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É. Polacka A. Mikhalevb G. Dussona B. Stammb and F. Lipparinic

aLaboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université Bourgogne Franche-Comté,
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ABSTRACT
Repeated computations on the same molecular system, but with different geometries, are often
performed in quantum chemistry, for instance, in ab-initio molecular dynamics simulations or
geometry optimizations. While many efficient strategies exist to provide a good guess for the
self-consistent field procedure, which is usually the main computational task to be performed,
little is known on how to efficiently exploit in this direction the abundance of information
generated during the many computations. In this article, we present a strategy to provide an
accurate initial guess for the density matrix, expanded in a set of localized basis functions, within
the self-consistent field iterations for parametrized Hartree-Fock problems where the nuclear
coordinates are changed along a few user-specified collective variables, such as the molecule’s
normal modes. Our approach is based on an offline-stage where the Hartree-Fock eigenvalue
problem is solved for some particular parameter values and an online-stage where the initial
guess is computed very efficiently for any new parameter value. The method allows non-linear
approximations of density matrices, which belong to a non-linear manifold that is isomorphic
to the Grassmann manifold. The so-called Grassmann exponential and logarithm map the
manifold onto the tangent space and thus provides the correct geometrical setting accounting
for the manifold structure when working with subspaces rather than functions itself. Numerical
tests on different amino acids show promising initial results.
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1. Introduction

Computational quantum chemistry allows nowadays to describe, model and predict a very
large variety of chemical phenomena. Thanks to a combination of new methods, computational
techniques and hardware developments, quantum chemistry can be used to compute molecular
structures, spectroscopic and response properties, reaction paths, aggregation properties and
much more. A typical computational setup starts usually with the prediction, at a given level
of theory, of the molecular geometry, which is obtained by minimizing the Born-Oppenheimer
energy with respect to the nuclear coordinates [1]. Properties calculations are then carried out.
For large molecules, as several stable conformers can exist, these operations may need to be
repeated in order to account for the existence of multiple minima. The number of calculations
required can be further increased if more complex systems are considered, for instance, a large
biological polymer or a solvated molecule, as a correct statistical sampling of the system’s
configurations becomes mandatory in order to achieve correct results. In such cases, calculations
can be performed on snapshots taken from classical or ab-initio molecular dynamics. As a



consequence, a computational study often requires to perform several calculations on the same
system at different geometries.

One of the most common task performed during a quantum chemical calculation is the solu-
tion to the self-consistent field (SCF) equations, that is at the basis of Hartree-Fock [2] (HF) and
Density Functional Theory [3] (DFT). The latter can often be the method of choice for the over-
all computational study, while the former is at least a necessary starting point for more refined
post-HF treatments. The SCF equations are a set of coupled, non-linear differential equations
that are solved iteratively. As such equations can exhibit notorious convergence problems [4],
in the last years a number of different numerical techniques have been developed to achieve re-
liable and fast convergence. These new developments include not only convergence acceleration
techniques, such as the popular Direct Inversion in the Iterative Subspace [5, 6] (DIIS) and its
many extensions and generalizations [7, 8], but also methods to provide a better guess to the
iterative procedure [9–15]. The latter point is of particular importance, as the SCF procedure
can be particularly problematic when starting from an unrealistic guess and exhibit large os-
cillations and other pathological behaviors [14]. Thanks to all these recent developments, many
existing SCF implementations manage to achieve convergence, at least for closed-shell systems,
in as little as 15-20 iterations.

The guessing procedure developed in the years for SCF are usually focused on providing a
good estimate of the electronic density for single point calculations. Much less has been done to
specifically address the issue of repeated calculations, other than common-sense practices, such
as using the density of a previous point as a guess for the next energy and forces evaluation
in a geometry optimization and other related strategies. A notable and particularly successful
exception, that directly aims at providing a better guess for the SCF procedure in ab-initio MD
simulations (AIMD), is based on extended-Lagrangian techniques [16, 17], which introduce an
auxiliary density that is propagated along the dynamics and used to provide a guess that is
usually sufficiently good, so that, at the precision required by AIMD simulations, only a few
SCF iterations are required per step. These techniques, that use the density, or guess density, at
a collection of previous steps (usually, from a couple to about ten steps), successfully exploit this
information to improve the guessing procedure. However, extended-Lagrangian techniques rely
on the fact that the nuclei configurations at the various steps are produced by a deterministic
process, such as MD, and are therefore not applicable to a general repeated calculation, as in
geometry optimizations or QM/MM snapshots originating from uncorrelated frames extracted
from a MD simulation.

In this work, we try to address the problem of forming a guess for repeated calculations that
is as general and robust as possible. In particular, our aim is to develop a procedure that is
able to reuse as much information as possible from previous calculations at different geometries,
independent of their provenance, to provide an optimal guess for a further calculation. We
assume that a set of atom-centered, localized basis functions, such as gaussian-type orbitals, is
employed. The main idea can be stated as follows. Let us consider a set of configurations for
which the SCF density is known and a further, new configuration for which we want to guess the
density. A naive strategy would be to linearly interpolate the configurations, i.e., their Cartesian
coordinates, for instance, and apply the same interpolation to the density matrices. However,
there would be no guarantee that the density obtained with such a procedure would indeed be
a density matrix, stemming from a monodeterminantal wavefunction. In order to enforce the
correct properties of the new, approximated density, we adopt a geometric perspective. From a
mathematical point of view, the density matrices live in a so-called Grassmann Manifold which,
as it is not a vector space, does not allow for linear interpolation to be used. However, we will
show how it is possible to map a point in such a manifold to its tangent space, which indeed is
a vector space, perform the interpolation, or any kind of approximation there, and then go back
to the manifold, ensuring that the interpolated density has all the properties that are required
for it to be a genuine density matrix.

The techniques that we use are conceptually related to notions that are not new to chemists.
Indeed, it is known that orbital rotations can be parametrized in terms of exponential maps,
and that such maps can be used to parametrize the effect of orbital rotations on the density
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matrix. This is commonly done for direct orbital optimization techniques, used for quadratically
convergent SCF [18, 19] and multiconfigurational SCF implementations [20–25]. In this contri-
bution, we use a different notion of exponential which allows to efficiently parametrize the set of
density matrices. However, these exponentials are in practice very different, due to the structure
difference between orbital rotations and density matrices. By applying geometrical techniques
to the problem of repeated calculations, we will show how a very effective and rigorous SCF
guessing procedure can be developed.

On the other hand, solving problems repeatedly for different parameter values is common in
many engineering applications and can be put under the context of many-query computations.
In such scenario, the concept of reduced order modelling for parametrized problems has been
established and it has become a mature tool in computational engineering science. The roots
of modern reduced order modelling lie in structural mechanics and an overview of literature,
methods, concepts and applications can be found in the monograph [26]. The concept of re-
duced order modelling is only little known and exploited in computational chemistry. The few
contributions in this field [27–30] involve methods based on finite elements, with only a limited
amount of work having been done for Gaussian-type atomic orbitals. It can be noted that the
numerical results in these papers deal with rather small molecules and do not contain any geo-
metrical considerations as presented in this work. We hope that our further contribution shades
a different angle at reduced order modelling for parametrized problems in electronic structure
calculation.

In this preliminary study, we develop the methodology and apply the newly developed
technique to a simple problem, where we assume that no level crossing occurs between the states
due to geometry displacements. In particular, we generate one- and two-dimensional grids of
molecular geometries by displacing the equilibrium geometry of a few chosen molecular systems
along one resp. two different normal coordinates, using displacements of up to one atomic unit
times the normalized coordinates. While this is a very simplified problem with respect to the
general one, it provides an example of small, but non negligible oscillations of the geometry
around an equilibrium point that are typical of MD simulations or of anharmonic force field
calculations. We show that using a small number of data, we are able to predict the density
at all other points with remarkable accuracy, providing an almost already converged density
matrix.

This paper is organized as follows. In Section 2, we describe the addressed problem, namely
the development of good initial guesses for the solution of the SCF problem parametrized with
respect to the atomic positions, and we present the corresponding equations. We then present
the methodology in Section 3, starting in Section 3.1 with the geometrical structure of the
object of interest: the density matrix. We continue by describing the process of computing
an approximation of the density matrix in Section 3.2, first in a case where the parameter
dependency is one-dimensional, and second in the more complicated case of a multi-dimensional
parameter space. In Section 4, we present some numerical results illustrating the accuracy of
the initial guesses as well as the low computational cost obtained by this method. We close this
article by pointing out some perspectives in Section 5.

2. Problem statement

While there exists a map between the geometry of a molecule and, for a given basis set, its
SCF density matrix, such a map is unknown and certainly highly nonlinear. Finding the exact
approximation of this map seems thus an impossible task. We have therefore to resort to some
kind of approximation. The problem that we want to address in this article can be stated as
follows. Suppose that a set of SCF computations has to be performed on the same molecule,
or cluster of molecules, at different geometries, for instance, in a geometry optimization or
molecular dynamics simulation. Suppose also that we allow the problem to be solved at some
few specific geometries in order to access the density matrices for those points. The following
question arises: how can the pre-computed density matrices be used to approximate the solution
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at any new point, or to provide a very robust guess for the SCF at this new point?
To address this problem, a strategy needs to be developed in order to actually define ge-

ometries where we first compute the density matrix and then, in a second phase, use them to
provide a guess and thus this task has the flavour of an interpolation or more generally an
approximation problem. However, this is not an easy task due to the fact that the SCF density
matrices are not elements of a vector space. This means that in general, a linear combination
of two density matrices is not a density matrix. Therefore, the first goal of this paper is to find
a strategy to perform an interpolation, or more generally an approximation, of the available
densities in the appropriate set (manifold), so that the resulting density has all the properties
that are needed.

A further point concerns the overall efficiency of this process, that strongly depends on how
much data is needed to get a good approximation to the density. In other words, if we need to
solve the SCF equations for a large number, say Ng, different geometries, we want to be able
to provide a good guess based on pre-computed density matrices at Q� Ng points. Therefore,
the second problem that we want to address is how can one find a minimal number of points
that allow one to build a good density approximation at all other points.

Let us start by stating the first problem in a more precise way. We consider the electronic
Schrödinger problem where the M nuclear positions r ∈ R3M are parametrized by a given,
possibly non-linear, map P 3 p 7→ ψ(p) = r ∈ R3M , where the map ψ may consist of reaction-
coordinates, optimization steps, normal modes or any collective variable in general. We refer to
the bounded domain P ⊂ RP , for a given P ∈ N, as the parameter domain. The parameter-
dependency plays a key role in the methodology and we therefore highlight the dependency
on p in the following with a subscript. We consider a level of theory that corresponds to the
Hartree-Fock equations or Density Functional Theory (DFT) but without loss of generality we
present in the following our approach for the Hartree-Fock (HF) method. Using a given basis
set within the LCAO-framework (Linear Combination of Atomic Orbitals), the discrete energy
can be written as

Ep(C̃) = Tr
(
C̃>hpC̃ + 1

2 C̃
>Gp(C̃C̃T)C̃

)
(1)

where hp and Gp are the customary one and two electron integral matrices in the atomic orbitals

(AO) basis for the parameter value p. The matrix C̃ ∈ RNb×N contains the Nb coefficients of the
N occupied molecular orbitals within the given Nb-dimensional basis. The SCF problem can be
stated as the variational minimization of the SCF energy

min
C̃∈M(p)

Ep(C̃), (2)

where the coefficients C̃ need to satisfy the usual orthonormality constraints or, in other words,
belong to the manifold M(p) defined as

M(p) =
{
C̃ ∈ RNb×N

∣∣∣ C̃>SpC̃ = 1N

}
, (3)

with Sp denoting the overlap matrix. Writing the first-order optimality conditions, we obtain

the following non-linear eigenvalue problem: Find a matrix C̃p ∈ M(p) and a diagonal matrix
Ep ∈ RN×N containing the orbital energies (ε1, . . . , εN ) such that

Fp(D̃p)C̃p = SpC̃pEp, (4)

C̃pC̃
>
p = D̃p, (5)

where Fp(D̃) = hp +Gp(D̃) denotes the Fock operator and D̃p ∈ RNb×Nb the density matrix. We

note that the input data Fp and Sp depend explicitly on p whereas the solution C̃p respectively D̃p
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Figure 1. Schematic illustration of the geometrical setting. In both figures, we illustrate by the blue hypersurface the
Grassmann manifold MGr and by the red plane the tangent space TD0

MGr to MGr at D0. On the left, we illustrate

the one-to-one relationship between a close density matrix D ∈ MGr and the corresponding vector Γ = LogGr,0D in the

tangent space. On the right, we further schematically illustrate the notions of D0,T and Vrb, respectively defined in (17)
and (18), as well as their equivalent sets D = {Dp|p ∈ P} and Mrb = ExpGr,0(Vrb) on MGr.

to the eigenvalue problem depend implicitly on p through the relations (4)–(5).
When the computation is done without any previous history (single step calculation as

opposed to molecular dynamics, for example, where a predictor can be employed), an initial
guess contains no a priori information on the solution and provides an error of order one. As
already mentioned, the goal of this paper is to establish an approximation scheme to provide

a good guess of the density matrix D̃p when some known density matrices
{
D̃pi

}Q
i=1

for some

parameter values {pi}Qi=1 are given. Our strategy tackles the two main issues stated at the
beginning of this section as follows.

First, in order to be able to perform an approximation based on known densities, we look
at the problem from a geometrical point of view. The orthogonal projectors onto the space
spanned by the N orbitals in the atomic orbital basis belong to the manifold

S
1

2
p D̃pS

1

2
p ∈MGr =

{
D ∈Nb×Nb

∣∣∣ D = D>,D2 = D,Tr(D) = N
}
, (6)

is well known in mathematics under the name “Grassmann manifold”. To be completely rigor-
ous, the former is isomorphic to the latter, but we omit such technical details in the following.
Here, using the properties of such manifold, we develop a strategy that maps the densities ob-
tained at the various points to a vector space, namely the tangent space, performs the linear
approximation there and then maps the interpolation back to the Grassmann manifold. From
an intuitive point of view, the process can be seen as depicted in Figure 1 (left). The differ-
entiable manifold can be thought of as a curve hypersurface (in blue) of lower dimension. We
map the manifold to the hyperplane, which is tangent to the surface at a given point, and are
projecting then all the data points (density matrices) to such plane and perform the approx-
imation. Then, once the approximation is built, we use the inverse map and go back to the
manifold. The key point here is that this guarantees to obtain a density matrix that satisfies all
the physical requirements and we are therefore sure that such a matrix corresponds to a single
Slater Determinant.

Second, we address the computational problem of making this scheme efficient. Indeed, if
one computes the density matrix for a large number of molecular geometries, it is very likely
that the information will be redundant. In this case, the corresponding density matrices can all
be approximated by (different) linear combinations of very few common elementary matrices. In
applied mathematics, those elements are called reduced basis of the parametrized problem since
they build a basis of a vector space that approximates any density matrix to high accuracy. As
elaborated above, the issue with this approach in our context is that any linear combination
of density matrices is in general not a density matrix. However, we can apply this concept on
the tangent space. Thus, after having mapped all density matrices to the tangent space, one
can, for example, find a low dimensional basis by performing a singular value decomposition
(SVD) of all tangent vectors. In consequence, any tangent vector can be represented with few
degrees of freedom if expressed in this “reduced basis” on the tangent space. Mapping this
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approximation back to the manifold of density matrices guarantees then that the approximation
has the structure of a density matrix.

3. Methodology

3.1. The geometrical structure

We note that for any value of the parameter p, the matrix C̃p ∈M(p), solution to (4)–(5), can

be transformed and we define Cp := S
1

2
p C̃p as is usual within the Löwdin orthonormalization.

In consequence, we observe that Cp belongs to the Stiefel manifold of orthonormal N -frames
in RNb . The corresponding density matrix Dp = CpC

>
p , belongs to the manifold of rank N

projectors in RNb , already defined in eq. (6), which is isomorphic to the Grassmann manifold,
hence designated with the same name. We will not insist on a very precise description of the
setting in terms of differential geometry as this is not the purpose of this article. For interested
readers we refer to [31, 32]. We will rather point out the practically important considerations,
give some intuitive explanations and try to keep technical considerations to a minimum. We
note that the energy Ep defined in (1) is invariant under orthogonal transformation of the N -
frames and we thus conclude that the solution of (4)–(5) is uniquely represented by Dp rather
than Cp.

We are thus facing the situation where we are given the possibility to access the density
matrix Dp for specific parameter values p, but we would like to keep those computations to a
minimum. This will be done in the so-called offline-stage, where two tasks will be assigned. First,
the choice of the points {pi}Qi=1 and second, the computation of the density matrix {Dpi

}Qi=1 at
each of those points.

In the online-stage, we are then given parameter-solution pairs {pi,Dpi
}Qi=1 with Dpi

∈MGr

and we aim to approximate the mapping

P 3 p 7→ Dp ∈MGr. (7)

Since the Grassmann manifold is not a vector space, it is obvious that a linear combination
of density matrices does not belong to MGr in general. In consequence, approximating MGr

with a vector space does not respect the geometric structure of the problem and some of the
properties of MGr would be lost in general.

For the Grassmann manifold, which is a differential manifold, for any given D0 = C0C
>
0 with

D0 := Dp0
and C0 := Cp0

for fixed p0, the tangent space is

TD0
MGr =

{
Γ ∈ RNb×N

∣∣∣C>0 Γ = 0
}
⊂ RNb×N . (8)

Note that the tangent space is an affine space. One can then introduce the Grassmann exponen-
tial which maps tangent vectors on TD0

MGr to the manifoldMGr in a locally bijective manner
around D0. Indeed, it is not only an abstract tool from differential geometry, but it can be com-
puted in practice involving the matrix exponential. By complementing C0 with orthonormal
columns to obtain (C0,C⊥) ∈ O(Nb) and Γ ∈ TD0

MGr we have

ExpGr,0(Γ) = CC>, C =
(
C0,C⊥

)
exp

(
0 −B>
B 0

)
INb,N , (9)

where the matrix B ∈ R(Nb−N)×N contains expansion coefficients of columns of Γ in a span of
columns of C⊥ such that Γ = C⊥B and INb,N = (IN , 0)> ∈ RNb×N are the first N columns of the
Nb×Nb identity matrix. As one can see, it is an exponential ansatz of a skew-symmetric matrix
that leaves out any redundant parametrization (the zero diagonal blocks) due to the mixing
of the virtual resp. occupied orbitals. In this manner the mapping between TD0

MGr and MGr
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becomes locally bijective. Further, the Grassmann exponential can then be expressed by

ExpGr,0(Γ) = CC>, C = [C0Ve cos(Σe) + Ue sin(Σe)]V
>
e , (10)

by means of a singular value decomposition (SVD) Γ = UeΣeV
>
e of Γ. A schematic representation

can be found in Figure 1 (left) and we refer to [31, 32] for further details and its derivation.
The inverse function is the so-called Grassmann logarithm LogGr,0 (see, e.g., [31, 32]) which

maps any D = CC> ∈MGr in a neighborhood of D0 to the tangent space TD0
MGr by

LogGr,0(D) = U` arctan(Σ`)V
>
` , (11)

using the following SVD decomposition

U`Σ`V
>
` = L with L = C

(
C>0 C

)−1
− C0. (12)

Note that we respectively denote by U`Σ`V
>
` and UeΣeV

>
e the thin Singular Value Decom-

positions (SVD) of L and Γ with the asymptotic cost of O(NbN
2), see e.g. [31, 32]. Such a

cost is comparable with the cost of a traditional dense diagonalization, which is commonly used
in SCF codes working with localized basis functions. We remark here that the diagonalization
itself is seldom the rate-determining step for medium-large calculations, which are dominated
by the cost of building the Fock matrix.

In this manner we map each density matrix Dpi
to the tangent space at the reference

point D0 in order to obtain Γi = LogGr,0(Dpi
). The reference point can in principle be chosen

arbitrarily but it is the most intuitive to place it in the center of the parameter domain P.
Since the tangent space is a vector space we have now transformed our problem to a standard
approximation problem of pairs of data (pi,Γi) belonging to Euclidian vector spaces. In the
next sections, we will precise how the map P 3 p 7→ Γ(p) ∈ TD0

MGr is approximated.
Before that, we summarize the global picture of our strategy: using the Grassmann logarithm

allows us to map density matrices on the tangent space at a particular point of the manifold.
Then we can rely on classical approximations techniques between the parameter domain and the
tangent space being a vector space. Having the approximation defined on the tangent space, we
use the Grassmann exponential to map back to the Grassmann manifold and thus can provide
a density matrix obeying the exact geometrical structure of the problem, i.e. belonging toMGr.

3.2. Approximation of density matrices

The case of a one-dimensional parameter space provides a simple intuitive way to illustrate a
first version of the approximation method using Lagrange interpolation. We proceed therefore
in two steps, explaining first the one-dimensional case before extending the methodology to
higher-dimensional parameter spaces.

3.2.1. One-dimensional parameter space

We predefine the offline-stage here in the sense that we choose Q + 1 interpolation points pi,
i = 0, . . . , Q, and compute the corresponding density matrices Di = Dpi

at those points. We
choose p0 and consider the tangent space TD0

MGr as above. For the remaining Q points pi ∈ P,
we build the Lagrange basis functions Li : P ⊂ R→ R:

Li(p) =

∏
j 6=i(p− pj)∏
j 6=i(pi − pj)

. (13)

In the online-stage, for any new p ∈ P we build the following approximation, using Γi =
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LogGr,0(Di),

Γ(p) =

Q∑
i=1

Li(p) Γi, (14)

upon which we apply the Grassmann exponential to finally obtain the approximate density
matrix

Dapp(p) = ExpGr,0

(
Q∑
i=1

Li(p) Γi

)
. (15)

By construction, the interpolation property Dapp(pi) = Di is satisfied due to the property
Li(pj) = δij of the Lagrange polynomials.

We note that when only two density matrices D0 and D1 are available, the application

Dapp(p) = ExpGr,0

(
p− p0

p1 − p0
Γ1

)
(16)

parametrizes the geodesic between D0 and D1 on MGr, as long as the exponential map is
bijective, which is at least satisfied when p0 and p1 are close. This is the most natural way to
define an approximation on MGr for values p ∈ [p0, p1].

3.2.2. Multi-dimensional parameter space

We now extend our considerations to arbitrary dimensional parameter domains. The previous
case of a one-dimensional parameter space suggests that accurate approximations of Γ can be
obtained in the form of linear combinations of polynomials in p times known vectors Γi belonging
to the tangent space.

We state now two remarks that seem appropriate at this point. First, a possible generaliza-
tion of the approach to higher dimensions can be realized by tensor-products of the Lagrange-
polynomials. This would, however, require an exponential increase (with respect to the dimen-
sion) of data-points pi on a structured grid where the solutions Di and Γi, respectively, are
required to be known. A remedy can consist of the use of sparse grids on the parameter domain
but we will propose in the following a more adaptive framework.

Second, the set of all Γi = LogGr,0(Di), i = 1, . . . , Q, might be highly linearly dependent.
In such cases, there exists a low-dimensional basis {Θ1, . . . ,Θn}, with n � Q, such that the
manifold

D0,T := {Γ(p) = LogGr,0(Dp) | p ∈ P} ⊂ TD0
MGr, (17)

on TD0
MGr can be well-approximated by suitable elements of the n-dimensional space

Vrb = Span{Θ1, . . . ,Θn} ⊂ TD0
MGr, (18)

see Figure 1 (right) for a schematic illustration of the situation. The approximate density matrix
Dapp(p) will be defined as Dapp(p) := ExpGr,0 (Γapp(p)), with

Γapp(p) =

n∑
i=1

Li(p) Θi, (19)

where the functions Li : P → R and the reduced basis {Θ1, . . . ,Θn} have to be appropriately
chosen. We focus for now on the practical aspects of the method. A more theoretical approach
is presented in Appendix A.
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We start by choosing a rather large number Np of parameters p ∈ P (of the order 100 in
our test cases), covering the parameter space P in a reasonable way. For example, one can take
a uniform grid (as in our numerical tests) or (quasi-) random points on the parameter space P.
Then, the offline part can be summarized by the following two main steps.

First, d parameter points {q1, . . . , qd} among the Np points {p1, . . . , pNp
} are selected, for

which the density matrices are computed and, as well, their Grassmann logarithms which we
denote by {Γ(p1), . . . ,Γ(pd)}. Second, a reduced basis {Θ1, . . . ,Θn} with n ≤ d (hopefully
n � d) of Grassmann logarithms is computed using a singular value decomposition (SVD),
from which the functions Li(p) are also deduced.

More precisely, we first choose d ∈ N multivariate functions {P1, . . . , Pd} with Pj : P → R
for j from 1 to d. For simplicity, we take all multivariate monomials on P of cumulative degree
up to M with a total of d monomials. However, other choices for a basis are possible and do
not change the substance of the method. We then assemble the matrix P̃ ∈ RNp×d containing
the values of these functions at the parameters {p1, . . . , pNp

}, i.e. P̃i,j = Pj(pi).
The main idea is to minimize the error between the exact and approximate Grassmann

logarithms on these Np samples, i.e. solve

min
Θ∈Rd×(Nb·N)

‖Γtrain − P̃Θ‖, (20)

where Γtrain ∈ RNp×(Nb·N) contains as rows the Γ(pi) reshaped in vectors, and where ‖ · ‖ is a
suitable norm. An approximate solution to this problem is found by selecting a square submatrix
of P̃ using the so-called maxvol method as introduced in [33]. It finds a quasi-dominant square

d× d submatrix denoted by P̂ ∈ Rd×d of P̃ by selecting d samples {qi}di=1. The approximate Θ
is then written in the form

Θ = P̂−1Γ̂, (21)

where Γ̂ ∈ Rd×(Nb·N) contains as rows the reshaped Grassmann logarithms Γ(qi). A great feature
of this method is that it requires only the computation of the density matrices for the selected
parameters {q1, . . . , qd} and not for all Np parameters. At this stage, the Grassmann logarithm
for a new parameter p can be computed via

Γapp(p) =

d∑
i=1

[
P (p) P̂−1

]
i
Γ(qi), (22)

with P (p) = (P1(p), P2(p), . . . , Pd(p)).
The second part consists of further reducing the dimensionality by performing a SVD on

the matrix Γ̂, noting that its rows can be highly linearly dependent. The SVD writes

Γ̂ = ÛnŜnV̂n + Ên, Ûn ∈ Rd×n, Ŝn ∈ Rn×n, V̂n ∈ Rn×(Nb·N), (23)

where Ên is the remaining error term due to truncation. The truncation order n is determined
based on a user-specified error tolerance ε by requiring σn+1(Γ̂) < εσ1(Γ̂), where σi(Γ̂) denotes

the i-th singular value of Γ̂. We denote by (Θ1, . . . ,Θn) the rows of the matrix V̂n reshaped into
matrices of size Nb ×N . Substituting the truncated SVD into (22) leads to

Γapp(p) =

n∑
i=1

[P (p)Z]i Θi, (24)

where Z = P̂−1UnSn ∈ Rd×n and Θi can be precomputed offline. Thus, the online stage consists
of building, for any new parameter p ∈ P, the matrix P (p), building Γapp(p) according to (24)
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Algorithm 1: Offline stage

Data: Domain P of parameter p; d multivariate monomials {Pi}di=1; relative truncation
threshold ε for the SVD.

Result: A reduced basis (Θ1, . . . ,Θn) along with its size n and a d× n matrix Z, that
define approximation in (24).

Total complexity: O((Np +NbN)d2 +Nβ
b d) if Np > d > n and NbN � d.

1 Define a uniform grid of Np points pj ∈ P such that Np ≥ d. This requires O(Np)
operations.

2 Compute the matrix P̃ ∈ RNp×d given by P̃i,j = Pj(pi). Since all Pj(p) are monomials,
complexity is O(Npd).

3 Apply the maxvol method to the matrix P̃ to obtain d indices of rows {piv(i)}ni=1 and

compute the corresponding submatrix P̂ . The number of operations is O(Npd
2).

4 Define the set {qi}di=1 such that qi = ppiv(i). The operation count is O(d).

5 For each qi define Γ̂i,: by reshaping the computed value of Γ(qi) into a Nb ·N row vector.

The complexity is O(Nβ
b d), where β depends on the eigenvalue solver.

6 Compute the SVD of the matrix Γ̂ ∈ Rd×(Nb·N), truncate it to the rank-n approximation

UnSnVn such that σn+1(Γ̂) < εσ1(Γ̂). This step is done in O(NbNd
2) operations.

7 Reshape each row of n× (Nb ·N) factor Vn into a corresponding Nb ×N -matrix Θi. No
need to perform any operations, since reshape does not require any actions.

8 Output d× n matrix as the product P̂−1UnSn. Inverting, multiplying and diagonal

scaling in O(d3 + nd2 + nd) operations.
9 Output the reduced basis {Θ1, . . . ,Θn}.

and finally computing the Grassmann exponential thereof in order to obtain the approximate
density matrix Dapp(p).

The algorithms presenting the computations done in the offline and online stages are de-
scribed in Algorithm 1 and 2, together with the complexity of their different operations. Note
that the most time-consuming step in the online calculation is the application of the Grassmann
exponential.

3.3. Summary of the method

To summarize, the proposed approach returns an approximate density matrix Dapp(p) of D(p)
at any given point p inside the parameter domain P. This density matrix Dapp(p) is then used as
an initial guess for the SCF solver. The goal is to reduce the number of required SCF iterations.
The starting guess is found with the two following steps:

(1) Offline, precomputations: define points in P where the exact density matrix and functionals
thereof are computed.

(2) Online, runtime computations: use the precomputed density matrices and functionals to
reconstruct an approximate density matrix Dapp(p) at any parameter point p ∈ P.

The above mentioned steps are different for one-dimensional and multi-dimensional cases. In
the case of a one-dimensional domain P, the data points are chosen in a greedy hierarchical
manner, as described in [34]. Then, a Lagrange interpolation is built upon these points. In the
multi-dimensional case, we use Algorithm 1, performed offline, to obtain both the points and
the data. Then, for any given value of p ∈ P we use Algorithm 2 to compute an initial guess.
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Algorithm 2: Online stage

Data: A point p ∈ P; d multivariate monomials {Pi}di=1; the reduced basis {Θ1, . . . ,Θn};
the matrix Z ∈ Rd×n appearing in equation (24)

Result: The approximate value of D(p)
Total complexity: O(NbN(n+N)) if NbN � d.

1 Compute the vector P (p) = (P1(p), . . . , Pd(p)) at the new point p. The number of
operations is O(d).

2 Compute the vector of scalars (L1(p), . . . , Ln(p)) = P (p)Z. This multiplication is done
with O(nd) operations.

3 Compute the matrix Γapp(p) =
∑n

i=1 Li(p)Θi. Summation with O(nNbN) operations.
4 Apply Grassmann exponential: Dapp(p) = ExpGr,0(Γapp(p)) Complexity of this step is

mostly defined by the SVD leading to O(NbN
2) operations

4. Numerical results

To demonstrate the method’s accuracy and robustness, we illustrate it on four different small-
to medium-sized molecules, namely, the amino acids alanine, asparagine, phenylalanine, and
tryptophan (13, 17, 23, and 27 atoms, respectively). If not explicitly stated otherwise, all the
SCF calculations in the following have been performed using the CFOUR [35] suite of program,
employing Dunning’s cc-pVDZ basis set [36]. The SCF program was modified so that a guess
density matrix, obtained with the newly developed method, could be provided as an input. The
default convergence criterion was used for all the calculation: 10−7 for the root-mean-square
(RMS) change of the density and 10−6 for the maximum change. The algorithm developed to
generate the guess density, presented in Section 3.2 has been implemented in Julia [37]. The
program works with input densities which are generated by CFOUR, and writes as output the
computed guess density matrix in a file, that can be read by CFOUR.

In order to generate displaced geometries, normal modes are computed for the molecules
using analytical second derivatives. For each molecule, we choose two different normal modes,
one corresponding to the carbonyl C-O stretching, the second to a low-frequency collective
vibration. All the starting structures, including the normal modes used to generate displacement
geometries, are reported in the supporting information.

As parameter values p, we consider the coefficients corresponding to each normal mode, i.e.
the nuclear coordinates are constructed by

r = r0 +

P∑
i=1

pini, (25)

where r0 denotes the equilibrium geometry, pi the i-th component of the parameter p and ni the
i-th normal mode. For one-dimensional parameter domains, we consider thus one normal mode
(the one reported first in the supporting information) whereas for two-dimensional domains,
we consider both normal modes. The parameters pi are chosen in the range [−1, 1] bohr and
discretized using an 11 points grid, i.e., we displace the geometries of −1,−0.8, . . . times the
normal coordinate. For alanine, we repeat the calculations taking the larger parameters domain
[−10, 10] bohr, still using an 11 points grid. The latter example is denoted by “Alanine*”. The
grids for two-dimensional domains are formed by a tensor product of the one-dimensional grids.
For any given parameter p, the corresponding molecular geometry can then be generated and
used for a SCF calculation.

In the following, we provide several numerical tests. We illustrate how we can provide ac-
curate initial density matrices for one-dimensional and two-dimensional parameter spaces. To
assess the quality of the guess, we report the number of SCF iterations required to achieve
convergence and we compare it with the number of iterations required starting from a guess
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Table 1. Number of SCF iterations required to achieve convergence (max change in the density smaller than 10−6)

using different initial guesses. As the computations were carried out using different packages, that offer different SCF
implementations, this cannot be considered an accurate comparison between the various guesses, but only a qualitative

estimate of the number of required iterations. Core: diagonalization of the core Hamitlonian (with CFOUR). Harris:

diagonalization of the Harris functional (Gaussian 16). Hückel: using the extended Hückel method (PySCF). MinAO: start
from a SCF calculation using a minimal AO basis set, which is then projected onto the chosen basis (PySCF). SAD:

superposition of atomic densities (PySCF).

Alanine Asparagine Phenylalanine Tryptophan

Core 21 21 23 26
Harris 13 14 14 15
Hückel 16 17 17 18
MinAO 15 17 17 17
SAD 16 17 17 17

obtained by diagonalizing the core Hamiltonian, which is the default guess in CFOUR. For
1D grids, we use the method presented in Section 3.2.1 whereas for examples involving a two-
dimensional parameter space, we use the general algorithm reported in Section 3.2.2. Before
proceeding with the numerical tests, we report in Table 1 the number of SCF iterations needed
to converge the Hartree-Fock equations, using different guess procedures, at the equilibrium
geometry of the various test systems. The calculations were performed with different softwares,
namely, CFOUR, Gaussian 16 [38] and PySCF 1.7 [39] and are therefore not directly compa-
rable. However, they provide a qualitative estimate of the number of SCF iterations one can
expect for such calculations and thus a benchmark for our algorithm. As convergence criteria are
different in the various codes, we consider the SCF converged when the maximum variation of
the density matrix between two subsequent iterations is smaller than 10−6, as this information
is reported in all codes used for the various calculations.

4.1. One-dimensional parameter domains

For this first batch of tests with P = 1, we compute an approximation of the density matrix
using the method presented in Section 3.2.1 for every point in the parameter space (i.e., for
each displaced geometry) and use it as a starting guess for a SCF calculation in CFOUR. We
repeat such computations varying the order of interpolation, i.e., the number of precomputed
densities used to build the guess. In order to select the interpolation points, we select them
with a hierarchical greedy algorithm that chooses as next point the parameter value where the
current approximation is worst, sometimes also referred to the magic points (see [34]). In this
simple one-dimensional case, we consider the left-most, thus the smallest, parameter value as
the root to build the tangent space. We observe numerically that all the results are independent
on the choice of the root to build the tangent space, which is not obvious from the formulae.

The results obtained using our guessing procedure for the four amino acids selected as test
molecules are reported in Figure 2. In the left panel, we show the maximal number of SCF
iterations required to achieve convergence over all the points in the test grids. In the right
panel, the accuracy of the guess with respect to the converged SCF density is also reported.
The tests confirm the good accuracy of our guess, as using a Lagrange polynomial interpolation
of degree 5 manages to reduce the number of required SCF iterations to only a few, namely, 3
for asparagine, 2 for alanine, and to 1 for phenylalanine and tryptophan. The latter result is
particularly noteworthy as it demonstrates that, for these two systems, our guessing procedure
can produce a guess density which is essentially already at convergence, as it can also be seen by
looking at the norm of the error in the right panel. This makes in turn the overall SCF procedure
unnecessary. For the other two molecules, convergence is achieved in 2 or 3 iterations, which is
still a remarkable gain with respect to the standard procedure, that always requires at least 13
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Figure 2. Results for the 1D parameter space. Number of SCF iterations required to achieve convergence (left panel)
and Frobenius norm error on the density guess (right panel) as a function of the interpolation order for the various test

systems. All the calculations were performed with CFOUR using the following convergence criteria for the increment of

the density ∆P : RMS ∆P < 10−7 and max |∆P | < 10−6.

iterations.
We point out that while we are considering small perturbations to the equilibrium geometry,

these are not negligible. The SCF energy along the grid points varies of about 1.5-2.0 kcal/mol,
which is a small, but significant oscillation if compared with the thermal energy at room tem-
perature. In the following examples, we will explore larger energy fluctuations in order to assess
the robustness of the method.

An interesting comparison can be made here with a common-practice strategy to provide
a good guess for SCF calculations at similar geometries, i.e., using the converged SCF density
as a guess for a calculation at a close geometry. We proceed as follows. We compute a fully
converged SCF solution at the first gridpoint and then we advance along the 1D grid using each
time the SCF density of the previous point as a guess. Considering the 10 points for which a
guess density was available, the SCF converged on average in 10 iterations for tryptophan, 11
iterations for alanine and asparagine, and 12 iterations for phenylalanine. While these numbers
are, as it could be easily expected, an improvement with respect to the ones reported in Table 1,
it is apparent how our algorithm outperforms this strategy. We also repeated the calculation for
alanine on the coarser grid, i.e., using displacements of 1 bohr along the normal coordinate. In
this case, 13-14 iterations were needed to achieve convergence, which is close to what reported
in Table 1, meaning that the geometry change considered for this example is already more than
enough to produce sizeable changes in the density matrix and hindering thus the efficiency of a
simple strategy such as using the density at the closest available geometry.

4.2. Two-dimensional parameter domains

We now present similar tests for the case where the parameter domain is two-dimensional, i.e.,
we allow the displacement of the atoms in the molecules in two normal directions (P = 2). The
initial guess density matrix is computed with the method presented in Section 3.2.2, using a
maximum cumulative degree of the monomials taken to M = 8 with a corresponding number
of monomials d = 45. This ensures in the following numerical tests that the tolerances obtained
in equation (23) are reasonably small.

For the two-dimensional grid used here, we generate a uniform 11×11 test-grid consisting of
121 points, i.e., displaced geometries. Note that in the offline part, the required SCF computa-
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Figure 3. Maxvol-selected points for 2D case for different maximum cumulative degree M .

tions are only those of the selected parameters in the maxvol method presented in Section 3.2.2,
i.e. only d = 45 calculations. Figure 3 shows the actual points selected by the maxvol-algorithm,
for maximum cumulative degrees M equal to 5 and 8 respectively. The converged density matri-
ces at the selected points are then used to build the reduced basis, the size of which is reported
in the following. For the four considered molecules, using the [−1, 1] parameter range, the SCF
energy exhibits much larger fluctuations than the ones observed for the P = 1 examples. In
particular, the energy fluctuates of 9.1, 8.9, 8.5, and 7.6 kcal/mol for alanine, asparagine, pheny-
lalanine, and tryptophan, respectively. These are large energy fluctuations for a single molecule
if compared, for instance, with the thermal energy at room temperature, and are likely not to be
encountered when performing a molecular dynamics simulation. As in the 1D case, we chose the
lower-left parameter value as the root to build the tangent space, and we observe numerically
that the results are independent of the choice of the root to build the tangent space.

In Figure 4 (left panel) we report the maximum number of SCF iterations required to achieve
convergence over the test grid of parameter values as a function of the size of the reduced basis
used to build the approximation. In the right panel, the error of the computed guess with respect
to the converged SCF density is reported.

These results show that, despite the sizeable fluctuations in the energy, our procedure is
always able to reconstruct a guess density that is at convergence for every displaced geometry
using no more than 17 basis vectors, with 13 being enough to obtain the same result in the
best-case scenario (tryptophan). The convergence of the error in the density with respect to
the number of basis vectors (right panel) is fast and smooth, which confirms the excellent
performances of our procedure.

A computational remark is, at this point, mandatory. The guess procedure presented in
Section 3 consists of two separate parts, named offline and online stages, respectively. In the
offline part, the reduced basis is assembled. This is of course the expensive part of the procedure,
as in order to compute the reduced basis, we need to solve the SCF problem at a given number
of points, depending on the required accuracy. The online state is, on the other hand, completely
inexpensive and can be performed in a fraction of a second for all the examples reported in this
work. The key idea beyond the separation of the procedure in two different stages is that the
offline one can be performed once and for all: as soon as the reduced basis is available, only
the online stage has to be performed. In practice, this means that if we were to repeat our
test calculations with a much finer grid, we would get a guess density for all the points using
the reduced basis already assembled, and therefore at a cost that is completely negligible with
respect to that of performing even a single SCF iteration.

In order to test the robustness of our procedure, we repeated the calculations on alanine using
a two-dimensional grid, this time with a parameter domain of [−10, 10]. This grid encompasses
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Figure 4. Results for the 2D parameter space. Number of SCF iterations required to achieve convergence (left panel)
and Frobenius norm error on the density guess (right panel) as a function of the interpolation order for the various test

systems. All the calculations were performed with CFOUR using the following convergence criteria for the increment of

the density ∆P : RMS ∆P < 10−7 and max |∆P | < 10−6.

large geometry variations, with the SCF energy varying in a range of more than 1000 kcal/mol,
and provides a test for our algorithm in more extreme conditions. In Figure 5 we report, in the
left panel, the results obtained for this case using the same setup used for the other 2D examples.
The number of SCF iterations is reported on the right axis, while the error is on the left. For
comparison, the results for the same molecule and the previous grid are always reported. We
can immediately see how our guess procedure is now struggling to provide an accurate guess.
Increasing the size of the reduced basis, we observe that the accuracy is stagnating, so that there
is no gain by further increasing it. In order to better understand the source of this behavior, we
allow the maximum cumulative degree of the monomials used in the algorithm to grow up to 14.
The results are reported in the right panel of Figure 5. The guess density error and the number
of SCF iterations exhibit now a convergent behavior, with as little as 5 iterations needed to
converge the SCF in the worse case scenario when using the largest reduced basis. However, the
size of the reduced basis required to observe a large reduction of the number of SCF iterations
is much larger than what was observed before. We stress however that this is an extreme test
case, and that we compute the SCF at geometries that are always quite distant from each other
and it is hard to imagine a similar situation in a real-life application. However, the reduced basis
built for this example allows one to explore a much larger portion of the potential energy surface
of alanine than before, so that a larger number of vectors in the reduced basis appears justified.
We stress that, even though the reduced basis is much larger than in the other examples, the
online stage of the algorithm can still be performed in a negligible amount of time (less than 1
second).

Finally, in order to check the method when a larger basis set is used, we repeated the
calculations, once again chosing alanine and employing the fine 2-dimensional grid, using the
augmented, triple zeta Dunning’s basis set aug-cc-pVTZ. These sets of results are labeled “Ala-
nine+” and reported in Figure 6, where they are compared vis-a-vis with the results obtained
with the smaller cc-pVDZ basis set. As it can be seen from the figure, the use of a larger basis
set has virtually no influence on our algorithm. This result is not surprising, as the methodology
applies in principle to the non-discretized problem as well, i.e., for complete basis sets.
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Figure 5. Comparison of alanine and alanine* in the 2D parameter space. Number of SCF iterations required to achieve

convergence and Frobenius norm error on the density guess as a function of the interpolation order for M = 8 for both
systems (left panel) and M = 8 for alanine and M=14 for alanine* (right panel). All the calculations were performed

with CFOUR using the following convergence criteria for the increment of the density ∆P : RMS ∆P < 10−7 and max

|∆P | < 10−6.
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Figure 6. Comparison of alanine and alanine+. Number of SCF iterations required to achieve convergence and Frobenius

norm error on the density guess as a function of the interpolation order for the 1D parameter space (left panel) and the 2D

parameter space (right panel). All the calculations were performed with CFOUR using the following convergence criteria
for the increment of the density ∆P : RMS ∆P < 10−7 and max |∆P | < 10−6.
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5. Perspectives

In this contribution, we presented a new method to compute a guess density matrix for the
self-consistent field procedure at a given molecular geometry exploiting in an efficient way
results available for other molecular geometries. The method is robust and is able to efficiently
reconstruct a very good approximation to the SCF density at the a new geometry, often to the
point that the SCF procedure itself becomes unnecessary. The proposed algorithm is divided
in two different steps. In a first, offline phase, the building blocks for the approximation of
the density are computed. This phase thus encompasses all the most expensive steps in the
calculation, including solving the SCF problem at a number of geometries, which are chosen
using a greedy strategy that attempts to add, at every new point, the most relevant information
to improve the basis. Once this first stage is completed, the online phase comes into play. Starting
with the results of the offline stage, the approximated density is built for any new molecular
geometry. The cost of this second phase is negligible and the computational investment of the
offline phase can be harvested in a many-query context where the online phase is used many
times or, in other words, the effort done to assemble the reduced basis pays off when many
other computations need to be performed, as a very good guess can be assembled for all such
computations at a very little cost.

In this first work, we tested the algorithm on a few selected medium-sized molecules, namely,
the amino acids alanine, asparagine, phenylalanine and tryptophan. In order to create displaced
geometries, we computed normal modes and chose two particular vibrations, namely, the car-
bonyl stretching and a low-frequency collective mode, and used such coordinates to create either
one- or two-dimensional grids, displacing the equilibrium geometry of 5 uniform increments per
direction per dimension, generating thus 11 and 121 geometries, respectively, for the 1D and
2D cases. We tested our method both with displacements compatible with steps used in finite
difference calculations of energy gradients, for which we observed variations in the SCF energy
of about 7-9 kcal/mol, and also for much larger displacements, that gave rise to a range of SCF
energies spreading well over 1000 kcal/mol. In both cases and for all molecules, the algorithm
showed very good performances, generating a guess able to reduce the number of SCF iterations
required to achieve convergence to only a few, if any was needed at all.

The main limitation of our strategy is that, at the moment, it was tested and applied only
to low dimensional problems (in parameter domain) - as these are the only ones for which it is
possible to generate uniform grids and compute reference data at each point with reasonable
computational resources. The next natural stage is to test the algorithm on a more general set
of data for a high-dimensional parameter domain and develop a strategy to handle the creation
of a reduced basis when there is no simple connection between the different geometries. That
would be the case if the geometries were generated randomly or with molecular dynamics. The
latter application is of course particularly interesting. However, further understanding of the
theory is still required and a new strategy to assemble the reduced basis on-the-fly has to be
developed in order to circumvent the so far artificial offline-online decomposition.
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Appendix A. Appendix

We describe in this appendix the method used in the case of multi-dimensional parameter
spaces. In particular, we detail the motivations and justifications behind the choices leading to
the method presented in Section 3.2.2.

First, the approximate density matrix Dapp(p) will be defined as Dapp(p) :=
ExpGr,0 (Γapp(p)) , with

Γapp(p) =

n∑
i=1

Li(p) Θi, (A1)

where the functions Li : P → R and the reduced basis {Θ1, . . . ,Θn} have to be appropriately
chosen.

Since each Θi consists of Nb · N elements, an obvious upper bound on a dimensionality of
the reduced basis is n ≤ NbN , but we hope to have a reduced basis of a much smaller i.e.
n � NbN . Let us assume for now that some arbitrary set of functions {Li(p)}ni=1 are given
and that they are stored in a row-vector L(p) = (L1(p), L2(p), . . . , Ln(p)). Let us denote by
Θ the 3-dimensional tensor such that Θ(i, :, :) = Θi which is simply a stack of all elements
Θi ∈ RNb×N . Since we are looking for approximations of the form (A1), we can rewrite it in
compact notation as

Γapp(p) = L(p)Θ. (A2)

With these considerations, it now becomes clear that we have to optimize simultaneously the
reduced basis Vrb as well as the functions Li(p) contained in the vector L(p), i.e., we consider
the minimization problem

min
Θ∈Rn×Nb×N

min
L
‖Γ(·)− L(·)Θ‖∗, (A3)

where the norm ‖ · ‖∗ is arbitrary and any suitable norm can be chosen.
This problem can also be viewed from a different angle: For the given Nb · N functions

Γj,i(p) and given functions L1(p), L2(p), . . . , Ln(p), one aims to approximate each Γj,i(p) in the
space spanned by elements of L, i.e., the Li. Then, the ansatz (A1) can be seen as finding

1https://blog.rwth-aachen.de/cammp/angebot-fuer-studierende/
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coefficients Θ1,Θ2, . . . ,Θn, thus the reduced basis, for given row-vector L(p). This corresponds
to exchanging the order of the minima in (A3).

From this perspective we first prescribe d polynomial basis functions P1(p), P2(p), . . . , Pd(p),
collected in the vector P (p) = (P1(p), P2(p), . . . , Pd(p)), spanning a sufficiently large space such
that the distance between Γ(p) and its projection to the space spanned by P (p) is smaller than
a certain threshold. Just like the size n of the reduced basis, reasonable value of d is assumed
to satisfy d� NbN . Then, for given functions Pi(p) (and thus P (p)) one is aiming at a Θ that
minimizes the following distance:

ΘP = arg min
Θ∈Rd×Nb×N

‖Γ(·)− P (·)Θ‖∗. (A4)

Note that the dimension d of the reduced basis, as constructed like this, will be reduced in a
further step. As norm ‖ · ‖∗, we will first consider the ideal choice

‖Γ(·)− P (·)Θ‖2∗ =

∫
P
‖Γ(p)− P (p)Θ‖2F dp, (A5)

as starting point. Here ‖ · ‖F stands for the Frobenius norm for matrices. Having the exact Γ(p)
at every point p ∈ P is not feasible in practice which motivates to introduce a quadrature rule
based on points pj and weights ωj , j = 1, . . . , Np given by:

‖Γ(·)− P (·)Θ‖2◦ :=

Np∑
j=1

wj‖Γ(pj)− P (pj)Θ‖2F ≈ ‖Γ(·)− P (·)Θ‖2∗. (A6)

Introducing Γ̃ ∈ RNp×(Nb·N), Θ̃ ∈ Rd×(Nb·N) and P̃ ∈ RNp×d defined by

Γ̃j,: = reshape(Γ(pj), 1, Nb ·N), (A7)

Θ̃ = reshape(Θ, d,Nb ·N), (A8)

P̃j,i = Pi(pj), (A9)

we rewrite the optimization problem as follows:

Θ̃P̃ = arg min
Θ̃∈Rd×(Nb·N)

‖Γ̃− P̃ Θ̃‖F , (A10)

assuming pj is a uniform grid in P, i.e. ωj = |P|
Np

.

In consequence, we transformed the problem to a least squares problem, whose solution, for
given P̃ , is given by the pseudoinverse of P̃ acting on Γ̃:

Θ̃P̃ = P̃ †Γ̃. (A11)

Thus, in the case where the matrix P̃ is given, we have an explicit expression for the minimizer
and one can easily compute the optimal coefficients Θi of the approximation (19). Returning to
the global optimization problem (A3), this allows us to write the optimization problem in only

one variable, namely the Np × d matrix P̃ . The minimization problem becomes

P̃opt = arg min
P̃∈RNp×d

‖Γ̃− P̃ P̃ †Γ̃‖F . (A12)

The solution of such an optimization problem is the best approximation of Γ̃ by matrices of
(given) rank d (the size of reduced basis) and can be obtained by performing the singular value
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decomposition of the matrix Γ̃ = UΣV >, so that P̃opt and Θ̃opt are given by

P̃opt = Ud, Θ̃opt = U>d Γ̃, (A13)

where UdΣdV
>
d is the rank d approximation of Γ̃ with Ud ∈ RNp×d, Σd ∈ Rd×d and Vd ∈ RNb·N×d.

This provides the solution to the optimization problem (A3) for the particular norm defined
in (A6).

Unfortunately, the optimal Θ̃opt, as can be found in equation (A13), requires full knowledge

of Γ̃, i.e., Γ(pj) for every quadrature point pj . In the following we show how we can drastically
reduce the amount of points p where we need to compute Γ(p). In order to do so, we propose to
replace the Frobenius norm in favour for the max norm for matrices, also known as Chebyshev
norm, given by

‖A‖C = max
ij
|aij |. (A14)

This leads to the following optimization problem

Θ̃opt,C = arg min
Θ̃∈Rd×(Nb·N)

‖Γ̃− P̃ Θ̃‖C. (A15)

We then aim to find quasi-optimal solutions of this problem by so-called interpolative approxi-
mations of the form

Γ̃app = CUR, (A16)

where either C is a collection of “basis” columns of Γ̃ or R is a collection of “basis” rows of Γ̃ and
U is a “core” matrix. If both C and R are submatrices of Γ̃, then the “core” matrix is, usually,
an inverse or pseudo-inverse of the intersection of the “basis” rows R and the “basis” columns C.
Such an approximation is called cross approximation since the intersection of columns and rows
reminds of a cross. A theoretical analysis of cross approximations, provided in [33, 40], proves
that such a rank d decomposition exists, i.e., U ∈ Rd×d, such that

‖Γ̃− CUR‖C ≤ (d+ 1)σd+1(Γ̃). (A17)

Here, σd+1(Γ̃) denotes the (d+1)-st singular value of Γ̃ in descending order. More recent results
on the error estimation in the Chebyshev norm can be found in [41, 42]. Although the Chebyshev
norm is studied well in terms of theory and practical methods, building cross approximations
with controlled error in the spectral or Frobenius norm is still ongoing research. We refer to the
recent papers [43, 44] for further information.

Since we are looking for the interpolative approximation by rows of Γ̃, the matrix C ap-
pearing in equation (A16) can be chosen arbitrary as long as the space spanned by its columns

approximates columns of Γ̃ with high enough precision. The best choice is, of course, the first
left singular vectors of Γ̃, which again requires the undesirable full knowledge of Γ̃. However, any
column of Γ(p) can by construction be well approximated by an element in the space spanned
by the elements of P (p) (the polynomial basis functions), so the matrix C can be defined as the

matrix P̃ , previously defined as the vector P (p) at all quadrature points pj . Then the “core”

matrix U is simply an inverse of some submatrix of P̃ and the matrix R is just a collection of d
rows of the matrix Γ̃, corresponding to d computations of Γ(p).

This is realized by analyzing only the matrix P̃ to select a few samples {qj}dj=1 where we
need to compute subsequently the matrices Γ(qj). For this purpose we use the so-called maxvol

method as introduced in [33]. It finds a quasi-dominant square d×d submatrix of P̃ in O(Npd
2)

operations. A d× d submatrix of the Np × d matrix P̃ is called dominant if the modulus of its
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determinant does not grow if we change one of its rows by any other row of P̃ . Quasi-dominance
means that the modulus of the determinant does not grow by more than a factor of 1 + α with
a small value of α. Such a property is necessary for the theoretical error estimation presented
in equation (A17).

In practise, the maxvol method takes the matrix P̃ ∈ RNp×d as input and returns the square
quasi-dominant submatrix P̂ ∈ Rd×d along with a matrix of coefficients C ∈ RNp×d, such that
the product of the coefficients by the submatrix is equal to the input P̃ , i.e.,

P̃ = CP̂ , C = P̃ P̂−1. (A18)

Let us denote {piv(i)}di=1 the set of row-indices such that P̂i,j = P̃piv(i),j . We now define

Γ̂i,j = Γ̃piv(i),j qi = ppiv(i). (A19)

Then, the interpolative approximation of Γ̃ is given by

Γ̃ ≈ P̃ P̂−1Γ̂ = P̃ Θ̃ (A20)

with Θ̃ = P̂−1Γ̂ and we define the approximation

Γapp(p) =

d∑
i=1

(
P(p)P̂−1

)
i
Γ(qi). (A21)

One of the main features of this approximation is that, in order to compute the value of Γ(p)
at a new point p, we only need to compute a row-vector P (p) of values of the polynomials Pi(p)

at the new point p and that the functions
(
P (p)P̂−1

)
i

are polynomials in the prescribed space.

Since we are working with P̃ instead of Γ̃, the actual error is different from the estimation
in (A17). We omit the error analysis of our approximation in this paper and plan to release it
in a follow-up article.

Note that the “basis” rows Γ̂ of the matrix Γ̃ can be highly linearly dependent. We therefore
consider the singular value decomposition of the matrix Γ̂ and truncate it up to rank n:

Γ̂ = ÛnŜnV̂n + Ên, (A22)

such that Ûn ∈ Rd×n, Ŝn ∈ Rn×n, V̂n ∈ Rn×(Nb·N) and Ên is the remaining term due to trunca-
tion. Substituting the truncated SVD into (A20) we get:

Γ̃ ≈ P̃ P̂−1ÛnŜnV̂n. (A23)

Let us denote the i-th row of V̂n, after reshaping into a Nb ×N matrix, as Θi and the product
P̂−1ÛnSn as a matrix Z. Then, we approximate the value of Γ(p) for any new value of p as

Γapp(p) =

n∑
i=1

Li(p)Θi. (A24)

with Li(p) = (P (p)Z)i, which is exactly of the form (A1). The additional SVD further reduces
the dimension of the reduced basis but of course introduces another error, which is neverthe-
less controlled by the singular values, but such an approximation requires a proper theoretical
analysis, which is omitted in this paper. It can be derived in the same way as the theoretical
estimations in [41, Theorem 4.8].
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The proposed approximation technique can be formally divided into two parts: an offline
stage, where the reduced basis is pre-computed, and an online stage, where an approximate
value of D(p) is computed efficiently for a given p.

The offline part is schematically illustrated in Algorithm 1. This stage requires O((Np +

NbN)d2 + Nβ
b d) operations, where Np stands for the number of quadrature points pj , Nb and

N are the number of atomic orbital basis functions and the number of orbitals respectively.
Further, d is the number of basis multivariate monomials and β is a power factor determined
by the specific nature of the eigenvalue solver that is employed to solve (4)-(5).

The online part containing the approximation of D(p) for any new p is sketched by Alg. 2. It
shall be noticed that this part is of much lower complexity: it uses only O(n(NbN+d2)+NbN

2)
operations, where n is a size of the final reduced basis. It is worth to emphasize, that both
procedures, offline as well as online, must use the same set of basis monomials {P1, . . . , Pd}.
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