducers in terms of energy extraction on a

structure with and without ABH tapers (from Ref. [107]).

In the case of ABH periodic plates, it is still challenging to obtain low frequency total band gaps capable of attenuating bending

waves at any angle of incidence. To date, the 2D extension of the compound ABHs, called tunneled ABHs [101], shows band gaps

having width and center frequency adequate for vibration control applications but restricted to the case of normal incidence.

In the more classical case of circular ABH 2D grid on a thin plate, only a cumulative effect leads to very high vibration damping

above the cut-on frequency [57]. An interesting option is to replace the classical damping layers with shunted piezoelectric

transducers [97], however further studies are needed to optimize the design and the damping performance. The case of sandwich
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panel design in which the internal core material is tailored using ABH indentations also leads to a significant improvement in

the overall loss factor [98].

5.3.2. Phononic crystals [102–105]

Periodic lattices of ABH tapers were also explored to control the transient response of plates. The design can benefit from

theoretical and numerical modeling tools developed for periodic structures and metamaterials. In fact, the periodic grid of ABHs

can be seen as a metamaterial where the fundamental unit cell is represented by the ABH itself. Depending on the wavelength

range being explored, these media are typically characterized as metamaterials (long wavelength regime) or a phononic crystal

(short wavelength regime).

Most of the initial work on the transient response of periodic ABH lattices was performed in the area of 2D phononic crystals.

The use of geometrically tapered units arranged in a square lattice configuration allowed the realization of single material elastic

phononic crystals without resorting to the traditional multi-material approach [103]. This latter aspect is particularly relevant

for practical applications in which the existence of material interfaces deteriorates the strength and durability of the host struc-

ture. This class of ABH lattices showed a variety of unusual wave propagation characteristics, ranging from more traditional

drop-channel designs [102] to lensing applications. In the latter category, effects like collimation, focusing, mode hybridization,

and bi-refraction (Fig. 16(c)) were achieved in both the long and short wavelength regimes [104]. Very recently, ABH lattice

structures were also designed to achieve wave propagation with topological protection [105], leading to the formation of unidi-

rectionally propagating edge states immune to back scattering from disorder and defects.

5.4. Vibration-based energy harvesting [106–109]

Previous sections have clearly illustrated how an ABH embedded into a thin walled structure creates a mechanism to focus

the elastic energy. This property can be exploited to design efficient vibration-based energy harvesting devices. This class of

applications was studied both numerically [106] and experimentally [107] and relied on the fundamental premise that the

focusing effect taking place at the center of the ABH provides a priori information on structural locations that will experience

high energy density. The knowledge of the structural locations undergoing vibration localization facilitates the placement of

devices for energy extraction in order to achieve optimal harvesting performance (Fig. 17(a)). The ABH-based design for energy

harvesting has two benefits: 1) it reduces the number of transducers needed for energy extraction, and 2) it produces a grad-

ual variation of the wavenumber (from low to high) as the wave travels through the taper. This latter mechanism produces a

sweep through a range of wavenumbers which drastically enhance the performance of the transducer and hence the ability to

efficiently extract energy (Fig. 17(b)). Given that extracting energy from the system produces an effective damping mechanism

of the host structure, this design was also explored for semi-passive vibration control [108]. The use of compound ABH was also

explored as a way to enhance the harvesting performance [109].

5.5. Bio-inspired system: cochlea analysis [110]

The cochlea of the inner ear of human beings is a fluid-filled duct partitioned with the basilar membrane. Due to the graded

properties of the basilar membrane, waves traveling from the base to the apex increase in amplitude due to a localization mech-

anism (function of frequency). This effect is called tonotopy and requires an anechoic-like termination at the apex in order to

not be overpowered by the presence of stationary waves. Such phenomenon was investigated using an artificial macro-cochlea

(mimicking the mechanical filtering effect) [110] with an ABH located at its end in order to limit wave reflection (Fig. 18(a)).

The advantage of such termination was shown theoretically using the WKB method applied to the case of a plate immersed

either in water or in air. Based on the results from the WKB model, Fig. 18(b) shows that the global envelope function for the

basilar membrane displacement has only one maximum if the reflection coefficient R is zero and multiple secondary maxima if

R ≠ 0. Experimental tonotopic map shown in Fig. 18(c) highlights the relation between the location and the frequency for the

maximum of the displacement envelope and confirms the key role of such anechoic termination.

6. Conclusions

This article proposed a critical review of 101 journal papers focusing on the topic of the Acoustic Black Hole effect and

published over a period of time of approximately 30 years. Among them, 33 papers were published in the Journal of Sound and

Vibration. This review follows the ABH2018 conference (3–4 May 2018, Le Mans, France) that gathered together most of the

researchers in the field.

The pioneering works published in the 80’s highlighted the possibility of gradually slowing flexural waves in thin waveg-

uides with gradually decreasing thickness. In the ideal case, where the thickness is assumed to vanish at the edge of the guide,

the time of flight that a flexural wave requires to reach the edge becomes infinite. It follows that the edge exhibits a zero reflec-

tion coefficient which is only due to a reactive effect, that is it does not require any energy dissipation mechanism. In practical

applications, manufacturing and durability constraints do not allow the realization of an ideal ABH; the ABH must be truncated

hence resulting in a finite thickness at the edge. The most relevant effect of this truncation is a strong reduction in the ABH effect

and therefore the occurrence of a high reflection coefficient. In order to compensate for this deterioration of the performance
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Fig. 18. Displacement field along an artificial cochlea: (a) picture of the artificial cochlea, (b) geometry of the tonotopic zone (beam region of increasing width), (c) global

envelope at f = 2000 Hz for three reflection conditions imposed at the apex, (d) tonotopic maps obtained experimentally for the plate placed in air and with an ABH at the

extremity. The presence of the ABH termination reduces the standing waves in the waveguide. As a consequence, the spatial oscillations of the field are limited and the

tonotopic effect is enhanced (from Refs. [110]).

in practical designs, the addition of a dissipative layer (e.g. visco-elastic material) coating the ABH profile was proposed. This

concept, formalized in the early 2000s, showed that extremely low reflection coefficients could still be achieved in beams with

ABH terminations even under non-ideal conditions. Later, this idea was extended to 2D structures giving rise to the concept of

circular ABH indentations. This extension considerably widened the horizon of possible applications because the integration of

ABHs in a structure was no longer restricted to tapered edges. Following the introduction of the 2D design, the interest of the sci-

entific community in this topic has grown exponentially. In 2020, dozens of teams all over the world were performing research

on ABHs ranging from modeling strategies, to experimental validation, to practical design for vibration and noise mitigation.

The existing literature has shown that the effectiveness of ABH devices results from the combination of two properties:

the progressive softening of the structure along the profile (due to the local thickness variation), and the increase in the loss

factor due to the presence of the dissipative layers. Recent results showed that the so called “critical coupling condition” allows

to precisely define the exact amount of losses that should to be introduced in order to obtain an optimal ABH effect. Three

experimental videos are provided as supplementary material in order to illustrate the main ABH features. In supplementary

material #1, an experimental full field time scan shows the lack of reflection of an incident wave-packet interacting with a ABH

beam wedge. Supplementary material #2 shows the results of two experimental scans illustrating the harmonic response of an

ABH wedge: at low frequency, the reflection is strong and gives rise to a standing wave behavior, while at high frequency the

wave field is almost completely propagating due to the lack of reflections from the wedge. Supplementary material #3 shows

the experimental transient response due to a hammer impact on a plate with an embedded circular ABH with and without a

damping layer. In both cases, the wave field is clearly trapped in the pit and it is rapidly damped when the dissipative layer is

used.

The introduction of ABH tapers, however, leads also to some practical issues and limitations. Specifically, the ABH is by

definition a structurally weak point. However, the quadratic profile was shown to be a good compromise between performance

and manufacturing complexity. Both numerical and experimental studies showed that this specific geometry could reliably

produce a robust ABH effect, low reflection coefficient, energy focusing, and vibration localization. These properties are all

important contributors to the extreme potential that ABH features have shown for application to noise and vibration reduction.

It is also important to consider that the ABH is associated with non-trivial fabrication complexities; for the most part, related

to the low thickness requirement in the ABH area. In general, tapers with high value of the power-law exponent cover a more

extended area hence making the manufacturing more challenging.

In recent years, the main advances in ABH research have mostly focused on two areas: 1) the modeling and application of

ABHs in the presence of fluid-structure interaction, and 2) the combination of the ABH effect with different practical applications.

The first area is critical to further the understanding and the use of ABHs in real-world systems requiring vibro-acoustic control.

The second area is exploring interdisciplinary applications of the ABH concept to different fields including energy harvesting,

metamaterials, and bioinspired systems.

While most of the work during the past three decades was concentrated on areas fostering the fundamental understanding

of the ABH effect and developing numerical and experimental methodology to predict its performance, it is expected that future

research thrusts will focus on the more practical applications of this concept.
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In connection to practical applications, other important question remain unanswered. As an example, the optimization of

ABH performance based on new materials enabled by additive manufacturing technology provides some intriguing possibilities.

This approach can open the way to fine tuning the loss profile; a goal well-known to be particularly challenging. In a similar

direction, the use of functionally graded or architected materials, or active designs can also provide new exciting directions and

capabilities.
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