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Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution

among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better

understand the global carbon cycle, support the development of climate policies, and project future climate

change. Here we describe data sets and methodology to quantify the five major components of the global carbon

budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production

data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use

change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate

(GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial

CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting car-

bon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes

in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the

contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2009–2018),

EFF was 9.5±0.5GtC yr−1, ELUC 1.5±0.7GtC yr−1, GATM 4.9±0.02GtC yr−1 (2.3±0.01 ppmyr−1), SOCEAN

2.5±0.6GtC yr−1, and SLAND 3.2±0.6GtC yr−1, with a budget imbalance BIM of 0.4GtC yr−1 indicating over-

estimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1%

and fossil emissions increased to 10.0± 0.5GtC yr−1, reaching 10GtC yr−1 for the first time in history, ELUC

was 1.5±0.7GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9GtC yr−1 (42.5±3.3GtCO2). Also

for 2018, GATM was 5.1± 0.2GtC yr−1 (2.4± 0.1 ppmyr−1), SOCEAN was 2.6± 0.6GtC yr−1, and SLAND was

3.5±0.7GtC yr−1, with a BIM of 0.3GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm

averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of

+0.6% (range of −0.2% to 1.5%) based on national emissions projections for China, the USA, the EU, and

India and projections of gross domestic product corrected for recent changes in the carbon intensity of the econ-

omy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget

are consistently estimated over the period 1959–2018, but discrepancies of up to 1GtC yr−1 persist for the rep-

resentation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the

introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change

emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude

of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by

ocean models outside the tropics. This living data update documents changes in the methods and data sets used

in this new global carbon budget and the progress in understanding of the global carbon cycle compared with

previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated

by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).

1 Introduction

The concentration of carbon dioxide (CO2) in the atmo-

sphere has increased from approximately 277 parts per mil-

lion (ppm) in 1750 (Joos and Spahni, 2008), the beginning of

the Industrial Era, to 407.38±0.1 ppm in 2018 (Dlugokencky

and Tans, 2019; Fig. 1 from this paper). The atmospheric

CO2 increase above pre-industrial levels was, initially, pri-

marily caused by the release of carbon to the atmosphere

from deforestation and other land use change activities (Ciais

et al., 2013). While emissions from fossil fuels started before

the Industrial Era, they only became the dominant source

of anthropogenic emissions to the atmosphere from around

1950 and their relative share has continued to increase until

present. Anthropogenic emissions occur on top of an active

natural carbon cycle that circulates carbon between the reser-

voirs of the atmosphere, ocean, and terrestrial biosphere on

timescales from sub-daily to millennia, while exchanges with

geologic reservoirs occur at longer timescales (Archer et al.,

2009).

The global carbon budget presented here refers to the

mean, variations, and trends in the perturbation of CO2 in

the environment, referenced to the beginning of the Industrial

Era (defined here as 1750). This paper describes the compo-

nents of the global carbon cycle over the historical period

with a stronger focus on the recent period (since 1958, onset

www.earth-syst-sci-data.net/11/1783/2019/ Earth Syst. Sci. Data, 11, 1783–1838, 2019
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Figure 1. Surface average atmospheric CO2 concentration (ppm).

The 1980–2018 monthly data are from NOAA ESRL (Dlugokencky

and Tans, 2019) and are based on an average of direct atmospheric

CO2 measurements from multiple stations in the marine boundary

layer (Masarie and Tans, 1995). The 1958–1979 monthly data are

from the Scripps Institution of Oceanography, based on an average

of direct atmospheric CO2 measurements from the Mauna Loa and

South Pole stations (Keeling et al., 1976). To take into account the

difference of mean CO2 and seasonality between the NOAA ESRL

and the Scripps station networks used here, the Scripps surface av-

erage (from two stations) was deseasonalised and harmonised to

match the NOAA ESRL surface average (from multiple stations)

by adding the mean difference of 0.542 ppm, calculated here from

overlapping data during 1980–2012.

of atmospheric CO2 measurements), the last decade (2009–

2018), and the current year (2019). We quantify the input

of CO2 to the atmosphere by emissions from human activi-

ties, the growth rate of atmospheric CO2 concentration, and

the resulting changes in the storage of carbon in the land

and ocean reservoirs in response to increasing atmospheric

CO2 levels, climate change and variability, and other anthro-

pogenic and natural changes (Fig. 2). An understanding of

this perturbation budget over time and the underlying vari-

ability and trends in the natural carbon cycle is necessary to

also understand the response of natural sinks to changes in

climate, CO2 and land use change drivers, and the permis-

sible emissions for a given climate stabilisation target. Note

that this paper does not estimate the remaining future carbon

emissions consistent with a given climate target (often re-

ferred to as the remaining carbon budget; Millar et al., 2017;

Rogelj et al., 2016, 2019).

The components of the CO2 budget that are reported an-

nually in this paper include separate estimates for the CO2

emissions from (1) fossil fuel combustion and oxidation from

all energy and industrial processes and cement production

(EFF, GtC yr−1) and (2) the emissions resulting from deliber-

ate human activities on land, including those leading to land

use change (ELUC, GtC yr−1), as well as their partitioning

among (3) the growth rate of atmospheric CO2 concentration

(GATM, GtC yr−1), and the uptake of CO2 (the “CO2 sinks”)

in (4) the ocean (SOCEAN, GtC yr−1) and (5) on land (SLAND,

GtC yr−1). The CO2 sinks as defined here conceptually in-

clude the response of the land (including inland waters and

estuaries) and ocean (including coasts and territorial sea) to

elevated CO2 and changes in climate, rivers, and other envi-

ronmental conditions, although in practice not all processes

are fully accounted for (see Sect. 2.7). The global emissions

and their partitioning among the atmosphere, ocean, and land

are in reality in balance; however due to imperfect spatial

and/or temporal data coverage, errors in each estimate, and

smaller terms not included in our budget estimate (discussed

in Sect. 2.7), their sum does not necessarily add up to zero.

We estimate a budget imbalance (BIM), which is a measure

of the mismatch between the estimated emissions and the es-

timated changes in the atmosphere, land, and ocean, with the

full global carbon budget as follows:

EFF+ELUC =GATM+ SOCEAN+ SLAND+BIM. (1)

GATM is usually reported in parts per million per year, which

we convert to units of carbon mass per year, GtC yr−1, us-

ing 1 ppm= 2.124GtC (Ballantyne et al., 2012; Table 1). We

also include a quantification of EFF by country, computed

with both territorial and consumption-based accounting (see

Sect. 2), and we discuss missing terms from sources other

than the combustion of fossil fuels (see Sect. 2.7).

The CO2 budget has been assessed by the Intergovern-

mental Panel on Climate Change (IPCC) in all assessment

reports (Prentice et al., 2001; Schimel et al., 1995; Watson

et al., 1990; Denman et al., 2007; Ciais et al., 2013), and

by others (e.g. Ballantyne et al., 2012). The IPCC method-

ology has been revised and used by the Global Carbon

Project (GCP, https://www.globalcarbonproject.org, last ac-

cess: 27 September 2019), which has coordinated this coop-

erative community effort for the annual publication of global

carbon budgets for the year 2005 (Raupach et al., 2007; in-

cluding fossil emissions only), year 2006 (Canadell et al.,

2007), year 2007 (published online; GCP, 2007), year 2008

(Le Quéré et al., 2009), year 2009 (Friedlingstein et al.,

2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré

et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al.,

2014), year 2014 (Le Quéré et al., 2015a; Friedlingstein et

al., 2014), year 2015 (Jackson et al., 2016; Le Quéré et al.,

2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le

Quéré et al., 2018a; Peters et al., 2017), and most recently

year 2018 (Le Quéré et al., 2018b; Jackson et al., 2018).

Each of these papers updated previous estimates with the lat-

est available information for the entire time series.

We adopt a range of ±1 standard deviation (σ ) to report

the uncertainties in our estimates, representing a likelihood

of 68% that the true value will be within the provided range

if the errors have a Gaussian distribution and no bias is as-

sumed. This choice reflects the difficulty of characterising

the uncertainty in the CO2 fluxes between the atmosphere

and the ocean and land reservoirs individually, particularly

Earth Syst. Sci. Data, 11, 1783–1838, 2019 www.earth-syst-sci-data.net/11/1783/2019/
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Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged

globally for the decade 2009–2018. See legends for the corresponding arrows and units. The uncertainty in the atmospheric CO2 growth rate

is very small (±0.02GtC yr−1) and is neglected for the figure. The anthropogenic perturbation occurs on top of an active carbon cycle, with

fluxes and stocks represented in the background and taken from Ciais et al. (2013) for all numbers, with the ocean gross fluxes updated to

90GtC yr−1 to account for the increase in atmospheric CO2 since publication, and except for the carbon stocks in coasts, which are from a

literature review of coastal marine sediments (Price and Warren, 2016).

Table 1. Factors used to convert carbon in various units (by convention, unit 1= unit 2× conversion).

Unit 1 Unit 2 Conversion Source

GtC (gigatonnes of carbon) ppm (parts per million)a 2.124b Ballantyne et al. (2012)

GtC (gigatonnes of carbon) PgC (petagrams of carbon) 1 SI unit conversion

GtCO2 (gigatonnes of carbon dioxide) GtC (gigatonnes of carbon) 3.664 44.01/12.011 in mass equivalent

GtC (gigatonnes of carbon) MtC (megatonnes of carbon) 1000 SI unit conversion

a Measurements of atmospheric CO2 concentration have units of dry-air mole fraction. “ppm” is an abbreviation for μmmol−1, dry air. b The use of a factor of
2.124 assumes that the whole atmosphere is well mixed within 1 year. In reality, only the troposphere is well mixed and the growth rate of CO2 concentration in
the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the growth rate of CO2
concentration in the stratosphere equals that of the troposphere on a yearly basis.

on an annual basis, as well as the difficulty of updating the

CO2 emissions from land use change. A likelihood of 68%

provides an indication of our current capability to quantify

each term and its uncertainty given the available information.

For comparison, the Fifth Assessment Report of the IPCC

(AR5) generally reported a likelihood of 90% for large data

sets whose uncertainty is well characterised, or for long time

intervals less affected by year-to-year variability. Our 68%

uncertainty value is near the 66% which the IPCC charac-

terises as “likely” for values falling into the ±1σ interval.

The uncertainties reported here combine statistical analysis

of the underlying data and expert judgement of the likelihood

of results lying outside this range. The limitations of current

information are discussed in the paper and have been exam-

ined in detail elsewhere (Ballantyne et al., 2015; Zscheischler

et al., 2017). We also use a qualitative assessment of confi-

dence level to characterise the annual estimates from each

term based on the type, amount, quality, and consistency of

the evidence as defined by the IPCC (Stocker et al., 2013).

All quantities are presented in units of gigatonnes of car-

bon (GtC, 1015 gC), which is the same as petagrams of car-

bon (PgC; Table 1). Units of gigatonnes of CO2 (or billion

www.earth-syst-sci-data.net/11/1783/2019/ Earth Syst. Sci. Data, 11, 1783–1838, 2019
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tonnes of CO2) used in policy are equal to 3.664 multiplied

by the value in units of gigatonnes of CO2.

This paper provides a detailed description of the data sets

and methodology used to compute the global carbon bud-

get estimates for the industrial period, from 1750 to 2018,

and in more detail for the period since 1959. It also pro-

vides decadal averages starting in 1960 including the last

decade (2009–2018), results for the year 2018, and a pro-

jection for the year 2019. Finally it provides cumulative

emissions from fossil fuels and land use change since the

year 1750 (the pre-industrial period), and since the year

1850, the reference year for historical simulations in IPCC

(AR6). This paper is updated every year using the format

of “living data” to keep a record of budget versions and

the changes in new data, revision of data, and changes in

methodology that lead to changes in estimates of the car-

bon budget. Additional materials associated with the release

of each new version will be posted at the Global Carbon

Project (GCP) website (http://www.globalcarbonproject.org/

carbonbudget, last access: 27 September 2019), with fossil

fuel emissions also available through the Global Carbon At-

las (http://www.globalcarbonatlas.org, last access: 4 Decem-

ber 2019). With this approach, we aim to provide the highest

transparency and traceability in the reporting of CO2, the key

driver of climate change.

2 Methods

Multiple organisations and research groups around the world

generated the original measurements and data used to com-

plete the global carbon budget. The effort presented here is

thus mainly one of synthesis, where results from individual

groups are collated, analysed, and evaluated for consistency.

We facilitate access to original data with the understanding

that primary data sets will be referenced in future work (see

Table 2 for how to cite the data sets). Descriptions of the

measurements, models, and methodologies follow below and

detailed descriptions of each component are provided else-

where.

This is the 14th version of the global carbon budget and the

eighth revised version in the format of a living data update in

Earth System Science Data. It builds on the latest published

global carbon budget of Le Quéré et al. (2018b). The main

changes are (1) the inclusion of data up to the year 2018 (in-

clusive) and a projection for the global carbon budget for the

year 2019; (2) further developments to the metrics that eval-

uate components of the individual models used to estimate

SOCEAN and SLAND using observations, as an effort to docu-

ment, encourage, and support model improvements through

time; (3) a projection of the “rest of the world” emissions

by fuel type; (4) a changed method for projecting current-

year global atmospheric CO2 concentration increment; and

(5) global emissions calculated as the sum of countries’ emis-

sions and bunker fuels rather than taken directly from the

Carbon Dioxide Information Analysis Center (CDIAC). The

main methodological differences between recent annual car-

bon budgets (2015–2018) are summarised in Table 3, and

changes since 2005 are provided in Table A7.

2.1 Fossil CO2 emissions (EFF)

2.1.1 Emissions estimates

The estimates of global and national fossil CO2 emissions

(EFF) include the combustion of fossil fuels through a wide

range of activities (e.g. transport, heating and cooling, indus-

try, fossil industry own use, and natural gas flaring), the pro-

duction of cement, and other process emissions (e.g. the pro-

duction of chemicals and fertilisers). The estimates of EFF

rely primarily on energy consumption data, specifically data

on hydrocarbon fuels, collated and archived by several or-

ganisations (Andres et al., 2012). We use four main data sets

for historical emissions (1750–2018).

1. We use global and national emission estimates for coal,

oil, natural gas, and peat fuel extraction from CDIAC

for the time period 1750–2016 (Gilfillan et al., 2019),

as it is the only data set that extends back to 1750 by

country.

2. We use official UNFCCC national inventory reports an-

nually for 1990–2017 for the 42 Annex I countries in

the UNFCCC (UNFCCC, 2019). We assess these to be

the most accurate estimates because they are compiled

by experts within countries that have access to the most

detailed data, and they are periodically reviewed.

3. We use the BP Statistical Review of World Energy (BP,

2019), as these are the most up-to-date estimates of na-

tional energy statistics.

4. We use global and national cement emissions updated

from Andrew (2018) following Andrew (2019) to in-

clude the latest estimates of cement production and

clinker ratios.

In the following section we provide more details for each

data set and describe the additional modifications that are re-

quired to make the data set consistent and usable.

CDIAC. The CDIAC estimates have been updated annu-

ally to the year 2016, derived primarily from energy statistics

published by the United Nations (UN, 2018). Fuel masses

and volumes are converted to fuel energy content using

country-level coefficients provided by the UN and then con-

verted to CO2 emissions using conversion factors that take

into account the relationship between carbon content and en-

ergy (heat) content of the different fuel types (coal, oil, nat-

ural gas, natural gas flaring) and the combustion efficiency

(Marland and Rotty, 1984).

UNFCCC. Estimates from the UNFCCC national inven-

tory reports follow the IPCC guidelines (IPCC, 2006), but
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Table 2. How to cite the individual components of the global carbon budget presented here.

Component Primary reference

Global fossil CO2 emissions (EFF), total and by fuel type Gilfillan et al. (2019)

National territorial fossil CO2 emissions (EFF) CDIAC source: Gilfillan et al. (2019)

UNFCCC (2019)

National consumption-based fossil CO2 emissions (EFF) by

country (consumption)

Peters et al. (2011b) updated as described in this paper

Land use change emissions (ELUC) Average from Houghton and Nassikas (2017) and Hansis et

al. (2015), both updated as described in this paper

Growth rate in atmospheric CO2 concentration (GATM) Dlugokencky and Tans (2019)

Ocean and land CO2 sinks (SOCEAN and SLAND) This paper for SOCEAN and SLAND and references in Table 4

for individual models.

they have a slightly larger system boundary than CDIAC by

including emissions coming from carbonates other than in

cement manufacturing. We reallocate the detailed UNFCCC

estimates to the CDIAC definitions of coal, oil, natural gas,

cement, and others to allow more consistent comparisons

over time and between countries.

Specific country updates. For China and Saudi Arabia, the

most recent version of CDIAC introduces what appear to be

spurious interannual variations for these two countries (IEA,

2018); therefore we use data from the 2018 global carbon

budget (Le Quéré et al., 2018b). For Norway, the CDIAC’s

method of apparent consumption results in large errors for

Norway, and we therefore overwrite emissions before 1990

with estimates based on official Norwegian statistics.

BP. For the most recent period when the UNFCCC and

CDIAC estimates are not available, we generate preliminary

estimates using energy consumption data from the BP Sta-

tistical Review of World Energy (Andres et al., 2014; BP,

2019; Myhre et al., 2009). We apply the BP growth rates by

fuel type (coal, oil, natural gas) to estimate 2018 emissions

based on 2017 estimates (UNFCCC Annex I countries) and

to estimate 2017–2018 emissions based on 2016 estimates

(remaining countries). BP’s data set explicitly covers about

70 countries (96% of global energy emissions), and for the

remaining countries we use growth rates from the subregion

the country belongs to. For the most recent years, natural gas

flaring is assumed constant from the most recent available

year of data (2017 for Annex I countries, 2016 for the re-

mainder).

Cement. Estimates of emissions from cement production

are taken directly from Andrew (2019). Additional calci-

nation and carbonation processes are not included explic-

itly here, except in national inventories provided by Annex

I countries, but are discussed in Sect. 2.7.2.

Country mappings. The published CDIAC data set in-

cludes 257 countries and regions. This list includes coun-

tries that no longer exist, such as the USSR and Yugoslavia.

We reduce the list to 214 countries by reallocating emissions

to currently defined territories, using mass-preserving aggre-

gation or disaggregation. Examples of aggregation include

merging former East and West Germany into the currently

defined Germany. Examples of disaggregation include real-

locating the emissions from the former USSR to the resulting

independent countries. For disaggregation, we use the emis-

sion shares when the current territories first appeared (e.g.

USSR in 1992), and thus historical estimates of disaggre-

gated countries should be treated with extreme care. In the

case of the USSR, we were able to disaggregate 1990 and

1991 using data from the IEA. In addition, we aggregate

some overseas territories (e.g. Réunion, Guadeloupe) into

their governing nations (e.g. France) to align with UNFCCC

reporting.

Global total. The global estimate is the sum of the individ-

ual countries’ emissions and international aviation and ma-

rine bunkers. This is different to last year, where we used

the independent global total estimated by CDIAC (combined

with cement from Andrew, 2018). The CDIAC global to-

tal differs from the sum of the countries and bunkers since

(1) the sum of imports in all countries is not equal to the sum

of exports because of reporting inconsistencies, (2) changes

in stocks, and (3) the share of non-oxidised carbon (e.g. as

solvents, lubricants, feedstocks) at the global level is as-

sumed to be fixed at the 1970’s average while it varies in

the country level data based on energy data (Andres et al.,

2012). From the 2019 edition CDIAC now includes changes

in stocks in the global total (Dennis Gilfillan, personal com-

munication, 2019), removing one contribution to this dis-

crepancy. The discrepancy has grown over time from around

zero in 1990 to over 500MtCO2 in recent years, consistent

with the growth in non-oxidised carbon (IEA, 2018). To re-

move this discrepancy we now calculate the global total as

the sum of the countries and international bunkers.
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Table 3. Main methodological changes in the global carbon budget since 2015. Methodological changes introduced in one year are kept for

the following years unless noted. Empty cells mean there were no methodological changes introduced that year. Table A7 lists methodological

changes from the first global carbon budget publication up to 2014.

Publication

year

Fossil fuel emissions LUC emissions Reservoirs Uncertainty &

other changes

Global Country

(territorial)

Country

(consumption)

Atmosphere Ocean Land

2015 Projection for

current year

based on

January–

August data

National emis-

sions from

UNFCCC ex-

tended to 2014

also provided

Detailed

estimates in-

troduced for

2011 based on

GTAP9

Based on eight

models

Based on 10

models with

assessment of

minimum

realism

The decadal un-

certainty for the

DGVM ensemble

mean now uses

±1σ of the decadal

spread across

models

Le Quéré et

al. (2015a)

Jackson et

al. (2016)

2016 2 years of BP

data

Added three

small countries;

China’s (RMA)

emissions from

1990 from

BP data (this

release only)

Preliminary

ELUC using

FRA-2015

shown for com-

parison; use of

five DGVMs

Based on seven

models

Based on

14 models

Discussion of pro-

jection for full bud-

get for current year

Le Quéré et

al. (2016)

2017 Projection

includes India-

specific data

Average of two

bookkeeping

models; use of

12 DGVMs

Based on eight

models that

match the

observed sink

for the 1990s;

no longer nor-

malised

Based on

15 models

that meet

observation-

based criteria

(see Sect. 2.5)

Land multi-model

average now used

in main carbon

budget, with the

carbon imbalance

presented sepa-

rately; new table of

key uncertainties

Le Quéré et

al. (2018a)

GCB2017

2018 Revision

in cement

emissions; pro-

jection includes

EU-specific

data

Aggregation of

overseas ter-

ritories into

governing

nations for

total of 213

countries

Use of 16

DGVMs

Use of four

atmospheric in-

versions

Based on seven

models

Based on 16

models; revised

atmospheric

forcing from

CRUNCEP to

CRU–JRA-55

Introduction of

metrics for evalu-

ation of individual

models using ob-

servations

Le Quéré et

al. (2018b)

GCB2018

2019 Global emis-

sions calculated

as sum of all

countries plus

bunkers, rather

than taken

directly from

CDIAC

Use of 15

DGVMs∗
Use of three

atmospheric in-

versions

Based on nine

models

Based on 16

models

(this study)

∗ ELUC is still estimated based on bookkeeping models, as in 2018 (Le Quéré et al., 2018b), but the number of DGVMs used to characterise the uncertainty has changed.

2.1.2 Uncertainty assessment for EFF

We estimate the uncertainty of the global fossil CO2 emis-

sions at ±5% (scaled down from the published ±10% at

±2σ to the use of ±1σ bounds reported here; Andres et al.,

2012). This is consistent with a more detailed analysis of

uncertainty of ±8.4% at ±2σ (Andres et al., 2014) and at

the high end of the range of ±5%–10% at ±2σ reported by

Ballantyne et al. (2015). This includes an assessment of un-

certainties in the amounts of fuel consumed, the carbon and

heat contents of fuels, and the combustion efficiency. While

we consider a fixed uncertainty of±5% for all years, the un-

certainty as a percentage of the emissions is growing with
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time because of the larger share of global emissions from

emerging economies and developing countries (Marland et

al., 2009). Generally, emissions from mature economies with

good statistical processes have an uncertainty of only a few

per cent (Marland, 2008), while emissions from developing

countries such as China have uncertainties of around ±10%

(for ±1σ ; Gregg et al., 2008). Uncertainties of emissions are

likely to be mainly systematic errors related to underlying bi-

ases of energy statistics and to the accounting method used

by each country.

We assign a medium confidence to the results presented

here because they are based on indirect estimates of emis-

sions using energy data (Durant et al., 2011). There is only

limited and indirect evidence for emissions, although there

is high agreement among the available estimates within the

given uncertainty (Andres et al., 2012, 2014), and emission

estimates are consistent with a range of other observations

(Ciais et al., 2013), even though their regional and national

partitioning is more uncertain (Francey et al., 2013).

2.1.3 Emissions embodied in goods and services

CDIAC, UNFCCC, and BP national emission statistics “in-

clude greenhouse gas emissions and removals taking place

within national territory and offshore areas over which the

country has jurisdiction” (Rypdal et al., 2006) and are called

territorial emission inventories. Consumption-based emis-

sion inventories allocate emissions to products that are con-

sumed within a country and are conceptually calculated as

the territorial emissions minus the “embodied” territorial

emissions to produce exported products plus the emissions

in other countries to produce imported products (consump-

tion = territorial − exports + imports). Consumption-based

emission attribution results (e.g. Davis and Caldeira, 2010)

provide additional information to territorial-based emissions

that can be used to understand emission drivers (Hertwich

and Peters, 2009) and quantify emission transfers by the trade

of products between countries (Peters et al., 2011b). The

consumption-based emissions have the same global total, but

they reflect the trade-driven movement of emissions across

the Earth’s surface in response to human activities.

We estimate consumption-based emissions from 1990 to

2016 by enumerating the global supply chain using a global

model of the economic relationships between economic sec-

tors within and between every country (Andrew and Peters,

2013; Peters et al., 2011a). Our analysis is based on the eco-

nomic and trade data from the Global Trade Analysis Project

(GTAP; Narayanan et al., 2015), and we make detailed esti-

mates for the years 1997 (GTAP version 5), 2001 (GTAP6),

2004, 2007, and 2011 (GTAP9.2), covering 57 sectors and

141 countries and regions. The detailed results are then ex-

tended into an annual time series from 1990 to the latest year

of the gross domestic product (GDP) data (2016 in this bud-

get), using GDP data by expenditure in the current exchange

rate of US dollars (USD; from the UN National Accounts

Main Aggregates Database; UN, 2017) and time series of

trade data from GTAP (based on the methodology in Peters et

al., 2011b). We estimate the sector-level CO2 emissions us-

ing the GTAP data and methodology, include flaring and ce-

ment emissions from CDIAC, and then scale the national to-

tals (excluding bunker fuels) to match the emission estimates

from the carbon budget. We do not provide a separate un-

certainty estimate for the consumption-based emissions, but

based on model comparisons and sensitivity analysis, they

are unlikely to be significantly different than for the territo-

rial emission estimates (Peters et al., 2012a).

2.1.4 Growth rate in emissions

We report the annual growth rate in emissions for adjacent

years (in per cent per year) by calculating the difference be-

tween the two years and then normalising to the emissions in

the first year: (EFF(t0+1)−EFF(t0))/EFF(t0)×100%. We ap-

ply a leap-year adjustment where relevant to ensure valid in-

terpretations of annual growth rates. This affects the growth

rate by about 0.3%yr−1 (1/365) and causes growth rates to

go up approximately 0.3% if the first year is a leap year and

down 0.3% if the second year is a leap year.

The relative growth rate of EFF over time periods of

greater than 1 year can be rewritten using its logarithm equiv-

alent as follows:

1

EFF

dEFF

dt
= d(lnEFF)

dt
. (2)

Here we calculate relative growth rates in emissions for

multi-year periods (e.g. a decade) by fitting a linear trend to

ln(EFF) in Eq. (2), reported in per cent per year.

2.1.5 Emissions projections

To gain insight into emission trends for 2019, we provide an

assessment of global fossil CO2 emissions, EFF, by combin-

ing individual assessments of emissions for China, the USA,

the EU, India (the four countries/regions with the largest

emissions), and the rest of the world.

Our 2019 estimate for China uses (1) the sum of monthly

domestic production of raw coal, crude oil, natural gas and

cement from the National Bureau of Statistics (NBS, 2019c),

(2) monthly net imports of coal, coke, crude oil, refined

petroleum products and natural gas from the General Ad-

ministration of Customs of the People’s Republic of China

(2019); and (3) annual energy consumption data by fuel type

and annual production data for cement from the NBS, using

final data for 2000–2017 (NBS, 2019c) and preliminary data

for 2018 (NBS, 2019b). We estimate the full-year growth

rate for 2019 using a Bayesian regression for the ratio be-

tween the annual energy consumption data (3 above) from

2014 through 2018 and monthly production plus net imports

through September of each year (1+ 2 above). The uncer-

tainty range uses the standard deviations of the resulting pos-

teriors. Sources of uncertainty and deviations between the
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monthly and annual growth rates include lack of monthly

data on stock changes and energy density, variance in the

trend during the last 3 months of the year, and partially unex-

plained discrepancies between supply-side and consumption

data even in the final annual data. Note that in recent years,

the absolute value of the annual growth rate for coal energy

consumption, and hence total CO2 emissions, has been con-

sistently lower (closer to zero) than the growth suggested

by the monthly, tonnage-based production and import data,

and this is reflected in the projection. This pattern is only

partially explained by stock changes and changes in energy

content. It is therefore not possible to be certain that it will

continue in the current year, but it is made plausible by a

separate statement by the National Bureau of Statistics on

energy consumption growth in the first half of 2019, which

suggests no significant growth in energy consumption from

coal for January–June (NBS, 2019a). Results and uncertain-

ties are discussed further in Sect. 3.4.1.

For the USA, we use the forecast of the U.S. Energy Infor-

mation Administration (EIA) for emissions from fossil fuels

(EIA, 2019). This is based on an energy forecasting model

which is updated monthly (last update with data through

October 2019) and takes into account heating-degree days,

household expenditures by fuel type, energy markets, poli-

cies, and other effects. We combine this with our estimate

of emissions from cement production using the monthly US

cement data from USGS for January–July 2019, assuming

changes in cement production over the first part of the year

apply throughout the year. While the EIA’s forecasts for cur-

rent full-year emissions have on average been revised down-

wards, only 10 such forecasts are available, so we conserva-

tively use the full range of adjustments following revision,

and additionally we assume symmetrical uncertainty to give

±2.3% around the central forecast.

For India, we use (1) monthly coal production and sales

data from the Ministry of Mines (2019), Coal India Lim-

ited (CIL, 2019), and Singareni Collieries Company Limited

(SCCL, 2019), combined with import data from the Min-

istry of Commerce and Industry (MCI, 2019) and power sta-

tion stock data from the Central Electricity Authority (CEA,

2019a); (2) monthly oil production and consumption data

from the Ministry of Petroleum and Natural Gas (PPAC,

2019b); (3) monthly natural gas production and import data

from the Ministry of Petroleum and Natural Gas (PPAC,

2019a); and (4) monthly cement production data from the

Office of the Economic Advisor (OEA, 2019). All data were

available for January to September or October 2019. We use

Holt–Winters exponential smoothing with multiplicative sea-

sonality (Chatfield, 1978) on each of these four emissions

series to project to the end of India’s current financial year

(March 2020). This iterative method produces estimates of

both trend and seasonality at the end of the observation pe-

riod that are a function of all prior observations, weighted

most strongly to more recent data, while maintaining some

smoothing effect. The main source of uncertainty in the pro-

jection of India’s emissions is the assumption of continued

trends and typical seasonality.

For the EU, we use (1) monthly coal supply data from Eu-

rostat for the first 6–9 months of 2019 (Eurostat, 2019) cross-

checked with more recent data on coal-generated electricity

from ENTSO-E for January through October 2019 (ENTSO-

E, 2019); (2) monthly oil and gas demand data for January

through August from the Joint Organisations Data Initiative

(JODI, 2019); and (3) cement production assumed to be sta-

ble. For oil and natural gas emissions we apply the Holt–

Winters method separately to each country and energy car-

rier to project to the end of the current year, while for coal

– which is much less strongly seasonal because of strong

weather variations – we assume the remaining months of the

year are the same as the previous year in each country.

For the rest of the world, we use the close relation-

ship between the growth in GDP and the growth in emis-

sions (Raupach et al., 2007) to project emissions for the

current year. This is based on a simplified Kaya identity,

whereby EFF (GtC yr−1) is decomposed by the product of

GDP (USDyr−1) and the fossil fuel carbon intensity of the

economy (IFF; GtCUSD−1) as follows:

EFF = GDP × IFF. (3)

Taking a time derivative of Eq. (3) and rearranging gives

1

EFF

dEFF

dt
= 1

GDP

dGDP

dt
+ 1

IFF

dIFF

dt
, (4)

where the left-hand term is the relative growth rate of EFF,

and the right-hand terms are the relative growth rates of GDP

and IFF, respectively, which can simply be added linearly to

give the overall growth rate.

As preliminary estimates of annual change in GDP are

made well before the end of a calendar year, making assump-

tions on the growth rate of IFF allows us to make projec-

tions of the annual change in CO2 emissions well before the

end of a calendar year. The IFF is based on GDP in constant

PPP (purchasing power parity) from the International Energy

Agency (IEA) up to 2016 (IEA/OECD, 2018) and extended

using the International Monetary Fund (IMF) growth rates

through 2018 (IMF, 2019a). Interannual variability in IFF is

the largest source of uncertainty in the GDP-based emissions

projections. We thus use the standard deviation of the an-

nual IFF for the period 2009–2018 as a measure of uncer-

tainty, reflecting a ±1σ as in the rest of the carbon budget.

In this year’s budget, we have extended the rest-of-the-world

method to fuel type to get separate projections for coal, oil,

natural gas, cement, flaring, and other components. This al-

lows, for the first time, consistent projections of global emis-

sions by both countries and fuel type.

The 2019 projection for the world is made of the sum of

the projections for China, the USA, the EU, India, and the

rest of the world, where the sum is consistent if done by fuel

type (coal, oil, natural gas) or based on total emissions. The
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uncertainty is added in quadrature among the five regions.

The uncertainty here reflects the best of our expert opinion.

2.2 CO2 emissions from land use, land use change,
and forestry (ELUC)

The net CO2 flux from land use, land use change, and forestry

(ELUC, called land use change emissions in the rest of the

text) include CO2 fluxes from deforestation, afforestation,

logging and forest degradation (including harvest activity),

shifting cultivation (cycle of cutting forest for agriculture,

then abandoning), and regrowth of forests following wood

harvest or abandonment of agriculture. Only some land man-

agement activities are included in our land use change emis-

sions estimates (Table A1). Some of these activities lead

to emissions of CO2 to the atmosphere, while others lead

to CO2 sinks. ELUC is the net sum of emissions and re-

movals due to all anthropogenic activities considered. Our

annual estimate for 1959–2018 is provided as the average

of results from two bookkeeping models (Sect. 2.2.1): the

estimate published by Houghton and Nassikas (2017; here-

after H&N2017) updated to 2018a and an estimate using

the Bookkeeping of Land Use Emissions model (Hansis et

al., 2015; hereafter BLUE). Both data sets are then extrapo-

lated to provide a projection for 2019 (Sect. 2.2.4). In addi-

tion, we use results from dynamic global vegetation models

(DGVMs; see Sect. 2.2.2 and Table 4) to help quantify the

uncertainty in ELUC (Sect. 2.2.3) and thus better characterise

our understanding.

2.2.1 Bookkeeping models

Land use change CO2 emissions and uptake fluxes are cal-

culated by two bookkeeping models. Both are based on

the original bookkeeping approach of Houghton (2003) that

keeps track of the carbon stored in vegetation and soils be-

fore and after a land use change (transitions between various

natural vegetation types, croplands, and pastures). Literature-

based response curves describe decay of vegetation and soil

carbon, including transfer to product pools of different life-

times, as well as carbon uptake due to regrowth. In addition,

the bookkeeping models represent long-term degradation of

primary forest as lowered standing vegetation and soil car-

bon stocks in secondary forests, and they also include forest

management practices such as wood harvests.

The bookkeeping models do not include land ecosystems’

transient response to changes in climate, atmospheric CO2,

and other environmental factors, and the carbon densities are

based on contemporary data reflecting stable environmental

conditions at that time. Since carbon densities remain fixed

over time in bookkeeping models, the additional sink capac-

ity that ecosystems provide in response to CO2 fertilisation

and some other environmental changes is not captured by

these models (Pongratz et al., 2014; see Sect. 2.7.4).

The H&N2017 and BLUE models differ in (1) computa-

tional units (country-level vs. spatially explicit treatment of

land use change), (2) processes represented (see Table A1),

and (3) carbon densities assigned to vegetation and soil of

each vegetation type. A notable change of H&N2017 over the

original approach by Houghton (2003) used in earlier budget

estimates is that no shifting cultivation or other back-and-

forth transitions at a level below country are included. Only

a decline in forest area in a country as indicated by the Forest

Resource Assessment of the FAO that exceeds the expansion

of agricultural area as indicated by the FAO is assumed to

represent a concurrent expansion and abandonment of crop-

land. In contrast, the BLUE model includes sub-grid-scale

transitions at the grid level between all vegetation types as in-

dicated by the harmonised land use change data (LUH2) data

set (https://doi.org/10.22033/ESGF/input4MIPs.1127; Hurtt

et al., 2011, 2019). Furthermore, H&N2017 assume conver-

sion of natural grasslands to pasture, while BLUE allocates

pasture proportionally on all natural vegetation that exists in

a grid cell. This is one reason for generally higher emissions

in BLUE. For both H&N2017 and BLUE, we add carbon

emissions from peat burning based on the Global Fire Emis-

sion Database (GFED4s; van der Werf et al., 2017) and peat

drainage based on estimates by Hooijer et al. (2010) to the

output of their bookkeeping model for the countries of In-

donesia and Malaysia. Peat burning and emissions from the

organic layers of drained peat soils, which are not captured

by bookkeeping methods directly, need to be included to rep-

resent the substantially larger emissions and interannual vari-

ability due to synergies of land use and climate variability in

Southeast Asia, in particular during El Niño events.

The two bookkeeping estimates used in this study differ

with respect to the land use change data used to drive the

models. H&N2017 base their estimates directly on the Forest

Resource Assessment of the FAO, which provides statistics

on forest area change and management at intervals of 5 years

currently updated until 2015 (FAO, 2015). The data are based

on countries reporting to the FAO and may include remote-

sensing information in more recent assessments. Changes

in land use other than forests are based on annual, national

changes in cropland and pasture areas reported by the FAO

(FAOSTAT, 2015). H&N2017 was extended here for 2016

to 2018 by adding the annual change in total tropical emis-

sions to the H&N2017 estimate for 2015, including esti-

mates of peat drainage and peat burning as described above

as well as emissions from tropical deforestation and degra-

dation fires from GFED4.1s (van der Werf et al., 2017).

On the other hand, BLUE uses the harmonised land use

change data LUH2 covering the entire 850–2018 period

(https://doi.org/10.22033/ESGF/input4MIPs.1127; Hurtt et

al., 2011, 2019), which describes land use change, also based

on the FAO data as well as the HYDE data set (Klein Gold-

ewijk et al., 2017; Goldewijk et al., 2017), but downscaled

at a quarter-degree spatial resolution, considering sub-grid-

scale transitions between primary forest, secondary forest,
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Table 4. References for the process models, pCO2-based ocean flux products, and atmospheric inversions included in Figs. 6–8. All models

and products are updated with new data to the end of the year 2018, and the atmospheric forcing for the DGVMs has been updated as

described in Sect. 2.2.2.

Model/data name Reference Change from Global Carbon Budget 2018 (Le Quéré et al., 2018b)

Bookkeeping models for land use change emissions

BLUE Hansis et al. (2015) No change.

H&N2017 Houghton and Nassikas

(2017)

No change.

Dynamic global vegetation models

CABLE-POP Haverd et al. (2018) Thermal acclimation of photosynthesis; residual stomatal conductance (g0) now non-zero; stomatal

conductance set to maximum of g0 and vapour-pressure-deficit-dependent term

CLASS-CTEM Melton and Arora

(2016)

20 soil layers used. Soil depth is prescribed following Shangguan et al. (2017).

– The bare soil evaporation efficiency was previously that of Lee and Pielke (1992). This has been

replaced by that of Merlin et al. (2011).

– Plant roots can no longer grow into soil layers that are perennially frozen (permafrost).

– The Vcmax value of C3 grass changes from 75 to 55 μmol CO2 m
−2 s−1, which is more in line with

observations (Alton, 2017).

– Land use change product pools are now tracked separately (rather than thrown into litter and soil C

pools). They behave the same as previously but now it is easier to distinguish the C in those pools from

other soil/litter C.

CLM5.0 Lawrence et al. (2019) Added representation of shifting cultivation, fixed a bug in the fire model, used updated & higher-

resolution lightening strike data set.

DLEM Tian et al. (2015)a No change.

ISAM Meiyappan et al. (2015) No change.

ISBA-CTRIP Decharme et

al. (2019)b
Updated spin-up protocol + model name updated (SURFEXv8 in GCB2017).

JSBACH Mauritsen et al. (2019) No change.

JULES-ES Sellar et al. (2019)c Major update. Model configuration is now JULES-ES v1.0, the land surface and vegetation component

of the UK Earth System Model (UKESM1). Includes interactive nitrogen scheme, extended number of

plant functional types represented, trait based physiology and crop harvest.

LPJ-GUESS Smith et al. (2014)d Using daily climate forcing instead of monthly forcing. Using nitrogen inputs from NMIP. Adjustment

in the spin-up procedure. Growth suppression mortality parameter of PFT IBS changed to 0.12.

LPJ Poulter et al. (2011)e No change.

LPX-Bern Lienert and Joos (2018) Using nitrogen input from NMIP.

OCN Zaehle and Friend

(2010)f
No change (uses r294).

ORCHIDEE-CNP Goll et al. (2017)g Refinement of parameterisation (r6176); change in N forcing (different N deposition, no (N&P) manure)

ORCHIDEE-Trunk Krinner et

al. (2005)h
No major changes, except some small bug corrections linked to the implementation of land cover

changes.

SDGVM Walker et al. (2017)i (1) Changed the multiplicative scale parameters of these diagnostic output variables from

– evapotranspft, evapo, transpft 2.257× 106 to 2.257× 106/(30× 24× 3600)

– swepft from NA to 0.001.

(2) The autotrophic respiration diagnostic output variable is now properly initialised to zero for bare

ground.

(3) A very minor change that prevents the soil water limitation scalar (often called beta) being applied

to g0 in the stomatal conductance (gs) equation. Previously it was applied to both g0 and g1 in the gs
equation. Now beta is applied only to g1 in the gs equation.

(4) The climate driving data and land cover data are in 0.5◦ resolution.

VISIT Kato et al. (2013)j No change.

Global ocean biogeochemistry models

NEMO-PlankTOM5 Buitenhuis et al. (2013) No change.

MICOM-HAMOCC (NorESM-OC) Schwinger et al. (2016) Flux calculation improved to take into account correct land–sea mask after interpolation.

MPIOM-HAMOCC6 Paulsen et al. (2017) No change.

NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019) No change.

CSIRO Law et al. (2017) No change.

MITgcm-REcoM2 Hauck et

al. (2018)

No change.

MOM6-COBALT (Princeton) Adcroft et al. (2019) New this year.

CESM-ETHZ Doney et al. (2009) New this year.

NEMO-PISCES (IPSL) Aumont et al. (2015) Updated spin-up procedure.
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Table 4. Continued.

Model/data name Reference Change from Global Carbon Budget 2018 (Le Quéré et al., 2018b)

pCO2-based flux ocean products

Landschützer (MPI-SOMFFN) Landschützer et

al. (2016)

Update to SOCATv2019 measurements.

Rödenbeck (Jena-MLS) Rödenbeck et

al. (2014)

Update to SOCATv2019 measurements. Interannual net ecosystem exchange (NEE) variability

estimated through a regression to air temperature anomalies. Using 89 atmospheric stations.

Fossil fuel emissions taken from Jones et al. (2019) consistent with country totals of this study.

CMEMS Denvil-Sommer et

al. (2019)

New this year.

Atmospheric inversions

CAMS Chevallier et

al. (2005)k
Updated version of atmospheric transport model LMDz.

CarbonTracker Europe (CTE) van der Laan-Luijkx et

al. (2017)

No change.

Jena CarboScope Rödenbeck et al. (2003,

2018)

Temperature–NEE relations additionally estimated.

a See also Tian et al. (2011). b See also Joetzjer et al. (2015), Séférian et al. (2016), and Delire et al. (2019). c JULES-ES is the Earth system configuration of the Joint UK Land Environment
Simulator. See also Best et al. (2011) and Clark et al. (2011). d To account for the differences between the derivation of shortwave radiation from CRU cloudiness and DSWRF from CRUJRA,
the photosynthesis scaling parameter αa was modified (−15%) to yield similar results. e Compared to the published version, decreased LPJ wood harvest efficiency so that 50% of biomass
was removed off-site compared to 85% used in the 2012 budget. Residue management of managed grasslands increased so that 100% of harvested grass enters the litter pool.
f See also Zaehle et al. (2011). g See also Goll et al. (2018). h Compared to published version: revised parameter values for photosynthetic capacity for boreal forests (following assimilation
of FLUXNET data), updated parameter values for stem allocation, maintenance respiration and biomass export for tropical forests (based on literature), and CO2 down-regulation process
added to photosynthesis. Hydrology model updated to a multi-layer scheme (11 layers). i See also Woodward and Lomas (2004). j See also Ito and Inatomi (2012).
k See also Remaud et al. (2018).

cropland, pasture, and rangeland. The LUH2 data provide

a distinction between rangelands and pasture, based on in-

puts from HYDE. To constrain the models’ interpretation on

whether rangeland implies the original natural vegetation to

be transformed to grassland or not (e.g. browsing on shrub-

land), a forest mask was provided with LUH2; forest is as-

sumed to be transformed, while all other natural vegetation

remains. This is implemented in BLUE.

For ELUC from 1850 onwards we average the estimates

from BLUE and H&N2017. For the cumulative numbers

starting at 1750 an average of four earlier publications is

added (30±20GtC 1750–1850, rounded to the nearest 5GtC;

Le Quéré et al., 2016).

2.2.2 Dynamic global vegetation models (DGVMs)

Land use change CO2 emissions have also been estimated

using an ensemble of 15 DGVM simulations. The DGVMs

account for deforestation and regrowth, the most important

components of ELUC, but they do not represent all processes

resulting directly from human activities on land (Table A1).

All DGVMs represent processes of vegetation growth and

mortality, as well as decomposition of dead organic matter

associated with natural cycles, and they include the vegeta-

tion and soil carbon response to increasing atmospheric CO2

concentration and to climate variability and change. Some

models explicitly simulate the coupling of carbon and nitro-

gen cycles and account for atmospheric N deposition and N

fertilisers (Table A1). The DGVMs are independent from the

other budget terms except for their use of atmospheric CO2

concentration to calculate the fertilisation effect of CO2 on

plant photosynthesis.

Many DGVMs used the HYDE land use change data

set (Klein Goldewijk et al., 2017; Goldewijk et al., 2017),

which provides annual (1700–2018), half-degree, fractional

data on cropland and pasture. The data are based on the

available annual FAO statistics of change in agricultural

land area available until 2015. Last year’s HYDE ver-

sion used FAO statistics until 2012, which are now sup-

plemented using the annual change anomalies from FAO

data for the years 2013–2015 relative to the year 2012.

HYDE forcing was also corrected for Brazil for the years

1951–2012. After the year 2015 HYDE extrapolates crop-

land, pasture, and urban land use data until the year 2018.

Some models also use the LUH2 data set, an update of the

more comprehensive harmonised land use data set (Hurtt

et al., 2011), that further includes fractional data on pri-

mary and secondary forest vegetation, as well as all un-

derlying transitions between land use states (1700–2019)

(https://doi.org/10.22033/ESGF/input4MIPs.1127; Hurtt et

al., 2011, 2019; Table A1). This new data set is of quarter-

degree fractional areas of land use states and all transitions

between those states, including a new wood harvest recon-

struction, new representation of shifting cultivation, crop

rotations, and management information including irrigation

and fertiliser application. The land use states include five dif-

ferent crop types in addition to the pasture–rangeland split

discussed before. Wood harvest patterns are constrained with

Landsat-based tree cover loss data (Hansen et al., 2013). Up-

dates of LUH2 over last year’s version use the most recent

HYDE–FAO release (covering the time period up to and in-

www.earth-syst-sci-data.net/11/1783/2019/ Earth Syst. Sci. Data, 11, 1783–1838, 2019
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cluding 2015), which also corrects an error in the version

used for the 2018 budget in Brazil.

DGVMs implement land use change differently (e.g. an

increased cropland fraction in a grid cell can either be

at the expense of either grassland or shrubs, or forest,

the latter resulting in deforestation; land cover fractions of

the non-agricultural land differ between models). Similarly,

model-specific assumptions are applied to convert deforested

biomass or deforested area and other forest product pools

into carbon, and different choices are made regarding the al-

location of rangelands as natural vegetation or pastures.

The DGVM model runs were forced by either the merged

monthly CRU and 6-hourly JRA-55 data set or by the

monthly CRU data set, both providing observation-based

temperature, precipitation, and incoming surface radiation on

a 0.5◦ × 0.5◦ grid and updated to 2018 (Harris et al., 2014).

The combination of CRU monthly data with 6-hourly forc-

ing from JRA-55 (Kobayashi et al., 2015) is performed with

methodology used in previous years (Viovy, 2016) adapted

to the specifics of the JRA-55 data. The forcing data also

include global atmospheric CO2, which changes over time

(Dlugokencky and Tans, 2019), and gridded, time-dependent

N deposition and N fertilisers (as used in some models; Ta-

ble A1).

Two sets of simulations were performed with the DGVMs.

Both applied historical changes in climate, atmospheric CO2

concentration, and N inputs. The two sets of simulations dif-

fer, however, with respect to land use: one set applies his-

torical changes in land use, and the other a time-invariant

pre-industrial land cover distribution and pre-industrial wood

harvest rates. By difference of the two simulations, the

dynamic evolution of vegetation biomass and soil carbon

pools in response to land use change can be quantified in

each model (ELUC). Using the difference between these two

DGVM simulations to diagnose ELUC means the DGVMs

account for the loss of additional sink capacity (around

0.4± 0.3GtC yr−1; see Sect. 2.7.4), while the bookkeeping

models do not.

As a criterion for inclusion in this carbon budget, we only

retain models that simulate a positive ELUC during the 1990s,

as assessed in the IPCC AR4 (Denman et al., 2007) and

AR5 (Ciais et al., 2013). All DGVMs met this criteria, al-

though one model was not included in the ELUC estimate

from DGVMs as it exhibited a spurious response to the tran-

sient land cover change forcing after its initial spin-up.

2.2.3 Uncertainty assessment for ELUC

Differences between the bookkeeping models and DGVM

models originate from three main sources: the different

methodologies, the underlying land use and land cover data

set, and the different processes represented (Table A1). We

examine the results from the DGVM models and from the

bookkeeping method, and we use the resulting variations as

a way to characterise the uncertainty in ELUC.

The ELUC estimate from the DGVMs multi-model mean

is consistent with the average of the emissions from the

bookkeeping models (Table 5). However there are large dif-

ferences among individual DGVMs (standard deviation at

around 0.5GtC yr−1; Table 5), between the two bookkeeping

models (average difference of 0.7GtC yr−1), and between the

current estimate of H&N2017 and its previous model ver-

sion (Houghton et al., 2012). The uncertainty in ELUC of

±0.7GtC yr−1 reflects our best value judgement that there

is at least a 68% chance (±1σ ) that the true land use change

emission lies within the given range, for the range of pro-

cesses considered here. Prior to the year 1959, the uncer-

tainty in ELUC was taken from the standard deviation of

the DGVMs. We assign low confidence to the annual esti-

mates of ELUC because of the inconsistencies among esti-

mates and of the difficulties to quantify some of the processes

in DGVMs.

2.2.4 Emissions projections

We project the 2019 land use emissions for both H&N2017

and BLUE, starting from their estimates for 2018 and adding

observed changes in emissions from peat drainage (update

on Hooijer et al., 2010) as well as emissions from peat fires,

tropical deforestation, and degradation as estimated using ac-

tive fire data (MCD14ML; Giglio et al., 2016). Those from

degradation scale almost linearly with GFED over large ar-

eas (van der Werf et al., 2017) and thus allow for tracking fire

emissions in deforestation and tropical peat zones in near-

real time. During most years, emissions during January–

September cover most of the fire season in the Amazon

and Southeast Asia, where a large part of the global defor-

estation takes place. While the degree to which the fires in

2019 in the Amazon are related to land use change requires

more scrutiny, initial analyses based on fire radiative power

(FRP) of the fires detected indicate that many fires were

associated with deforestation (http://www.globalfiredata.org/

forecast.html, last access: 31 October 2019). Most fires burn-

ing in Indonesia were on peatlands, which also represent a

net source of CO2.

2.3 Growth rate in atmospheric CO2 concentration
(GATM)

2.3.1 Global growth rate in atmospheric CO2
concentration

The rate of growth of the atmospheric CO2 concentration

is provided by the US National Oceanic and Atmospheric

Administration Earth System Research Laboratory (NOAA

ESRL; Dlugokencky and Tans, 2019), which is updated from

Ballantyne et al. (2012). For the 1959–1979 period, the

global growth rate is based on measurements of atmospheric

CO2 concentration averaged from the Mauna Loa and South

Pole stations, as observed by the CO2 programme at Scripps

Institution of Oceanography (Keeling et al., 1976). For the

Earth Syst. Sci. Data, 11, 1783–1838, 2019 www.earth-syst-sci-data.net/11/1783/2019/



P. Friedlingstein et al.: Global Carbon Budget 2019 1797

Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates

for different periods, the last decade, and the last year available. All values are in gigatonnes of carbon per year. The DGVM uncertainties

represent ±1σ of the decadal or annual (for 2018 only) estimates from the individual DGVMs: for the inverse models the range of available

results is given. All values are rounded to the nearest 0.1GtC and therefore columns do not necessarily add to zero.

Mean (GtC yr−1)

1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 2009–2018 2018

Land use change emissions (ELUC)

Bookkeeping methods (1a) 1.4± 0.7 1.2± 0.7 1.2± 0.7 1.3± 0.7 1.4± 0.7 1.5± 0.7 1.5± 0.7

DGVMs (1b) 1.3± 0.5 1.3± 0.5 1.4± 0.5 1.2± 0.4 1.5± 0.4 2.0± 0.5 2.3± 0.6

Terrestrial sink (SLAND)

Residual sink from global budget

(EFF+ELUC−GATM−SOCEAN) (2a)

1.7± 0.9 1.8± 0.9 1.6± 0.9 2.6± 0.9 3.0± 0.9 3.6± 1.0 3.7± 1.0

DGVMs (2b) 1.3± 0.4 2.0± 0.3 1.8± 0.5 2.4± 0.4 2.7± 0.6 3.2± 0.6 3.5± 0.7

Total land fluxes (SLAND−ELUC)

GCB2019 Budget (2b - 1a) −0.2± 0.8 0.9± 0.8 0.6± 0.9 1.0± 0.8 1.3± 0.9 1.7± 0.9 2.0± 1.0

Budget constraint (2a - 1a) 0.3± 0.5 0.6± 0.5 0.4± 0.6 1.3± 0.6 1.6± 0.6 2.1± 0.7 2.2± 0.7

DGVMs (2b - 1b) −0.1± 0.5 0.7± 0.6 0.4± 0.6 1.2± 0.6 1.1± 0.6 1.0± 0.8 1.0± 0.8

Inversions∗ – – −0.1–0.1 0.5–1.1 0.7–1.5 1.1–2.2 0.9–2.7

∗ Estimates are adjusted for the pre-industrial influence of river fluxes and adjusted to common EFF (Sect. 2.7.2). The ranges given include two inversions from 1980 to 1999 and
three inversions from 2001 onwards (Table A3).

1980–2018 time period, the global growth rate is based on the

average of multiple stations selected from the marine bound-

ary layer sites with well-mixed background air (Ballantyne

et al., 2012), after fitting each station with a smoothed curve

as a function of time and averaging by latitude band (Masarie

and Tans, 1995). The annual growth rate is estimated by Dlu-

gokencky and Tans (2019) from atmospheric CO2 concen-

tration by taking the average of the most recent December–

January months corrected for the average seasonal cycle and

subtracting this same average 1 year earlier. The growth rate

in units of parts per million per year is converted to units of

gigatonnes of carbon per year by multiplying by a factor of

2.124GtC ppm−1 (Ballantyne et al., 2012).

The uncertainty around the atmospheric growth rate is

due to four main factors. The first is the long-term repro-

ducibility of reference gas standards (around 0.03 ppm for

1σ from the 1980s; Dlugokencky and Tans, 2019). Second,

small unexplained systematic analytical errors that may have

a duration of several months to 2 years come and go. They

have been simulated by randomising both the duration and

the magnitude (determined from the existing evidence) in

a Monte Carlo procedure. The third is the network compo-

sition of the marine boundary layer with some sites com-

ing or going, gaps in the time series at each site, etc (Dlu-

gokencky and Tans, 2019). The latter uncertainty was es-

timated by NOAA ESRL with a Monte Carlo method by

constructing 100 “alternative” networks (Masarie and Tans,

1995; NOAA/ESRL, 2019). The second and third uncertain-

ties, summed in quadrature, add up to 0.085 ppm on aver-

age (Dlugokencky and Tans, 2019). The fourth is the uncer-

tainty associated with using the average CO2 concentration

from a surface network to approximate the true atmospheric

average CO2 concentration (mass-weighted, in three dimen-

sions) as needed to assess the total atmospheric CO2 burden.

In reality, CO2 variations measured at the stations will not

exactly track changes in total atmospheric burden, with off-

sets in magnitude and phasing due to vertical and horizon-

tal mixing. This effect must be very small on decadal and

longer timescales, when the atmosphere can be considered

well mixed. Preliminary estimates suggest this effect would

increase the annual uncertainty, but a full analysis is not

yet available. We therefore maintain an uncertainty around

the annual growth rate based on the multiple stations’ data

set ranges between 0.11 and 0.72GtC yr−1, with a mean of

0.61GtC yr−1 for 1959–1979 and 0.17GtC yr−1 for 1980–

2018, when a larger set of stations was available as provided

by Dlugokencky and Tans (2019), but we recognise further

exploration of this uncertainty is required. At this time, we

estimate the uncertainty of the decadal averaged growth rate

after 1980 at 0.02GtC yr−1 based on the calibration and the

annual growth rate uncertainty, but stretched over a 10-year

interval. For years prior to 1980, we estimate the decadal av-

eraged uncertainty to be 0.07GtC yr−1 based on a factor pro-

portional to the annual uncertainty prior to and after 1980

(0.02×[0.61/0.17]GtC yr−1).

We assign a high confidence to the annual estimates of

GATM because they are based on direct measurements from

multiple and consistent instruments and stations distributed

around the world (Ballantyne et al., 2012).
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In order to estimate the total carbon accumulated in the

atmosphere since 1750 or 1850, we use an atmospheric

CO2 concentration of 277± 3 ppm or 286± 3 ppm, respec-

tively, based on a cubic spline fit to ice core data (Joos

and Spahni, 2008). The uncertainty of ±3 ppm (converted to

±1σ ) is taken directly from the IPCC’s assessment (Ciais et

al., 2013). Typical uncertainties in the growth rate in atmo-

spheric CO2 concentration from ice core data are equivalent

to±0.1–0.15GtC yr−1 as evaluated from the LawDome data

(Etheridge et al., 1996) for individual 20-year intervals over

the period from 1850 to 1960 (Bruno and Joos, 1997).

2.3.2 Atmospheric growth rate projection

We provide an assessment of GATM for 2019 based on

the monthly calculated global atmospheric CO2 concentra-

tion (GLO) through August (Dlugokencky and Tans, 2019)

and bias-adjusted Holt–Winters exponential smoothing with

additive seasonality (Chatfield, 1978) to project to Jan-

uary 2020. The assessment method used this year differs

from the forecast method used last year (Le Quéré et al.,

2018b), which was based on the observed concentrations at

Mauna Loa (MLO) only, using the historical relationship be-

tween the MLO and GLO series. Additional analysis sug-

gests that the first half of the year shows more interannual

variability than the second half of the year, so that the ex-

act projection method applied to the second half of the year

has a relatively smaller impact on the projection of the full

year. Uncertainty is estimated from past variability using the

standard deviation of the last 5 years’ monthly growth rates.

2.4 Ocean CO2 sink

Estimates of the global ocean CO2 sink SOCEAN are from an

ensemble of global ocean biogeochemistry models (GOBMs,

Table A2) that meet observational constraints over the 1990s

(see below). We use observation-based estimates of SOCEAN

to provide a qualitative assessment of confidence in the re-

ported results and two diagnostic ocean models to estimate

SOCEAN over the industrial era (see below).

2.4.1 Observation-based estimates

We use the observational constraints assessed by IPCC of a

mean ocean CO2 sink of 2.2± 0.4GtC yr−1 for the 1990s

(Denman et al., 2007) to verify that the GOBMs provide

a realistic assessment of SOCEAN. This is based on indirect

observations with seven different methodologies and their

uncertainties, using the methods that are deemed most re-

liable for the assessment of this quantity (Denman et al.,

2007). The IPCC confirmed this assessment in 2013 (Ciais et

al., 2013). The observational-based estimates use the ocean–

land CO2 sink partitioning from observed atmospheric O2

and N2 concentration trends (Manning and Keeling, 2006;

updated in Keeling and Manning, 2014), an oceanic in-

version method constrained by ocean biogeochemistry data

(Mikaloff Fletcher et al., 2006), and a method based on a

penetration timescale for chlorofluorocarbons (McNeil et al.,

2003). The IPCC estimate of 2.2GtC yr−1 for the 1990s is

consistent with a range of methods (Wanninkhof et al., 2013).

We also use three estimates of the ocean CO2 sink and

its variability based on interpolations of measurements of

surface ocean fugacity of CO2 (pCO2 corrected for the

non-ideal behaviour of the gas; Pfeil et al., 2013). We re-

fer to these as pCO2-based flux estimates. The measure-

ments are from the Surface Ocean CO2 Atlas version 2019,

which is an update of version 3 (Bakker et al., 2016)

and contains quality-controlled data to 2018 (see data at-

tribution Table A4). The SOCAT v2019 data were mapped

using a data-driven diagnostic method (Rödenbeck et al.,

2013; referred to here as Jena-MLS), a combined self-

organising map and feed-forward neural network (Land-

schützer et al., 2014; MPI-SOMFFN), and an artificial neu-

ral network model (Denvil-Sommer et al., 2019; Coperni-

cus Marine Environment Monitoring Service, CMEMS). The

global pCO2-based flux estimates were adjusted to remove

the pre-industrial ocean source of CO2 to the atmosphere of

0.78GtC yr−1 from river input to the ocean (Resplandy et

al., 2018), per our definition of SOCEAN. Several other ocean

sink products based on observations are also available but

they continue to show large unresolved discrepancies with

observed variability. Here we used, as in our previous an-

nual budgets, the two pCO2-based flux products that had the

best fit to observations for their representation of tropical and

global variability (Rödenbeck et al., 2015), plus CMEMS,

which has a similarly good fit with observations. The CO2

flux from each pCO2-based product is scaled by the ratio of

the total ocean area covered by the respective product to the

total ocean area (361.9× 106 km2) from ETOPO1 (Amante

and Eakins, 2009; Eakins and Sharman, 2010). In products

where the covered area varies with time (MPI-SOMFFN,

CMEMS) we use the maximum area coverage. The data

products cover 88% (MPI-SOMFFN, CMEMS) to 101% of

the observed total ocean area, so two products are effectively

corrected upwards by a factor of 1.126.

We further use results from two diagnostic ocean models

of Khatiwala et al. (2013) and DeVries (2014) to estimate

the anthropogenic carbon accumulated in the ocean prior to

1959. The two approaches assume constant ocean circula-

tion and biological fluxes, with SOCEAN estimated as a re-

sponse in the change in atmospheric CO2 concentration cal-

ibrated to observations. The uncertainty in cumulative up-

take of ±20GtC (converted to ±1σ ) is taken directly from

the IPCC’s review of the literature (Rhein et al., 2013) or as

about ±30% for the annual values (Khatiwala et al., 2009).

2.4.2 Global ocean biogeochemistry models (GOBMs)

The ocean CO2 sink for 1959–2018 is estimated using nine

GOBMs (Table A2). The GOBMs represent the physical,
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chemical, and biological processes that influence the sur-

face ocean concentration of CO2 and thus the air–sea CO2

flux. The GOBMs are forced by meteorological reanalysis

and atmospheric CO2 concentration data available for the en-

tire time period. They mostly differ in the source of the at-

mospheric forcing data (meteorological reanalysis), spin-up

strategies, and their horizontal and vertical resolutions (Ta-

ble A2). GOBMs do not include the effects of anthropogenic

changes in nutrient supply, which could lead to an increase in

the ocean sink of up to about 0.3GtC yr−1 over the industrial

period (Duce et al., 2008). They also do not include the per-

turbation associated with changes in riverine organic carbon

(see Sect. 2.7.3).

The annual mean air–sea CO2 flux from the GOBMs is

corrected for any model bias or drift by subtracting the time-

dependent model bias. The time-dependent model bias is

calculated as a linear fit to the annual CO2 flux from a

control simulation with no climate variability and change

and constant pre-industrial CO2 concentration. The abso-

lute biases per model in the 1990s vary between 0.005

and 0.362GtC yr−1, with some models having positive and

some having negative biases. The bias correction reduces

the model mean ocean carbon sink by 0.06GtC yr−1 in the

1990s. The CO2 flux from each model is scaled by the ratio of

the total ocean area covered by the respective GOBM to the

total ocean area (361.9× 106 km2) from ETOPO1 (Amante

and Eakins, 2009; Eakins and Sharman, 2010). The ocean

models cover 97% to 101% of the total ocean area, so the

effect of this correction is small. All models fell within the

observational constraint for the 1990s before and after apply-

ing the corrections.

2.4.3 GOBM evaluation and uncertainty assessment for
SOCEAN

The mean ocean CO2 sink for all GOBMs falls within 90%

confidence of the observed range, or 1.6 to 2.8GtC yr−1 for

the 1990s. Here we have adjusted the confidence interval to

the IPCC confidence interval of 90% to avoid rejecting mod-

els that may be outliers but are still plausible.

The GOBMs and flux products have been further evalu-

ated using air–sea CO2 flux (fCO2) from the SOCAT v2019

database (Bakker et al., 2016, updated). We focused this eval-

uation on the root-mean-square error (RMSE) between ob-

served fCO2 and modelled pCO2 and on a measure of the

amplitude of the interannual variability of the flux (Röden-

beck et al., 2015). The amplitude of the SOCEAN interannual

variability (A-IAV) is calculated as the temporal standard de-

viation of a 12-month running mean over the CO2 flux time

series (Rödenbeck et al., 2015).

The RMSE is only calculated for open-ocean (water

depth> 400m) grid points on a 1◦ × 1◦ monthly grid where

actual observations exist. These metrics are chosen because

RMSE is the most direct measure of data–model mismatch

and the A-IAV is a direct measure of the variability of

SOCEAN on interannual timescales. We apply these metrics

globally and by latitude bands (Fig. B1). Results are shown

in Fig. B1 and discussed in Sect. 3.1.3.

The uncertainty around the mean ocean sink of anthro-

pogenic CO2 was quantified by Denman et al. (2007) for

the 1990s (see Sect. 2.4.1). To quantify the uncertainty

around annual values, we examine the standard deviation

of the GOBM ensemble, which averages 0.3GtC yr−1 dur-

ing 1959–2018. We estimate that the uncertainty in the an-

nual ocean CO2 sink is about ±0.5GtC yr−1 from the com-

bined uncertainty of the mean flux based on observations of

±0.4GtC yr−1 (Denman et al., 2007) and the standard devi-

ation across GOBMs of up to ±0.4GtC yr−1, reflecting the

uncertainty in both the mean sink from observations during

the 1990s (Denman et al., 2007; Sect. 2.4.1) and in the inter-

annual variability as assessed by GOBMs.

We examine the consistency between the variability of

the model-based and the pCO2-based flux products to as-

sess confidence in SOCEAN. The interannual variability of

the ocean fluxes (quantified as the standard deviation) of the

three pCO2-based flux products for 1985–2018 (where they

overlap) is ±0.37GtC yr−1 (Jena-MLS), ±0.46GtC yr−1

(MPI-SOMFFN), and±0.51GtC yr−1 (CMEMS). The inter-

annual variability in the mean of the pCO2-based flux es-

timates is ±0.41GtC yr−1 for the 1985–2018 period, com-

pared to±0.31GtC yr−1 for the GOBM ensemble. The stan-

dard deviation includes a component of trend and decadal

variability in addition to interannual variability, and their rel-

ative influence differs across estimates. Individual estimates

(both GOBM and flux products) generally produce a higher

ocean CO2 sink during strong El Niño events. The annual

pCO2-based flux products correlate with the ocean CO2 sink

estimated here with a correlation of r = 0.75 (0.55 to 0.79 for

individual GOBMs), r = 0.86 (0.70 to 0.87), and 0.93 (0.83

to 0.93) for the pCO2-based flux products of Jena-MLS,

MPI-SOMFFN, and CMEMS, respectively (simple linear re-

gression). The averages of the GOBM estimates and of the

data-based estimates have a mutual correlation of 0.91. The

agreement between the models and the flux products reflects

some consistency in their representation of underlying vari-

ability since there is little overlap in their methodology or use

of observations. We assess a medium confidence level for the

annual ocean CO2 sink and its uncertainty because it is based

on multiple lines of evidence, and the results are consistent in

that the interannual variability in the GOBMs and data-based

estimates is generally small compared to the variability in the

growth rate of atmospheric CO2 concentration.
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2.5 Terrestrial CO2 sink

2.5.1 DGVM simulations

The terrestrial land sink (SLAND) is thought to be due to the

combined effects of fertilisation by rising atmospheric CO2

and N inputs on plant growth, as well as the effects of cli-

mate change such as the lengthening of the growing season

in northern temperate and boreal areas. SLAND does not in-

clude land sinks directly resulting from land use and land

use change (e.g. regrowth of vegetation) as these are part of

the land use flux (ELUC), although system boundaries make

it difficult to exactly attribute CO2 fluxes on land between

SLAND and ELUC (Erb et al., 2013).

SLAND is estimated from the multi-model mean of 16

DGVMs (Table 4). As described in Sect. 2.2.2, DGVM sim-

ulations include all climate variability and CO2 effects over

land, with some DGVMs also including the effect of N in-

puts. The DGVMs do not include the export of carbon to

aquatic systems or its historical perturbation, which is dis-

cussed in Sect. 2.7.3.

2.5.2 DGVM evaluation and uncertainty assessment for
SLAND

We apply three criteria for minimum DGVM realism by

including only those DGVMs with (1) steady state after

spin up; (2) net land fluxes (SLAND – ELUC), that is an

atmosphere-to-land carbon flux over the 1990s ranging be-

tween −0.3 and 2.3GtC yr−1, within 90% confidence of

constraints by global atmospheric and oceanic observations

(Keeling and Manning, 2014; Wanninkhof et al., 2013); and

(3) global ELUC that is a carbon source to the atmosphere

over the 1990s, as mentioned in Sect. 2.2.2. All 16 DGVMs

meet these three criteria.

In addition, the DGVM results are also evaluated using the

International Land Model Benchmarking system (ILAMB;

Collier et al., 2018). This evaluation is provided here to doc-

ument, encourage, and support model improvements through

time. ILAMB variables cover key processes that are rele-

vant for the quantification of SLAND and resulting aggregated

outcomes. The selected variables are vegetation biomass,

gross primary productivity, leaf area index, net ecosystem ex-

change, ecosystem respiration, evapotranspiration, soil car-

bon, and runoff (see Fig. B2 for the results and for the list of

observed databases). Results are shown in Fig. B2 and dis-

cussed in Sect. 3.1.3.

For the uncertainty for SLAND, we use the standard devi-

ation of the annual CO2 sink across the DGVMs, averaging

to about ±0.6GtC yr−1 for the period from 1959 to 2018.

We attach a medium confidence level to the annual land CO2

sink and its uncertainty because the estimates from the resid-

ual budget and averaged DGVMs match well within their re-

spective uncertainties (Table 5).

2.6 The atmospheric perspective

The worldwide network of atmospheric measurements can

be used with atmospheric inversion methods to constrain the

location of the combined total surface CO2 fluxes from all

sources, including fossil and land use change emissions and

land and ocean CO2 fluxes. The inversions assume EFF to be

well known, and they solve for the spatial and temporal dis-

tribution of land and ocean fluxes from the residual gradients

of CO2 between stations that are not explained by fossil fuel

emissions.

Three atmospheric inversions (Table A3) used atmo-

spheric CO2 data to the end of 2018 (including preliminary

values in some cases) to infer the spatio-temporal distribu-

tion of the CO2 flux exchanged between the atmosphere

and the land or oceans. We focus here on the largest and

most consistent sources of information, namely the total land

and ocean CO2 flux and their partitioning among the mid-

latitude to high-latitude region of the Northern Hemisphere

(30–90◦N), the tropics (30◦ S–30◦N), and the mid-latitude

to high-latitude region of the Southern Hemisphere (30–

90◦ S). We also break down those estimates for the land and

ocean regions separately, to further scrutinise the constraints

from atmospheric observations. We use these estimates to

comment on the consistency across various data streams and

process-based estimates.

2.6.1 Atmospheric inversions

The three inversion systems used in this release are the

CarbonTracker Europe (CTE; Van Der Laan-Luijkx et al.,

2017), the Jena CarboScope (Rödenbeck, 2005, with up-

dates from Rödenbeck et al., 2018), and the Copernicus

Atmosphere Monitoring Service (CAMS; Chevallier et al.,

2005). See Table A3 for version numbers. The inversions

are based on Bayesian inversion principles with prior in-

formation on fluxes and their uncertainty that interpret the

same, for the most part, observed time series (or subsets

thereof), but use different methodologies (Table A3). These

differences mainly concern the selection of atmospheric CO2

data, the used prior fluxes, spatial breakdown (i.e. grid size),

assumed correlation structures, and mathematical approach.

The details of these approaches are documented extensively

in the references provided above. Each system uses a differ-

ent transport model, which was demonstrated to be a driv-

ing factor behind differences in atmospheric-based flux es-

timates and specifically their distribution across latitudinal

bands (e.g. Gaubert et al., 2019).

The inversions use atmospheric CO2 observations from

various flask and in situ networks, as detailed in Table A3.

They prescribe global fossil fuel emissions, which is al-

ready scaled to the present estimate of EFF for CAMS, while

CTE and CarboScope used slightly different EFF values (<

0.39GtC yr−1) based on alternative emissions compilations.

Since this is known to result in different total CO2 uptake
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in atmospheric inversions (Peylin et al., 2013; Gaubert et al.,

2019), we adjusted the land sink of each inversion estimate

(where most of the fossil fuel emissions occur) by its fos-

sil fuel difference to the CAMS model. These differences

amount to up to 0.5GtC for certain years in the Northern

Hemisphere and are thus an important consideration in an

inverse flux comparison.

The land–ocean CO2 fluxes from atmospheric inversions

contain anthropogenic perturbation and natural pre-industrial

CO2 fluxes. Natural pre-industrial fluxes are primarily land

CO2 sinks and ocean CO2 sources corresponding to car-

bon taken up on land, transported by rivers from land to

ocean, and outgassed by the ocean. These pre-industrial land

CO2 sinks are thus compensated for over the globe by ocean

CO2 sources corresponding to the outgassing of riverine car-

bon inputs to the ocean. We apply the distribution of land-

to-ocean C fluxes from rivers in three latitude bands us-

ing estimates from Resplandy et al. (2018), which are con-

strained by ocean heat transport to a total land-to-ocean car-

bon transfer of 0.78GtC yr−1. The latitude distribution of

river-induced ocean CO2 sources (north: 0.20GtC yr−1; trop-

ics: 0.19GtC yr−1; south: 0.38GtC yr−1) is derived from a

simulation of the IPSL GOBM using as an input the river

flux constrained by heat transport of Resplandy et al. (2018).

To facilitate the comparison, we adjusted the inversion es-

timates of the land and ocean fluxes per latitude band with

these numbers based on these results to produce historical

perturbation CO2 fluxes from inversions.

The atmospheric inversions are also evaluated using ver-

tical profiles of atmospheric CO2 concentrations (Fig. B3).

More than 30 aircraft programmes over the globe, either reg-

ular programmes or repeated surveys over at least 9 months,

have been used in order to draw a robust picture of the model

performance (with space-time data coverage irregular and

denser in the 0–45◦ N latitude band). The three models are

compared to the independent aircraft CO2 measurements be-

tween 2 and 7 km above sea level between 2001 and 2017.

Results are shown in Fig. B3 and discussed in Sect. 3.1.3.

2.7 Processes not included in the global carbon budget

The contribution of anthropogenic CO and CH4 to the global

carbon budget is not fully accounted for in Eq. (1) and is de-

scribed in Sect. 2.7.1. The contributions of other carbonates

to CO2 emissions is described in Sect. 2.7.2. The contribu-

tion of anthropogenic changes in river fluxes is conceptually

included in Eq. (1) in SOCEAN and in SLAND, but it is not rep-

resented in the process models used to quantify these fluxes.

This effect is discussed in Sect. 2.7.3. Similarly, the loss of

additional sink capacity from reduced forest cover is missing

in the combination of approaches used here to estimate both

land fluxes (ELUC and SLAND), and their potential effect is

discussed and quantified in Sect 2.7.4.

2.7.1 Contribution of anthropogenic CO and CH4 to the
global carbon budget

Equation (1) only partly includes the net input of CO2 to the

atmosphere from the chemical oxidation of reactive carbon-

containing gases from sources other than the combustion of

fossil fuels, such as (1) cement process emissions since these

do not come from combustion of fossil fuels, (2) the oxida-

tion of fossil fuels, and (3) the assumption of immediate oxi-

dation of vented methane in oil production. It omits however

any other anthropogenic carbon-containing gases that are

eventually oxidised in the atmosphere, such as anthropogenic

emissions of CO and CH4. An attempt is made in this section

to estimate their magnitude and identify the sources of un-

certainty. Anthropogenic CO emissions are from incomplete

fossil fuel and biofuel burning and deforestation fires. The

main anthropogenic emissions of fossil CH4 that matter for

the global carbon budget are the fugitive emissions of coal,

oil, and gas upstream sectors (see below). These emissions

of CO and CH4 contribute a net addition of fossil carbon to

the atmosphere.

In our estimate of EFF we assumed (Sect. 2.1.1) that all the

fuel burned is emitted as CO2; thus CO anthropogenic emis-

sions associated with incomplete combustion and their atmo-

spheric oxidation into CO2 within a few months are already

counted implicitly in EFF and should not be counted twice

(same for ELUC and anthropogenic CO emissions by defor-

estation fires). Anthropogenic emissions of fossil CH4 are

not included in EFF because these fugitive emissions are not

included in the fuel inventories. Yet they contribute to the an-

nual CO2 growth rate after CH4 gets oxidised into CO2. An-

thropogenic emissions of fossil CH4 represent 15% of total

CH4 emissions (Kirschke et al., 2013), that is 0.072GtC yr−1

for the past decade. Assuming steady state, these emissions

are all converted to CO2 by OH oxidation, and thus they ex-

plain 0.06GtC yr−1 of the global CO2 growth rate in the past

decade, or 0.07–0.1GtC yr−1 using the higher CH4 emis-

sions reported recently (Schwietzke et al., 2016).

Other anthropogenic changes in the sources of CO and

CH4 from wildfires, vegetation biomass, wetlands, rumi-

nants, or permafrost are similarly assumed to have a small

effect on the CO2 growth rate. The CH4 and CO emissions

and sinks are published and analysed separately in the global

methane budget and global carbon monoxide budget publica-

tions, which follow a similar approach to that presented here

(Saunois et al., 2016; Zheng et al., 2019).

2.7.2 Contribution of other carbonates to CO2
emissions

The contribution of fossil carbonates other than cement pro-

duction is not systematically included in estimates of EFF,

except at the national level where they are accounted for in

the UNFCCC national inventories. The missing processes in-

clude CO2 emissions associated with the calcination of lime
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and limestone outside cement production and the reabsorp-

tion of CO2 by the rocks and concrete from carbonation

through their lifetime (Xi et al., 2016). Carbonates are used

in various industries, including in iron and steel manufacture

and in agriculture. They are found naturally in some coals.

Carbonation from the cement life cycle, including demoli-

tion and crushing, was estimated by one study to be around

0.25GtC yr−1 for the year 2013 (Xi et al., 2016). Carbona-

tion emissions from the cement life cycle would offset cal-

cination emissions from lime and limestone production. The

balance of these two processes is not clear.

2.7.3 Anthropogenic carbon fluxes in the land-to-ocean
aquatic continuum

The approach used to determine the global carbon budget

refers to the mean, variations, and trends in the perturbation

of CO2 in the atmosphere, referenced to the pre-industrial

era. Carbon is continuously displaced from the land to the

ocean through the land–ocean aquatic continuum (LOAC)

comprising freshwaters, estuaries, and coastal areas (Bauer

et al., 2013; Regnier et al., 2013). A significant fraction of

this lateral carbon flux is entirely “natural” and is thus a

steady-state component of the pre-industrial carbon cycle.

We account for this pre-industrial flux where appropriate in

our study. However, changes in environmental conditions and

land use change have caused an increase in the lateral trans-

port of carbon into the LOAC – a perturbation that is relevant

for the global carbon budget presented here.

The results of the analysis of Regnier et al. (2013) can be

summarised in two points of relevance for the anthropogenic

CO2 budget. First, the anthropogenic perturbation has in-

creased the organic carbon export from terrestrial ecosystems

to the hydrosphere by as much as 1.0± 0.5GtC yr−1 since

pre-industrial times, mainly owing to enhanced carbon ex-

port from soils. Second, this exported anthropogenic carbon

is partly respired through the LOAC, partly sequestered in

sediments along the LOAC, and to a lesser extent transferred

to the open ocean where it may accumulate. The increase

in storage of land-derived organic carbon in the LOAC and

open ocean combined is estimated by Regnier et al. (2013) at

0.65± 0.35GtC yr−1. We do not attempt to incorporate the

changes in LOAC in our study.

The inclusion of freshwater fluxes of anthropogenic CO2

affects the estimates of, and partitioning between, SLAND and

SOCEAN in Eq. (1) but does not affect the other terms. This

effect is not included in the GOBMs and DGVMs used in our

global carbon budget analysis presented here.

2.7.4 Loss of additional sink capacity

Historical land cover change was dominated by transitions

from vegetation types that can provide a large carbon sink

per area unit (typically forests) to others less efficient in re-

moving CO2 from the atmosphere (typically croplands). The

resultant decrease in land sink, called the “loss of sink ca-

pacity”, is calculated as the difference between the actual

land sink under changing land cover and the counterfactual

land sink under pre-industrial land cover. An efficient proto-

col has yet to be designed to estimate the magnitude of the

loss of additional sink capacity in DGVMs. Here, we pro-

vide a quantitative estimate of this term to be used in the dis-

cussion. Our estimate uses the compact Earth system model

OSCAR whose land carbon cycle component is designed to

emulate the behaviour of DGVMs (Gasser et al., 2017). We

use OSCAR v2.2.1 (an update of v2.2 with minor changes)

in a probabilistic setup identical to the one of Arneth et

al. (2017) but with a Monte Carlo ensemble of 2000 simula-

tions. For each, we calculate SLAND and the loss of additional

sink capacity separately. We then constrain the ensemble by

weighting each member to obtain a distribution of cumula-

tive SLAND over 1850–2005 close to the DGVMs used here.

From this ensemble, we estimate a loss of additional sink ca-

pacity of 0.4±0.3GtC yr−1 on average over 2005–2014 and

of about 20± 15GtC when accumulated between 1850 and

2018 (using a linear extrapolation of the trend to estimate the

last few years).

3 Results

3.1 Global carbon budget mean and variability for
1959–2018

The global carbon budget averaged over the last half-century

is shown in Fig. 3. For this time period, 82% of the total

emissions (EFF+ELUC) were caused by fossil CO2 emis-

sions and 18% by land use change. The total emissions were

partitioned among the atmosphere (45%), ocean (24%), and

land (29%), with an unattributed budget imbalance (2%).

All components except land use change emissions have sig-

nificantly grown since 1959, with important interannual vari-

ability in the growth rate in atmospheric CO2 concentration

and in the land CO2 sink (Fig. 4) and some decadal variabil-

ity in all terms (Table 6). Differences with previous budget

releases are documented in Fig. B4.

3.1.1 CO2 emissions

Global fossil CO2 emissions have increased every decade

from an average of 3.0± 0.2GtC yr−1 in the 1960s to an

average of 9.5± 0.5GtC yr−1 during 2009–2018 (Table 6,

Figs. 2 and 5). The growth rate in these emissions decreased

between the 1960s and the 1990s, from 4.4%yr−1 in the

1960s (1960–1969) to 2.8%yr−1 in the 1970s (1970–1979),

1.9%yr−1 in the 1980s (1980–1989), and 0.9%yr−1 in

the1990s (1990–1999). After this period, the growth rate be-

gan increasing again in the 2000s at an average growth rate

of 3.0%yr−1, decreasing to 0.9%yr−1 for 2010–2018, with

1.3%yr−1 for the last decade (2009–2018).
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Table 6. Decadal mean in the five components of the anthropogenic CO2 budget for different periods and the last year available. All values

are in gigatonnes of carbon per year, and uncertainties are reported as±1σ . The table also shows the budget imbalance (BIM), which provides

a measure of the discrepancies among the nearly independent estimates and has an uncertainty exceeding±1GtC yr−1. A positive imbalance

means the emissions are overestimated and/or the sinks are too small. All values are rounded to the nearest 0.1GtC and therefore columns

do not necessarily add to zero.

Mean (GtC yr−1)

1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 2009–2018 2018

Total emissions (EFF+ELUC)

Fossil CO2 emissions (EFF) 3.0± 0.2 4.7± 0.2 5.5± 0.3 6.4± 0.3 7.8± 0.4 9.5± 0.5 10.0± 0.5

Land use change emissions (ELUC) 1.4± 0.7 1.2± 0.7 1.2± 0.7 1.3± 0.7 1.4± 0.7 1.5± 0.7 1.5± 0.7

Total emissions 4.5± 0.7 5.8± 0.7 6.7± 0.8 7.7± 0.8 9.2± 0.8 11.0± 0.8 11.5± 0.9

Partitioning

Growth rate in atmospheric CO2

concentration (GATM)

1.8± 0.07 2.8± 0.07 3.4± 0.02 3.1± 0.02 4.0± 0.02 4.9± 0.02 5.1± 0.2

Ocean sink (SOCEAN) 1.0± 0.6 1.3± 0.6 1.7± 0.6 2.0± 0.6 2.2± 0.6 2.5± 0.6 2.6± 0.6

Terrestrial sink (SLAND) 1.3± 0.4 2.0± 0.3 1.8± 0.5 2.4± 0.4 2.7± 0.6 3.2± 0.6 3.5± 0.7

Budget imbalance

BIM = EFF+ELUC− (GATM+
SOCEAN+ SLAND)

0.5 −0.2 −0.2 0.3 0.3 0.4 0.3

In contrast, CO2 emissions from land use, land use change,

and forestry have remained relatively constant, at around

1.3± 0.7GtC yr−1 over the past half-century (Table 6) but

with large spread across estimates (Table 5, Fig. 6). These

emissions are also relatively constant in the DGVM ensem-

ble of models, except during the last decade when they in-

crease to 2.0±0.5GtC yr−1. However, there is no agreement

on this recent increase between the two bookkeeping models,

each suggesting an opposite trend (Fig. 6).

3.1.2 Partitioning among the atmosphere, ocean, and
land

The growth rate in atmospheric CO2 level increased from

1.8±0.07GtC yr−1 in the 1960s to 4.9±0.02GtC yr−1 dur-

ing 2009–2018 with important decadal variations (Table 6

and Fig. 2). Both ocean and land CO2 sinks have increased

roughly in line with the atmospheric increase, but with sig-

nificant decadal variability on land (Table 6 and Fig. 6) and

possibly in the ocean (Fig. 7). The ocean CO2 sink increased

from 1.0± 0.6GtC yr−1 in the 1960s to 2.5± 0.6GtC yr−1

during 2009–2018, with interannual variations of the order

of a few tenths of gigatonnes of carbon per year generally

showing an increased ocean sink during large El Niño events

(i.e. 1997–1998) (Fig. 7; Rödenbeck et al., 2014). There is

coherence among the GOBMs and pCO2-based flux prod-

ucts regarding the mean and the patterns of temporal variabil-

ity; however, the ocean models underestimate the magnitude

of decadal variability (Sect. 2.4.3 and Fig. 7; DeVries et al.,

2019).

The terrestrial CO2 sink increased from 1.3±0.4GtC yr−1

in the 1960s to 3.2± 0.7GtC yr−1 during 2009–2018, with

important interannual variations of up to 2GtC yr−1 gener-

ally showing a decreased land sink during El Niño events

(Fig. 6), responsible for the corresponding enhanced growth

rate in atmospheric CO2 concentration. The larger land CO2

sink during 2009–2018 compared to the 1960s is reproduced

by all the DGVMs in response to the combined atmospheric

CO2 increase and the changes in climate and consistent with

constraints from the other budget terms (Table 5).

The total atmosphere-to-land fluxes (SLAND−ELUC), cal-

culated here as the difference between SLAND from the

DGVMs and ELUC from the bookkeeping models, increased

from a 0.2± 0.8GtC yr−1 source in the 1960s to a 1.7±
0.9GtC yr−1 sink during 2009–2018 (Table 5). Estimates of

total atmosphere-to-land fluxes (SLAND – ELUC) from the

DGVMs alone are consistent with our estimate and also

with the global carbon budget constraint (EFF−GATM−
SOCEAN, Table 5), except during 2009–2018, where the

DGVM ensemble estimates a total atmosphere-to-land flux

of 1.0± 0.8GtC yr−1, likely below both our estimate of

1.7±0.9GtC yr−1 and the carbon budget constraint of 2.1±
0.7GtC yr−1 but still within the range of the inversions (1.1–

2.2GtC yr−1) (Table 5). Over the last decade, the land use

emission estimate from the DGVMs is significantly larger

than the bookkeeping estimate, mainly explaining why the

DGVMs’ total atmosphere-to-land flux estimate is lower

than the other estimates.
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Figure 3. Combined components of the global carbon budget il-

lustrated in Fig. 2 as a function of time, for fossil CO2 emissions

(EFF, grey) and emissions from land use change (ELUC, brown),

as well as their partitioning among the atmosphere (GATM, blue),

ocean (SOCEAN, turquoise), and land (SLAND, green). The parti-

tioning is based on nearly independent estimates from observations

(for GATM) and from process model ensembles constrained by data

(for SOCEAN and SLAND), and it does not exactly add up to the

sum of the emissions, resulting in a budget imbalance, which is

represented by the difference between the bottom pink line (re-

flecting total emissions) and the sum of the ocean, land, and at-

mosphere. All time series are in gigatonnes of carbon per year.

GATM and SOCEAN prior to 1959 are based on different methods.

EFF is primarily from Gilfillan et al. (2019), with uncertainty of

about ±5% (±1σ ); ELUC is from two bookkeeping models (Ta-

ble 2) with uncertainties of about ±50%; GATM prior to 1959 is

from Joos and Spahni (2008) with uncertainties equivalent to about

±0.1–0.15GtC yr−1 and from Dlugokencky and Tans (2019) from

1959 with uncertainties of about ±0.2GtC yr−1; SOCEAN prior to

1959 is averaged from Khatiwala et al. (2013) and DeVries (2014)

with uncertainty of about ±30% and from a multi-model mean

(Table 4) from 1959 with uncertainties of about ±0.5GtC yr−1;

SLAND is a multi-model mean (Table 4) with uncertainties of about

±0.9GtC yr−1. See the text for more details of each component and

their uncertainties.

3.1.3 Model evaluation

The evaluation of the ocean estimates (Fig. B1) shows a

RMSE of 15 to 17 μatm for the three pCO2-based flux prod-

ucts over the globe, relative to the pCO2 observations from

the SOCAT v2019 database for the period 1985–2018. The

GOBM RMSEs are a factor of 2 to 3 larger and range be-

tween 29 and 49 μatm. The RMSEs are generally larger at

high latitudes compared to the tropics, for both the flux prod-

ucts and the GOBMs. The three flux products have similar

RMSEs of around 12 to 14 μatm in the tropics, around 17 to

18 μatm in the north, and 17 to 24 μatm in the south. Note that

the flux products are based on the SOCAT v2019 database;

hence these are no independent data sets for the evaluation

of the flux products. The GOBM RMSEs are more spread

across regions, ranging from 21 to 34 μatm in the tropics,

32 to 48 μatm in the north, and 31 to 77 μatm in the south.

The higher RMSEs occur in regions with stronger climate

variability, such as the northern and southern high latitudes

(poleward of the subtropical gyres).

The evaluation of the DGVMs (Fig. B2) shows gener-

ally high skill scores across models for runoff, and to a

lesser extent for vegetation biomass, gross primary produc-

tivity (GPP), and ecosystem respiration (Fig. B2, left panel).

Skill score was lowest for leaf area index and net ecosys-

tem exchange, with the widest disparity among models for

soil carbon. Further analysis of the results will be provided

separately, focusing on the strengths and weaknesses in the

DGVM ensemble and its validity for use in the global carbon

budget.

The evaluation of the atmospheric inversions (Fig. B3)

shows long-term mean biases in the free troposphere bet-

ter than 0.4 ppm in absolute values for each product. These

biases show some dependency on latitude and are different

for each inverse model, which may reveal biases in the sur-

face fluxes (e.g. Houweling et al., 2015). Such model- and

campaign-specific performance will be analysed separately.

3.1.4 Budget imbalance

The carbon budget imbalance (BIM, Eq. 1) quantifies the mis-

match between the estimated total emissions and the esti-

mated changes in the atmosphere, land, and ocean reservoirs.

The mean budget imbalance from 1959 to 2018 is small (av-

erage of 0.17GtC yr−1) and shows no trend over the full time

series. The process models (GOBMs and DGVMs) have been

selected to match observational constraints in the 1990s but

no further constraints have been applied to their representa-

tion of trend and variability. Therefore, the near-zero mean

and trend in the budget imbalance is indirect evidence of

a coherent community understanding of the emissions and

their partitioning on those timescales (Fig. 4). However, the

budget imbalance shows substantial variability of the order of

±1GtC yr−1, particularly over semi-decadal timescales, al-

though most of the variability is within the uncertainty of the

estimates. The positive carbon imbalance during the 1960s,

early 1990s, and in the last decade suggests that either the

emissions were overestimated or the sinks were underesti-

mated during these periods. The reverse is true for the 1970s

and around 1995–2000 (Fig. 4).

We cannot attribute the cause of the variability in the bud-

get imbalance with our analysis. We only note that the budget

imbalance is unlikely to be explained by errors or biases in

the emissions alone because of its large semi-decadal vari-
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Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented individually for (a) fossil CO2

emissions (EFF), (b) emissions from land use change (ELUC), (c) the budget imbalance that is not accounted for by the other terms, (d) growth

rate in atmospheric CO2 concentration (GATM), and (e) the land CO2 sink (SLAND, positive indicates a flux from the atmosphere to the land),

and (f) the ocean CO2 sink (SOCEAN, positive indicates a flux from the atmosphere to the ocean). All time series are in gigatonnes of carbon

per year with the uncertainty bounds representing ±1σ in shaded colour. Data sources are as in Fig. 3. The black dots in (a) show values for

2017–2018 that originate from a different data set to the remainder of the data (see text). The dashed line in (b) identifies the pre-satellite

period before the inclusion of emissions from peatland burning.

ability component, a variability that is untypical of emis-

sions and has not changed in the past 50 years in spite of

a near tripling in emissions (Fig. 4). Errors in SLAND and

SOCEAN are more likely to be the main cause for the bud-

get imbalance. For example, underestimation of the SLAND

by DGVMs has been reported following the eruption of

Mount Pinatubo in 1991 possibly due to missing responses to

changes in diffuse radiation (Mercado et al., 2009) or other

yet unknown factors, and DGVMs are suspected to overesti-

mate the land sink in response to the wet decade of the 1970s

(Sitch et al., 2008). Decadal and semi-decadal variability in

the ocean sink has also been reported recently (DeVries et al.,

2019, 2017; Landschützer et al., 2015), with the pCO2-based

ocean flux products and a decadal ocean inverse model sug-

gesting a smaller-than-expected ocean CO2 sink in the 1990s

and a larger than expected sink in the 2000s (Fig. 7; DeVries

et al., 2019). The decadal variability is possibly caused by

changes in ocean circulation (DeVries et al., 2017) not cap-

tured in coarse resolution GOBMs used here (Dufour et al.,

2013), or by internal variability, which is not captured by sin-

gle realisations of coarse resolution model simulations (Li

and Ilyina, 2018) The decadal variability is thought to be

largest in regions with strong seasonal and interannual cli-

mate variability, i.e. the high latitude ocean regions (pole-

ward of the subtropical gyres) and the equatorial Pacific (Li

and Ilyina, 2018; McKinley et al., 2016). Some of these er-

rors could be driven by errors in the climatic forcing data,

particularly precipitation (for SLAND) and wind (for SOCEAN)

rather than in the models.
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Figure 5. Fossil CO2 emissions for (a) the globe, including an uncertainty of ±5% (grey shading), and the emissions extrapolated using BP

energy statistics (black dots), (b) global emissions by fuel type, including coal (salmon), oil (olive), gas (turquoise), and cement (purple), and

excluding gas flaring, which is small (0.6% in 2013). (c) Territorial (solid lines) and consumption (dashed lines) emissions for the top three

country emitters (USA – olive; China – salmon; India – purple) and for the European Union (EU; turquoise for the 28 member states of the

EU as of 2012) and (d) per capita emissions for the top three country emitters and the EU (all colours as in panel c) and the world (black). In

(b)–(c), the dots show the data that were extrapolated from BP energy statistics for 2017–2018. All time series are in gigatonnes of carbon

per year except the per capita emissions (d), which are in tonnes of carbon per person per year (tC per person per year). Territorial emissions

are primarily from Gilfillan et al. (2019) except national data for the USA and EU28 (the 28 member states of the EU) for 1990–2017, which

are reported by the countries to the UNFCCC as detailed in the text; consumption-based emissions are updated from Peters et al. (2011a).

See Sect. 2.1.1 for details of the calculations and data sources.

3.2 Global carbon budget for the last decade
(2009–2018)

The global carbon budget averaged over the last decade

(2009–2018) is shown in Figs. 2 and 9. For this time pe-

riod, 86% of the total emissions (EFF+ELUC) were from

fossil CO2 emissions (EFF) and 14% from land use change

(ELUC). The total emissions were partitioned among the at-

mosphere (44%), ocean (23%), and land (29%), with an

unattributed budget imbalance (4%).

3.2.1 CO2 emissions

Global fossil CO2 emissions have grown at a rate of

1.3%yr−1 for the last decade (2009–2018). China’s emis-

sions increased by +2.2%yr−1 on average (increasing by

+0.063GtC yr−1 during the 10-year period) dominating the

global trend, followed by India’s emissions increase by

+5.1%yr−1 (increasing by +0.025GtC yr−1), while emis-

sions decreased in EU28 by −1.4%yr−1 (decreasing by

−0.010GtC yr−1) and in the USA by −0.5%yr−1 (de-

creasing by −0.002GtC yr−1). In the past decade, fossil

CO2 emissions decreased significantly (at the 95% level)

in 19 growing economies: Belgium, Croatia, Czech Repub-

lic, Denmark, Finland, France, Italy, Latvia, Luxembourg,

Republic of Macedonia, Malta, the Netherlands, Romania,

Slovenia, Sweden, Switzerland, the United Kingdom, the

USA, and Uzbekistan. The drivers of recent decarbonisation

are examined in Le Quéré et al. (2019).

In contrast, there is no clear trend in CO2 emissions from

land use change over the last decade (Fig. 6), though the data

are very uncertain, with only one of the two bookkeeping es-

timates showing a positive trend over the last decade. Larger

emissions are increasingly expected over time for DGVM-

based estimates as they include the loss of additional sink ca-

pacity, while the bookkeeping estimates do not. The LUH2

data set also features large dynamics in land use in particu-

lar in the tropics in recent years, causing higher emissions in

DGVMs and BLUE than in H&N.
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Figure 6. CO2 exchanges between the atmosphere and the ter-

restrial biosphere as used in the global carbon budget (black with

±1σ uncertainty in grey shading), for (a) CO2 emissions from land

use change (ELUC), also showing the two bookkeeping models

(two brown lines) and the DGVM model results (green) and their

multi-model mean (dark green) individually. The dashed line iden-

tifies the pre-satellite period before the inclusion of peatland burn-

ing. (b) Land CO2 sink (SLAND) with individual DGVMs (green).

(c) Total land CO2 fluxes (b–a) with individual DGVMs (green)

and their multi-model mean (dark green).

Figure 7. Comparison of the anthropogenic atmosphere–ocean

CO2 flux showing the budget values of SOCEAN (black; with ±1σ

uncertainty in grey shading), individual ocean models (teal), and

the three ocean pCO2-based flux products (light blue; with ±1σ

uncertainty in light blue shading; see Table 4). The pCO2-based

flux products were adjusted for the pre-industrial ocean source of

CO2 from river input to the ocean, which is not present in the ocean

models, by adding a sink of 0.78GtC yr−1 (Resplandy et al., 2018),

to make them comparable to SOCEAN. This adjustment does not

take into account the anthropogenic contribution to river fluxes (see

Sect. 2.7.3)

3.2.2 Partitioning among the atmosphere, ocean, and
land

The growth rate in atmospheric CO2 concentration increased

during 2009–2018, in contrast to more constant levels in the

previous decade and reflecting a similar decrease in the land

sink compared to an increase in the previous decade, albeit

with large interannual variability (Fig. 4). During the same

period, the ocean CO2 sink appears to have intensified, an

effect which is particularly apparent in the pCO2-based flux

products (Fig. 7) and a decadal ocean inverse model (DeVries

et al., 2019). The GOBMs show the same patterns of decadal

variability as the mean of the pCO2-based flux products, but

of weaker magnitude (Fig. 7). The pCO2-based flux prod-

ucts and the ocean inverse model highlight different regions

as the main origin of this decadal variability, with the pCO2-

based flux products placing more of the weakening trend in

the Southern Ocean and the ocean inverse model suggest-

ing that more of the weakening trend occurred in the North

Atlantic and North Pacific (DeVries et al., 2019). Both ap-

proaches also show decadal trends in the low-latitude oceans

(DeVries et al., 2019).

The budget imbalance (Table 6) and the residual sink from

global budget (Table 5) include an error term due to the in-

consistency that arises from using ELUC from bookkeeping

models and SLAND from DGVMs. This error term includes

the fundamental differences between bookkeeping models
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and DGVMs, most notably the loss of additional sink ca-

pacity. Other differences include an incomplete account of

LUC practices and processes in DGVMs, while they are all

accounted for in bookkeeping models by using observed car-

bon densities, and bookkeeping error of keeping present-day

carbon densities fixed in the past. That the budget imbalance

shows no clear trend towards larger values over time is an in-

dication that the loss of additional sink capacity plays a minor

role compared to other errors in SLAND or SOCEAN (discussed

in Sect. 3.1.4).

3.2.3 Regional distribution

Figure 8 shows the partitioning of the total atmosphere-

to-surface fluxes excluding fossil CO2 emissions (SLAND+
SOCEAN−ELUC) according to the multi-model average of

the process models in the ocean and on land (GOBMs and

DGVMs) and to the atmospheric inversions. Figure 8 pro-

vides information on the regional distribution of those fluxes

by latitude bands. The global mean total atmosphere-to-

surface CO2 flux from process models for 2009–2018 is

3.5± 0.9GtC yr−1. This is below but still within the uncer-

tainty range of a global mean atmosphere-to-surface flux of

4.6± 0.5GtC yr−1 inferred from the carbon budget (EFF−
GATM in Eq. 1; Table 6). The total atmosphere-to-surface

CO2 fluxes from the three inversions are very similar, ranging

from 4.6 to 4.9GtC yr−1, consistent with the carbon budget

as expected from the constraints on the inversions and the

adjustments to the same EFF distribution (See Sect. 2.6).

In the south (south of 30◦ S), the atmospheric inversions

suggest an atmosphere-to-surface flux for 2009–2018 around

1.7–2.0GtC yr−1, slightly above the process models’ esti-

mate of 1.4± 0.3GtC yr−1 (Fig. 8). The higher flux in the

pCO2-based flux products than in the ocean models might

be explained by a known lack of surface ocean pCO2 obser-

vations in winter, when CO2 outgassing occurs south of the

Polar Front (Gray et al., 2018).

The interannual variability in the south is low because of

the dominance of ocean area with low variability compared

to land areas. The split between land (SLAND−ELUC) and

ocean (SOCEAN) shows a small contribution to variability in

the south coming from the land, with no consistency between

the DGVMs and the inversions or among inversions. This is

expected due to the difficulty of separating exactly the land

and oceanic fluxes when viewed from atmospheric observa-

tions alone. The oceanic variability in the south is estimated

to be significant in the three pCO2-based flux products, with

decadal variability of 0.18 to 0.22GtC yr−1 (Fig. B1). The

GOBMs show slightly lower interannual variability (0.11 to

0.18GtC yr−1, Fig. B1).

In the tropics (30◦ S–30◦ N), both the atmospheric inver-

sions and process models suggest the total carbon balance in

this region has been close to neutral on average over the past

decade. The three inversion models suggest an atmosphere-

to-surface flux between −0.5 and +0.3GtC yr−1 for the

2009–2018 period, which is within the range of the process

models’ estimates of 0.1± 0.4GtC yr−1. The agreement be-

tween inversions and models is significantly better for the last

decade than for any previous decade, although the reasons for

this better agreement are still unclear. Both the process mod-

els and the inversions consistently allocate more year-to-year

variability of CO2 fluxes to the tropics compared to the north

(north of 30◦ N; Fig. 8). The split between the land and ocean

indicates the land is the origin of most of the tropical variabil-

ity, consistently among models (both for the land and for the

ocean) and inversions. The oceanic variability in the trop-

ics is similar among the three ocean flux products (A-IAV

0.12 to 0.14GtC yr−1) and the models, although the model

spread is larger (A-IAV 0.08 to 0.19GtC yr−1, Sect. 3.1.3,

Fig. B1). While the inversions indicate that atmosphere-to-

land CO2 fluxes are more variable than atmosphere-to-ocean

CO2 fluxes in the tropics, the correspondence between the

inversions and the ocean flux products or GOBMs is much

poorer, partly caused by a substantial tropical ocean carbon

sink produced by one of the three inversions.

In the north (north of 30◦ N), models, inversions, and

pCO2-based flux products consistently suggest that most

of the variability stems from the land (Fig. 8). Inversions,

GOBMs, and pCO2-based flux products agree on the mean

of SOCEAN, but with a higher variability in the pCO2-based

flux products (A-IAV: 0.12 to 0.13GtC yr−1) than in the

models (A-IAV: 0.03 to 0.08GtC yr−1, Fig. B1). Atmo-

spheric inversions and process models show less agreement

on the magnitude of the atmosphere-to-land flux, with the en-

semble mean of the process models suggesting a total North-

ern Hemisphere sink for 2009–2018 of 2.1± 0.5GtC yr−1,

below the estimates from the inversions ranging from 2.5 to

3.4GtC yr−1 (Fig. 8). The discrepancy in the northern tropics

distribution of CO2 fluxes between the inversions and mod-

els arises from the differences in mean fluxes over the north-

ern land. This discrepancy is also evidenced over the previ-

ous decade and highlights not only persistent issues with the

quantification of the drivers of the net land CO2 flux (Arneth

et al., 2017; Huntzinger et al., 2017) but also the distribution

of atmosphere-to-land fluxes between the tropics and higher

latitudes that is particularly marked in previous decades, as

highlighted previously (Baccini et al., 2017; Schimel et al.,

2015; Stephens et al., 2007).

Differences between inversions may be related for ex-

ample to differences in their interhemispheric transport and

other inversion settings (Table A3). Separate analysis has

shown that the influence of the chosen prior land and ocean

fluxes is minor compared to other aspects of each inversion,

while fossil fuel inputs were adjusted to match those of EFF

used in this analysis (see Sect. 2.6), therefore removing dif-

ferences due to fossil emissions prior. Differences between

inversions and the ensemble of process models in the north

cannot be simply explained. They could either reflect a bias

in the inversions or missing processes or biases in the pro-

cess models, such as the lack of adequate parameterisations
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Figure 8. CO2 fluxes between the atmosphere and the surface, SOCEAN and (SLAND – ELUC), by latitude bands for the (top) globe, (second

row) north (north of 30◦ N), (third row) tropics (30◦ S–30◦ N), and (bottom) south (south of 30◦ S) and over (left) total (SOCEAN+SLAND−
ELUC), (middle) land only (SLAND – ELUC), and (right) ocean only (SOCEAN). Positive values indicate a flux from the atmosphere to the

land and/or ocean. Mean estimates from the combination of the process models for the land and oceans are shown (black line) with ±1σ

of the model ensemble (grey shading). For total uncertainty, the land and ocean uncertainties are summed in quadrature. Mean estimates

from the atmospheric inversions are shown (pink lines) with their ±1σ spread (pink shading). Mean estimates from the pCO2-based flux

products are shown for the ocean domain (cyan lines) with their ±1σ spread (cyan shading). The global SOCEAN (upper right) and the sum

of SOCEAN in all three regions represents the anthropogenic atmosphere-to-ocean flux based on the assumption that the pre-industrial ocean

sink was 0GtC yr−1 when riverine fluxes are not considered. This assumption does not hold on the regional level, where pre-industrial fluxes

can be significantly different from zero. Hence, the regional panels for SOCEAN represent a combination of natural and anthropogenic fluxes.

Bias correction and area weighting were only applied to global SOCEAN; hence the sum of the regions is slightly different from the global

estimate (< 0.05GtC yr−1).
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for land management for the DGVMs. The estimated contri-

bution of the north and its uncertainty from process models

is sensitive both to the ensemble of process models used and

to the specifics of each inversion.

Resolving the differences in the Northern Hemisphere

land sink will require the consideration and inclusion of

larger volumes of semi-continuous observations of concen-

trations, fluxes, and auxiliary variables collected from (tall)

towers close to the surface CO2 exchange. Moreover, effec-

tive use of such information would demand a more process-

based approach to land-surface exchange of CO2 than cur-

rently employed in inverse models. Such a process-based ap-

proach would represent constraints on carbon exchange de-

rived from local observations and biogeochemical relations

on multiple timescales, which in turn would be constrained

by the regional- to continental-scale mass balance of atmo-

spheric CO2. Some of these near-surface data are now be-

coming available but are not used in the current inverse mod-

els sometimes due to the short records and sometimes be-

cause the coarse transport models cannot adequately repre-

sent these time series. Improvements in model resolution and

atmospheric transport realism together with expansion of the

observational record (also in the data-sparse boreal Eurasian

area) will help anchor the mid-latitude fluxes per continent.

In addition, new metrics could potentially differentiate be-

tween the more and less realistic realisations of the Northern

Hemisphere land sink shown in Fig. 8.

3.2.4 Budget imbalance

The budget imbalance was +0.4GtC yr−1 on average over

2009–2018. Although the uncertainties are large in each

term, the sustained imbalance over this last decade suggests

an overestimation of the emissions and/or an underestimation

of the sinks. An origin in the land and/or ocean sink may be

more likely, given the large variability of the land sink and the

suspected underestimation of decadal variability in the ocean

sink. An underestimate of SLAND would also reconcile model

results with inversion estimates for fluxes in the total land

during the past decade (Fig. 8, Table 5). An underestimation

of SOCEAN is also possible given slightly higher estimates for

SOCEAN from ocean interior carbon observations over the pe-

riod 1994 to 2007 (2.6± 0.3GtC yr−1; Gruber et al., 2019)

compared to the estimate from GOBMs of 2.1±0.5GtC yr−1

over the same period, although uncertainties overlap. How-

ever, we cannot exclude that the budget imbalance over the

last decade could partly be due to an overestimation of CO2

emissions, in particular from land use change, given their

large uncertainty, as has been suggested elsewhere (Piao et

al., 2018). More integrated use of observations in the global

carbon budget, either on their own or for further constraining

model results, should help resolve some of the budget imbal-

ance (Peters et al., 2017; Sect. 4).

3.3 Global carbon budget for the year 2018

3.3.1 CO2 emissions

Preliminary estimates of global fossil CO2 emissions are for

growth of 2.1% between 2017 and 2018 to reach 10.0±
0.5GtC in 2018 (Fig. 5), distributed among coal (40%), oil

(34%), natural gas (20%), cement (4%), and others (1.3%).

Compared to the previous year, emissions from coal in-

creased by 1.4%, while emissions from oil, natural gas, and

cement increased by 1.2%, 5.4%, and 2.1%, respectively.

All growth rates presented are adjusted for the leap year, un-

less stated otherwise.

In 2018, the largest absolute contributions to global CO2

emissions were from China (28%), the USA (15%), the EU

(28 member states; 9%), and India (7%). These four re-

gions account for 59% of global CO2 emissions, while the

rest of the world contributed 41%, which includes aviation

and marine bunker fuels (3.4% of the total). Growth rates for

these countries from 2017 to 2018 were 2.3% (China), 2.8%

(USA),−2.1% (EU28), and 8.0% (India), with 1.8% for the

rest of the world. The per capita CO2 emissions in 2018 were

1.3 tC per person per year for the globe and were 4.5 (USA),

1.9 (China), 1.8 (EU28) and 0.5 (India) tC per person per year

for the four highest emitting countries (Fig. 5).

The growth in emissions of 2.1% in 2018 is within the

range of the projected growth of 2.7% (range of 1.8% to

3.7%) published in Le Quéré et al. (2018b) based on na-

tional emissions projections for China, the USA, and India

and projections of gross domestic product corrected for IFF
trends for the rest of the world. The growth in emissions in

2018 for China, the USA, EU28, India, and the rest of the

world were all within their previously projected range (Ta-

ble 7).

In 2016 (the last year available), the largest absolute con-

tributions to global CO2 emissions from a consumption per-

spective were China (25%), the USA (16%), the EU (12%),

and India (6%). The difference between territorial and con-

sumption emissions (the net emission transfer via interna-

tional trade) has generally increased from 1990 to around

2005 and remained relatively stable afterwards until the last

year available (2016; Fig. 5).

The global CO2 emissions from land use change are esti-

mated as 1.5±0.7GtC in 2018, close to the previous decade

but with low confidence in the annual change. This brings

the total CO2 emissions from fossil fuel plus land use change

(EFF+ELUC) to 11.5± 0.9GtC (42.5± 3.3GtCO2).

3.3.2 Partitioning among the atmosphere, ocean, and
land

The growth rate in atmospheric CO2 concentration was 5.1±
0.2GtC in 2018 (2.42± 0.08 ppm; Fig. 4; Dlugokencky and

Tans, 2019). This is near the 2009–2018 average of 4.9±
0.02GtC yr−1.
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The estimated ocean CO2 sink was 2.6±0.6GtC in 2018.

The multi-model mean agrees with the mean of the pCO2-

based flux products on an average increase of 0.1GtC in

2018. Six models and two flux products show an increase

in SOCEAN (up to +0.38GtC), while three models and one

flux product show no change or a decrease in SOCEAN (down

to −0.15GtC) (Fig. 7).

The terrestrial CO2 sink from the DGVM model ensemble

was 3.5± 0.7GtC in 2018, slightly above the decadal aver-

age (Fig. 4) and consistent with constraints from the rest of

the budget (Table 5). The budget imbalance was +0.3GtC

in 2018, consistent with its average over the last decade (Ta-

ble 6). This imbalance is indicative only, given the large un-

certainties in the estimation of the BIM.

3.4 Global carbon budget projection for the year 2019

3.4.1 CO2 emissions

Based on the available data as of 14 November 2019 (see

Sect. 2.1.5), fossil CO2 emissions (EFF) for 2019 are pro-

jected to increase by +0.6% (range of −0.2% to +1.5%;

Table 7). Our method contains several assumptions that could

influence the estimate beyond the given range, and as such it

has an indicative value only. Within the given assumptions,

global emissions would be 10.0±0.5GtC (36.8±1.8GtCO2)

in 2019.

For China, the expected change is for an increase in emis-

sions of +2.6% (range of +0.7% to +4.4%) in 2019 com-

pared to 2018. This is based on estimated growth in coal

(+0.8%, the main fuel source in China), oil (+6.9%), and

natural gas (+9.1%) consumption and cement production

(+6.3%). The uncertainty range considers the variations

in the difference between preliminary January–September

data and final full-year data, lack of monthly data on stock

changes, variances in the discrepancies between supply-side

and demand data, the uncertainty in the preliminary data used

for the 2018 base, and uncertainty in the evolution of the av-

erage energy density of each of the fossil fuels.

For the USA, the EIA emissions projection for 2019 com-

bined with cement data from USGS gives a decrease of

−1.7% (range of −3.7% to +0.3%) compared to 2018.

This is based on separate projections for coal −10.5%, oil

−0.5%, natural gas +3.5%, and cement +0.7%.

For the European Union, our projection for 2019 is for a

decrease of −1.7% (range of −3.4% to +0.1%) over 2018.

This is based on separate projections for coal of−10.0%, oil

of +0.5%, natural gas of +3.0%, and stable cement emis-

sions. Uncertainty is largest in coal, where two alternative

methods give divergent estimates.

For India, our projection for 2019 is for an increase

of +1.8% (range of +0.7% to +3.7%) over 2018. This

is based on separate projections for coal (+2.0%), oil

(+1.5%), natural gas (+2.5%), and cement (+0.0%). The

wide uncertainty range reflects an anomalous year: the

www.earth-syst-sci-data.net/11/1783/2019/ Earth Syst. Sci. Data, 11, 1783–1838, 2019
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2019 monsoon year produced above-average rainfall, par-

ticularly in September, with 52% higher rainfall than the

long-term average (IMD, 2019). This heavier rainfall led

to both flooded coal mines (Varadhan, 2019) and high hy-

dropower generation (CEA, 2019b). In addition, the Indian

economy has slowed rapidly during the year (IMF, 2019b).

Furthermore, our forecast for India covers its financial year,

April 2019 to March 2020, reflecting the underlying emis-

sions data, adding to uncertainty.

For the rest of the world, the expected growth for 2019 is

+0.5% (range of−0.8% to+1.8%). This is computed using

the GDP projection for the world excluding China, the USA,

the EU, and India of 1.9% made by the IMF (IMF, 2019a)

and a decrease in IFF of −1.4%yr−1, which is the average

from 2009 to 2018. The uncertainty range is based on the

standard deviation of the interannual variability in IFF dur-

ing 2009–2018 of ±0.8%yr−1 and our estimates of uncer-

tainty in the IMF’s GDP forecast of ±0.5%. The methodol-

ogy allows independent projections for coal, oil, natural gas,

cement, and other components, which add to the total emis-

sions in the rest of the world. The 2019 growth rates for coal

were +0.1% (range −2.9% to +3.2%), oil +0.1% (range

−0.9% to +1.2%), natural gas +1.3% (range −0.7% to

+3.4%), and cement +1.3% (range −1.2% to +3.9%).

Each of our regional projections contains separate projec-

tions for coal, oil, natural gas, cement, and other smaller

components. This allows us, for the first time, to supple-

ment our global fossil CO2 emission projection of +0.6%

(range of −0.2% to +1.5%) with separate global projec-

tions of the CO2 emissions from coal −0.9% (range −2.0%

to +0.2%), oil +0.9% (range 0.3% to +1.6%), natural

gas +2.6% (range +1.3% to +3.9%), and cement +3.7%

(range +0.4% to +7.3%).

Preliminary estimate of fire emissions in deforestation

zones indicate that emissions from land use change (ELUC)

for 2019 were above the 2009–2018 average, amounting to

427 TgC by 31 October and are expected to remain at this

level for the remainder of the year. We therefore expect ELUC

emissions of around 1.7GtC in 2019, for total anthropogenic

CO2 emissions of 11.8±0.9GtC (43.1±3.2GtCO2) in 2019.

3.4.2 Partitioning among the atmosphere, ocean, and
land

The 2019 growth in atmospheric CO2 concentration (GATM)

is projected to be 5.2± 0.9GtC (2.5± 0.4 ppm) based on

GLO observations until the end of August 2019, bringing

the atmospheric CO2 concentration to an expected level of

410 ppm averaged over the year. Combining projected EFF,

ELUC, and GATM suggest a combined land and ocean sink

(SLAND+SOCEAN) of about 6.5GtC for 2019. Although each

term has large uncertainty, the oceanic sink SOCEAN has gen-

erally low interannual variability and is likely to remain close

to its 2018 value of around 2.6GtC, leaving a rough esti-

mated land sink SLAND (including any budget imbalance) of

around 3.9GtC, slightly above the 2018 estimate.

3.5 Cumulative sources and sinks

Cumulative historical sources and sinks are estimated as in

Eq. (1) with semi-independent estimates for each term and

a global carbon budget imbalance. Cumulative fossil CO2

emissions for 1850–2018 were 440± 20GtC for EFF and

205± 60GtC for ELUC (Table 8; Fig. 9), for a total of 645±
65GtC. The cumulative emissions from ELUC are particu-

larly uncertain, with large spread among individual estimates

of 150GtC (H&N) and 260GtC (BLUE) for the two book-

keeping models and a similar wide estimate of 185±60GtC

for the DGVMs. These estimates are consistent with indirect

constraints from vegetation biomass observations (Li et al.,

2017), but given the large spread a best estimate is difficult

to ascertain.

Emissions during the period 1850–2018 were partitioned

among the atmosphere (255± 5GtC; 40%), ocean (160±
20GtC; 25%), and land (195± 40GtC; 31%). This cumu-

lative land sink is broadly equal to the cumulative land use

emissions, making the global land near neutral over the

1850–2018 period. The use of nearly independent estimates

for the individual terms shows a cumulative budget imbal-

ance of 30GtC (4%) during 1850–2018 (Fig. 2), which, if

correct, suggests emissions are too high by the same propor-

tion or the land or ocean sinks are underestimated. The bulk

of the imbalance could originate from the estimation of large

ELUC between the mid-1920s and the mid-1960s, which is

unmatched by a growth in atmospheric CO2 concentration

as recorded in ice cores (Fig. 3). The known loss of addi-

tional sink capacity of about 20±15GtC due to reduced for-

est cover has not been accounted in our method and would

further exacerbate the budget imbalance (Sect. 2.7.4).

Cumulative emissions through to the year 2019 increase

to 655± 65GtC (2340± 240GtCO2), with about 70% con-

tribution from EFF and about 30% contribution from ELUC.

Cumulative emissions and their partitioning for different pe-

riods are provided in Table 8.

Given the large and persistent uncertainties in historical

cumulative emissions, extreme caution is needed if using this

estimate to determine the remaining cumulative CO2 emis-

sions consistent with an ambition to stay below a given tem-

perature limit (Millar et al., 2017; Rogelj et al., 2016, 2019).

4 Discussion

Each year when the global carbon budget is published, each

flux component is updated for all previous years to consider

corrections that are the result of further scrutiny and verifica-

tion of the underlying data in the primary input data sets. An-

nual estimates may improve with improvements in data qual-

ity and timeliness (e.g. to eliminate the need for extrapolation

of forcing data such as land use). Of the various terms in the
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Table 8. Cumulative CO2 for different time periods in gigatonnes of carbon (GtC). All uncertainties are reported as ±1σ . The budget

imbalance provides a measure of the discrepancies among the nearly independent estimates. Its uncertainty exceeds ±60GtC. The method

used here does not capture the loss of additional sink capacity from reduced forest cover, which is about 20GtC for the years 1850–2018

and would exacerbate the budget imbalance (see Sect. 2.7.4). All values are rounded to the nearest 5GtC, and therefore columns do not

necessarily add to zero.

Units of GtC 1750–2018 1850–2014 1959–2018 1850–2018 1850–2019a

Emissions

Fossil CO2 emissions (EFF) 440± 20 400± 20 365± 20 440± 20 450± 20

Land use change CO2 emissions (ELUC) 235± 75b 195± 60c 80± 40d 205± 60c 205± 60

Total emissions 675± 80 600± 65 445± 30 645± 65 655± 65

Partitioning

Growth rate in atmospheric CO2 concentration (GATM) 275± 5 235± 5 200± 5 255± 5 260± 5

Ocean sink (SOCEAN)e 170± 20 150± 20 105± 20 160± 20 160± 20

Terrestrial sink (SLAND) 220± 50 185± 40 130± 25 195± 40 200± 40

Budget imbalance

BIM = EFF+ELUC− (GATM+ SOCEAN+ SLAND) 10 30 10 30 30

a Using projections for the year 2019 (Sect. 3.4). Uncertainties are the same as for the 1850–2018 period. b Cumulative ELUC 1750–1849 of 30GtC based on multi-model
mean of Pongratz et al. (2009), Shevliakova et al. (2009), Zaehle et al. (2011), and Van Minnen et al. (2009). The 1850–2018 period from mean of H&N (Houghton and
Nassikas, 2017) and BLUE (Hansis et al., 2015). The 1750–2018 uncertainty is estimated from standard deviation of DGVMs over 1850–2018 scaled by 1750–2018
emissions. c Cumulative ELUC based on H&N and BLUE. Uncertainty is estimated from the standard deviation of DGVM estimates. d Cumulative ELUC based on H&N
and BLUE. Uncertainty is formed from the uncertainty in annual ELUC over 1959–2018, which is 0.7GtC yr−1 multiplied by the length of the time series. e Ocean sink
uncertainty from IPCC (Denman et al., 2007).

global budget, only the fossil CO2 emissions and the growth

rate in atmospheric CO2 concentration are based primarily

on empirical inputs supporting annual estimates in this car-

bon budget. Although it is an imperfect measure, the carbon

budget imbalance provides a strong indication of the limita-

tions in observations, in understanding or full representation

of processes in models, and/or in the integration of the carbon

budget components.

The persistent unexplained variability in the carbon budget

imbalance limits our ability to verify reported emissions (Pe-

ters et al., 2017) and suggests we do not yet have a complete

understanding of the underlying carbon cycle processes. Re-

solving most of this unexplained variability should be possi-

ble through different and complementary approaches. First,

as intended with our annual updates, the imbalance as an er-

ror term is reduced by improvements of individual compo-

nents of the global carbon budget that follow from improving

the underlying data and statistics and by improving the mod-

els through the resolution of some of the key uncertainties

detailed in Table 9. Second, additional clues to the origin and

processes responsible for the current imbalance could be ob-

tained through a closer scrutiny of carbon variability in light

of other Earth system data (e.g. heat balance, water balance)

and the use of a wider range of biogeochemical observations

to better understand the land–ocean partitioning of the carbon

imbalance (e.g. oxygen, carbon isotopes). Finally, additional

information could also be obtained through higher resolution

and process knowledge at the regional level, and through the

introduction of inferred fluxes such as those based on satel-

lite CO2 retrievals. The limit of the resolution of the car-

bon budget imbalance is yet unclear but most certainly not

yet reached given the possibilities for improvements that lie

ahead.

The assessment of the GOBMs used for SOCEAN with flux

products based on observations highlights substantial dis-

crepancy at mid-latitudes and high latitudes. Given the good

data coverage of pCO2 observations in the Northern Hemi-

sphere (Bakker et al., 2016), this discrepancy points at an

underestimation of variability in the GOBMs globally, and

consequently the variability in SOCEAN appears to be under-

estimated. The size of the underestimation of the amplitude

of interannual variability (order of 0.1GtC yr−1, A-IAV; see

Fig. B1) could account for some of the budget imbalance,

but not all. Increasing model resolution or using model en-

sembles (Li and Ilyina, 2018) has been suggested as a way to

increase model variability (Sect. 3.1.4).

The assessment of the net land–atmosphere exchange de-

rived from land sink and net land use change flux with atmo-

spheric inversions also shows substantial discrepancy, partic-

ularly for the estimate of the total land flux over the northern

extra-tropics in the past decade. This discrepancy highlights

the difficulty to quantify complex processes (CO2 fertilisa-

tion, nitrogen deposition, N fertilisers, climate change and

variability, land management, etc.) that collectively deter-

mine the net land CO2 flux. Resolving the differences in the

www.earth-syst-sci-data.net/11/1783/2019/ Earth Syst. Sci. Data, 11, 1783–1838, 2019
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Figure 9. Cumulative changes during 1850–2018 and mean fluxes during 2009–2018 for the anthropogenic perturbation as defined in the

legend.

Northern Hemisphere land sink will require the consideration

and inclusion of larger volumes of observations (Sect. 3.2.3).

Estimates of ELUC suffer from a range of intertwined is-

sues, including the poor quality of historical land cover and

land use change maps, the rudimentary representation of

management processes in most models, and the confusion in

methodologies and boundary conditions used across methods

(e.g. Arneth et al., 2017; Pongratz et al., 2014) and Sect. 2.7.4

on the loss of sink capacity). Uncertainties in current and his-

torical carbon stocks in soils and vegetation also add uncer-

tainty in the LUC flux estimates. Unless a major effort to

resolve these issues is made, little progress is expected in the

resolution of ELUC. This is particularly concerning given the

growing importance of ELUC for climate mitigation strate-

gies and the large issues in the quantification of the cumula-

tive emissions over the historical period that arise from large

uncertainties in ELUC.

As introduced last year, we provide metrics for the eval-

uation of the ocean and land models and atmospheric inver-

sions. These metrics expand the use of observations in the

global carbon budget, helping (1) to support improvements

in the ocean and land carbon models that produce the sink

estimates and (2) to constrain the representation of key un-

derlying processes in the models and to allocate the regional

partitioning of the CO2 fluxes. This is an initial step towards

the introduction of a broader range of observations that we

hope will support continued improvements in the annual es-

timates of the global carbon budget.

We assessed before (Peters et al., 2017) that a sustained de-

crease of −1% in global emissions could be detected at the

66% likelihood level after a decade only. Similarly, a change

in behaviour of the land and/or ocean carbon sink would take

as long to detect, and much longer if it emerges more slowly.

Reducing the carbon imbalance, regionalising the carbon

budget, and integrating multiple variables are powerful ways

to shorten the detection limit and ensure the research com-

munity can rapidly identify growing issues of concern in the

evolution of the global carbon cycle under the current rapid

and unprecedented changing environmental conditions.

Earth Syst. Sci. Data, 11, 1783–1838, 2019 www.earth-syst-sci-data.net/11/1783/2019/
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Table 9. Major known sources of uncertainties in each component of the global carbon budget, defined as input data or processes that have

a demonstrated effect of at least ±0.3GtC yr−1.

Source of uncertainty Timescale (years) Location Status Evidence

Fossil CO2 emissions (EFF; Sect. 2.1)

Energy statistics annual to decadal global, but mainly China &

major developing countries

see Sect. 2.1 Korsbakken et al. (2016)

Carbon content of coal annual to decadal global, but mainly China &

major developing countries

see Sect. 2.1 Liu et al. (2015)

System boundary annual to decadal all countries see Sect. 2.1

Emissions from land use change (ELUC; Sect. 2.2)

Land cover and land use change

statistics

continuous global; in particular tropics see Sect. 2.2 Houghton et al. (2012)

Sub-grid-scale transitions annual to decadal global see Table A1 Wilkenskjeld et al. (2014)

Vegetation biomass annual to decadal global; in particular tropics see Table A1 Houghton et al. (2012)

Wood and crop harvest annual to decadal global; SE Asia see Table A1 Arneth et al. (2017)

Peat burninga multi-decadal trend global see Table A1 van der Werf et al. (2010)

Loss of additional sink capacity multi-decadal trend global not included; Sect. 2.7.4 Gitz and Ciais (2003)

Atmospheric growth rate (GATM), no demonstrated uncertainties larger than ±0.3GtC yr−1b

Ocean sink (SOCEAN)

Variability in oceanic circulationc semi-decadal to decadal global see Sect. 2.4 DeVries et al. (2017, 2019)

Internal variability annual to decadal high latitudes; equatorial

Pacific

no ensembles/coarse resolution McKinley et al. (2016)

Anthropogenic multi-decadal trend global not included Duce et al. (2008)

Changes in nutrient supply

Land sink (SLAND)

Strength of CO2 fertilisation multi-decadal trend global see Sect. 2.5 Wenzel et al. (2016)

Response to variability in

temperature and rainfall

annual to decadal global; in particular tropics see Sect. 2.5 Cox et al. (2013)

Nutrient limitation and supply multi-decadal trend global see Sect. 2.5 Zaehle et al. (2011)

Response to diffuse radiation annual global see Sect. 2.5 Mercado et al. (2009)

a As a result of interactions between land use and climate. b The uncertainties in GATM have been estimated as ±0.2GtC yr−1, although the conversion of the growth rate into
a global annual flux assuming instantaneous mixing throughout the atmosphere introduces additional errors that have not yet been quantified. c Could in part be due to uncertainties
in atmospheric forcing (Swart et al., 2014).

5 Conclusions

The estimation of global CO2 emissions and sinks is a ma-

jor effort by the carbon cycle research community that re-

quires a careful compilation and synthesis of measurements,

statistical estimates, and model results. The delivery of an

annual carbon budget serves two purposes. First, there is a

large demand for up-to-date information on the state of the

anthropogenic perturbation of the climate system and its un-

derpinning causes. A broad stakeholder community relies on

the data sets associated with the annual carbon budget includ-

ing scientists, policymakers, businesses, journalists, and non-

governmental organisations engaged in adapting to and mit-

igating human-driven climate change. Second, over the last

decade we have seen unprecedented changes in the human

and biophysical environments (e.g. changes in the growth

of fossil fuel emissions, Earth’s temperatures, and strength

of the carbon sinks), which call for frequent assessments of

the state of the planet, a better quantification of the causes

of changes in the contemporary global carbon cycle, and an

improved capacity to anticipate its evolution in the future.

Building this scientific understanding to meet the extraordi-

nary climate mitigation challenge requires frequent, robust,

transparent, and traceable data sets and methods that can be

scrutinised and replicated. This paper via “living data” helps

to keep track of new budget updates.

6 Data availability

The data presented here are made available in the belief that

their wide dissemination will lead to greater understanding

and new scientific insights into how the carbon cycle works,

how humans are altering it, and how we can mitigate the re-

sulting human-driven climate change. The free availability of

these data does not constitute permission for publication of

the data. For research projects, if the data are essential to the

work, or if an important result or conclusion depends on the

data, co-authorship may need to be considered for the rele-

vant data providers. Full contact details and information on

how to cite the data shown here are given at the top of each

page in the accompanying database and summarised in Ta-

ble 2.

www.earth-syst-sci-data.net/11/1783/2019/ Earth Syst. Sci. Data, 11, 1783–1838, 2019



1816 P. Friedlingstein et al.: Global Carbon Budget 2019

The accompanying database includes two Excel files or-

ganised in the following spreadsheets.

File Global_Carbon_Budget_2019v1.0.xlsx includes the

following:

1. summary,

2. the global carbon budget (1959–2018),

3. global CO2 emissions from fossil fuels and cement pro-

duction by fuel type and the per capita emissions (1959–

2018),

4. CO2 emissions from land use change from the individ-

ual methods and models (1959–2018),

5. ocean CO2 sink from the individual ocean models and

pCO2-based products (1959–2018),

6. terrestrial CO2 sink from the DGVMs (1959–2018),

7. additional information on the historical global carbon

budget prior to 1959 (1750–2018).

File National_Carbon_Emissions_2019v1.0.xlsx includes

the following:

1. summary;

2. territorial country CO2 emissions from fossil CO2 emis-

sions (1959–2018) from CDIAC with UNFCCC data

overwritten where available, extended to 2018 using BP

data;

3. consumption country CO2 emissions from fossil CO2

emissions and emissions transfer from the interna-

tional trade of goods and services (1990–2016) using

CDIAC/UNFCCC data (worksheet 3 above) as refer-

ence;

4. emissions transfers (consumption minus territorial

emissions; 1990–2016);

5. country definitions;

6. details of disaggregated countries;

7. details of aggregated countries.

Both spreadsheets are published by the Integrated Carbon

Observation System (ICOS) Carbon Portal and are avail-

able at https://doi.org/10.18160/gcp-2019 (Friedlingstein et

al., 2019). National emissions data are also available from

the Global Carbon Atlas (http://www.globalcarbonatlas.org/,

last access: 4 December 2019).
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Table A3. Comparison of the inversion setup and input fields for the atmospheric inversions. Atmospheric inversions include the full CO2

fluxes, including the anthropogenic and pre-industrial fluxes. Hence they need to be adjusted for the pre-industrial flux of CO2 from the land

to the ocean that is part of the natural carbon cycle before they can be compared with SOCEAN and SLAND from process models. See Table 4

for references.

CarbonTracker Europe (CTE) Jena CarboScope CAMS

Version number CTE2019-FT sEXTocNEET_v4.3 v18r2

Observations

Atmospheric

observations

Hourly resolution

(well-mixed conditions) ObsPack

GLOBALVIEWplus v4.2 and

NRT_v4.4a)

Flasks and hourly (outliers

removed by 2σ criterion)

Daily averages of well-mixed

conditions – ObsPack GLOB-

ALVIEWplus v4.2a& NRT v4.4,

WDCGG, RAMCES and ICOS

ATC

Prior fluxes

Biosphere and fires SiBCASA-GFED4sb No prior ORCHIDEE (climatological),

GFEDv4.1 & GFAS

Ocean Ocean inversion by Jacobson et

al. (2007)

oc_v1.7 updates: from 1993, in-

terannual variability from Plank-

TOM5 (Buitenhuis et al., 2013)

GOBM; before 1985, linear tran-

sition over the years in between

(update of Rödenbeck et al.,

2014)

Landschützer et al. (2018)

Fossil fuels EDGAR+IER, scaled to

GCP2018 and GCP2019

Jones et al. (2019) – EDGAR

scaled nationally and by fuel type

to GCP2019

EDGAR scaled to GCP2019

Transport and optimisation

Transport model TM5 TM3 LMDz v6A

Weather forcing ECMWF NCEP ECMWF

Resolution (degrees) Global: 3◦ ×2◦, Europe: 1◦ ×1◦,
North America: 1◦ × 1◦

Global: 4◦ × 5◦ Global: 3.75◦ × 1.875◦

Optimisation Ensemble Kalman filter Conjugate gradient (re-ortho-

normalisation)c
Variational

a CGADIP (2019), Carbontracker Team (2019). b Van der Velde et al. (2014). c Ocean prior not optimised.
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Table A4. Attribution of fCO2 measurements for the year 2018 included in SOCATv2019 (Bakker et al., 2016) to inform ocean pCO2-based

flux products.

Platform Regions No. of samples Principal investigators No. of data sets Platform type

AkzoNobel North Atlantic, Southern Ocean 553 Tanhua, T.; Gutekunst, S. 1 Ship

Allure of the Seas Tropical Atlantic 118 652 Wanninkhof, R.; Pierrot, D. 50 Ship

Aurora Australis Southern Ocean 59 586 Tilbrook, B. 3 Ship

Bjarni Saemundsson North Atlantic 7938 Benoit-Cattin-Breton, A.;

Ólafsdóttir, S. R.

1 Ship

Cap Blanche Southern Ocean, tropical Pacific 28 554 Cosca, C.; Alin, S.; Feely,

R.; Herndon, J.; Collins A.

5 Ship

Cap San Lorenzo Tropical Atlantic 16 071 Lefèvre, N. 4 Ship

Colibri North Atlantic, tropical Atlantic 6541 Lefèvre, N. 1 Ship

Equinox Tropical Atlantic 119 384 Wanninkhof, R.; Pierrot, D. 48 Ship

F.G. Walton Smith North Atlantic 2830 Millero, F.; Wanninkhof, R. 2 Ship

Finnmaid North Atlantic 135 597 Rehder, G.; Glockzin, M. 9 Ship

G.O. Sars North Atlantic 105 172 Skjelvan, I. 11 Ship

Gordon Gunter North Atlantic 73 634 Wanninkhof, R.; Pierrot, D. 12 Ship

Henry B. Bigelow North Atlantic 64 935 Wanninkhof, R.; Pierrot, D. 14 Ship

Heron Island Tropical Pacific 3631 Tilbrook, B. 2 Mooring

Investigator Southern Ocean 88 217 Tilbrook, B. 6 Ship

Isabu North Pacific 2350 Park, G.-H. 1 Ship

Kangaroo Island Southern Ocean 4016 Tilbrook, B. 2 Mooring

Laurence M. Gould Southern Ocean 28 666 Sweeney, C.; Takahashi, T.;

Newberger, T.; Sutherland,

S. C.; Munro, D. R.

5 Ship

Maria Island Southern Ocean 4015 Tilbrook, B. 2 Mooring

Marion Dufresne Southern Ocean, Indian 6796 Lo Monaco, C.; Metzl, N. 1 Ship

New Century 2 North Pacific, tropical Pacific,

North Atlantic

33 316 Nakaoka, S.-I. 14 Ship

Nuka Arctica North Atlantic 143 430 Becker, M.; Olsen, A. 23 Ship

Ronald H. Brown North Atlantic, tropical Pacific 28 239 Wanninkhof, R.; Pierrot, D. 5 Ship

Simon Stevin North Atlantic 33 760 Gkritzalis, T. 8 Ship

Soyo Maru North Pacific 91 491 Ono, T. 5 Ship

Station M North Atlantic 1313 Skjelvan, I.; Lauvset, S. K. 1 Mooring

Tangaroa Southern Ocean 136 893 Currie, K. I. 8 Ship

Trans Carrier North Atlantic 12 966 Omar, A. M.;

Johannessen, T.

1 Ship

Trans Future 5 North Pacific, tropical Pacific,

Southern Ocean

27 856 Nakaoka, S.-I.; Nojiri, Y. 19 Ship

Turn the Tide on Plastic North Atlantic, tropical Atlantic,

Southern Ocean, tropical Pacific

13 043 Gutekunst, S. 1 Ship

Wakmatha Tropical Pacific 25 457 Tilbrook, B. 8 Ship
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Table A5. Funding supporting the production of the various components of the global carbon budget in addition to the authors’ supporting

institutions (see also acknowledgements).

Funder and grant number (where relevant) Author initials

Australia, Integrated Marine Observing System (IMOS) BT, CN

Australian government as part of the Antarctic Science Collaboration Initiative programme AL

Australian Government National Environment Science Program (NESP) JGC, VH

Belgium Research Foundation – Flanders (FWO) (grant number UA C130206-18) TG

BNP Paribas Foundation through Climate & Biodiversity initiative, philanthropic grant for developments of the

Global Carbon Atlas

PC, AP

BONUS INTEGRAL GR

EC Copernicus Atmosphere Monitoring Service implemented by ECMWF FC

EC Copernicus Marine Environment Monitoring Service implemented by Mercator Ocean MG

EC H2020 (AtlantOS: grant no. 633211) SV, MG

EC H2020 (CCiCC; grant no. 821003) PF, RMA, SS, GPP, MOS, JIK, SL, NG, PL

EC H2020 (CHE; grant no. 776186) MWJ

EC H2020 (CRESCENDO: grant no. 641816) RS, EJ

EC H2020 European Research Council (ERC) Synergy grant (IMBALANCE-P; grant no. ERC-2013-SyG-

610028)

DSG

EC H2020 ERC (QUINCY; grant no. 647204) SZ

EC H2020 (RINGO: grant no. 730944) DB

EC H2020 project (VERIFY: grant no. 776810) CLQ, GPP, JIK, RMA, MWJ, PC

European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 655

(ESRIN/4000123002/18/I-NB)

PF, PC, SS, MOS

French Institut National des Sciences de l’Univers (INSU) and Institut Pau- Emile Victor (IPEV), Sorbonne

Universités (OSU Ecce-Terra)

NM

French Institut de Recherche pour le Développement (IRD) NL

French Integrated Carbon Observation System (ICOS) France Océan; NL

German Integrated Carbon Observation System (ICOS), Federal Ministry for Education and Research (BMBF); GR

German Future Ocean (grant number CP1756) SG

German Helmholtz Association in its ATMO programme PA

German Helmholtz Association Innovation and Network Fund (VH-NG-1301) JH

German Research Foundation’s Emmy Noether Programme (grant no. PO1751/1-1) JP

Japan Ministry of the Environment (grant number E1432) TO

Japan Global Environmental Research Coordination System, Ministry of the Environment (grant number

E1751)

SN

Netherlands Organization for Scientific Research (NWO; Ruisdael Infrastructure) NS

Norwegian Research Council (grant no. 270061) JS

Norwegian ICOS Norway and OTC Research Infrastructure Project, Research Council of Norway (grant num-

ber 245927)

SV, MB, AO

New Zealand, NIWA SSIF funding KC

Swiss National Science Foundation (grant no. 200020_172476) SL

UK Natural Environment Research Council (SONATA: grant no. NE/P021417/1) ETB

UK Newton Fund, Met Office Climate Science for Service Partnership Brazil (CSSP Brazil) AW, ER

UK Royal Society (grant no. RP\R1\191063) CLQ

US Department of Agriculture, National Institute of Food and Agriculture (grant nos. 2015-67003-23489 and

2015-67003-23485)

DLL

US Department of Commerce, NOAA/OAR’s Global Observations and Monitoring of the Oceans Program RF

US Department of Commerce, NOAA/OAR’s Ocean Observations and Monitoring Division (grant number

100007298);

LB, DP

US Department of Commerce, NOAA/OAR’s Ocean Acidification Program DP, LB

US Department of Energy, Office of Science and BER prg. (grant no. DE-SC000 0016323) ATJ

US Department of Energy, SciDac award number is DESC0012972; IDS grant award number is

80NSSC17K0348

LC, GH

US CIMAS, a Cooperative Institute of the University of Miami and the National Oceanic and Atmospheric

Administration (cooperative agreement NA10OAR4320143)

DP, LB

US NASA Interdisciplinary Research in Earth Science Program. BP

US National Science Foundation (grant number 1461590) JOK

US National Science Foundation (grant number 1903722) HT

US National Science Foundation (grant number PLR-1543457) DM

US Princeton University Environmental Institute and the NASA OCO2 science team, grant number

80NSSC18K0893.

LR
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Table A5. Continued.

Funder and grant number (where relevant) Author initials

Computing resources

Norway UNINETT Sigma2, National Infrastructure for High Performance Computing and Data Storage in Norway

(NN2980K/NS2980K)

JS

Japan National Institute for Environmental Studies computational resources EK

TGCC under allocation 2018-A0050102201 made by GENCI FC

UK Centre for Environmental Data Analysis (CEDA) JASMIN Super-data-cluster PCM

Supercomputing time was provided by the Météo-France/DSI supercomputing centre. RS, EJ

CarbonTracker Europe was supported by the Netherlands Organization for Scientific Research (NWO; grant no. SH-312, 17616) WP, NS

Deutsches Klimarechenzentrum (allocation bm0891) JEMSN, JP

PRACE for awarding access to JOLIOT CURIE at GENCI@CEA, France LB

Support for aircraft measurements in ObsPack

L. V. Gatti, M. Gloor, J. B. Miller: AMAZONICA consortium project was funded by NERC (NE/F005806/1), FAPESP (08/58120-3),

GEOCARBON project (283080)

The CESM project is supported primarily by the National Science Foundation (NSF). This material is based upon work supported

by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under cooperative agreement no.

1852977. Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), were

provided by the Computational and Information Systems Laboratory (CISL) at NCAR. We thank all the scientists, software engineers,

and administrators who contributed to the development of CESM2.

DLL

Table A6. Aircraft measurement programmes archived by Cooperative Global Atmospheric Data Integration Project (CGADIP, 2019) that

contribute to the evaluation of the atmospheric inversions (Fig. B3).

Measurement programme name in ObsPack Specific DOI Data providers

Alta Floresta Gatti, L. V.; Gloor, E.; Miller, J. B.;

Aircraft Observation of Atmospheric trace gases by JMA ghg_obs@met.kishou.go.jp

Beaver Crossing, Nebraska Sweeney, C.; Dlugokencky, E. J.

Bradgate, Iowa Sweeney, C.; Dlugokencky, E. J.

Briggsdale, Colorado Sweeney, C.; Dlugokencky, E. J.

Cape May, New Jersey Sweeney, C.; Dlugokencky, E. J.

CONTRAIL (Comprehensive Observation Network for TRace

gases by AIrLiner)

https://doi.org/10.17595/20180208.001 Machida, T.; Matsueda, H.; Sawa, Y.; Niwa, Y.

Carbon in Arctic Reservoirs Vulnerability Experiment

(CARVE)

Sweeney, C.; Karion, A.; Miller, J. B.; Miller,

C. E.; Dlugokencky, E. J.

Dahlen, North Dakota Sweeney, C.; Dlugokencky, E. J.

Estevan Point, British Columbia Sweeney, C.; Dlugokencky, E. J.

East Trout Lake, Saskatchewan Sweeney, C.; Dlugokencky, E. J.

Fairchild, Wisconsin Sweeney, C.; Dlugokencky, E. J.

Molokai Island, Hawaii Sweeney, C.; Dlugokencky, E. J.

Homer, Illinois Sweeney, C.; Dlugokencky, E. J.

HIPPO (HIAPER Pole-to-Pole Observations) https://doi.org/10.3334/CDIAC/HIPPO_010 Wofsy, S. C.; Stephens, B. B.; Elkins, J. W.;

Hintsa, E. J.; Moore, F.

INFLUX (Indianapolis Flux Experiment) Sweeney, C.; Dlugokencky, E. J.; Shepson,

P. B.; Turnbull, J.

NASA Goddard Space Flight Center Aircraft Campaign Kawa, S. R.; Abshire, J. B.; Riris, H.

Park Falls, Wisconsin Sweeney, C.; Dlugokencky, E. J.

Offshore Corpus Christi, Texas Sweeney, C.; Dlugokencky, E. J.

Offshore Portsmouth, New Hampshire (Isles of Shoals) Sweeney, C.; Dlugokencky, E. J.

Oglesby, Illinois Sweeney, C.; Dlugokencky, E. J.

Poker Flat, Alaska Sweeney, C.; Dlugokencky, E. J.

Rio Branco Gatti, L. V.; Gloor, E.; Miller, J. B.

Rarotonga Sweeney, C.; Dlugokencky, E. J.

Santarém Sweeney, C.; Dlugokencky, E. J.

Charleston, South Carolina Sweeney, C.; Dlugokencky, E. J.

Southern Great Plains, Oklahoma Sweeney, C.; Dlugokencky, E. J.; Biraud, S.

Harvard University Aircraft Campaign Wofsy, S. C.

Tabatinga Gatti, L. V.; Gloor, E.; Miller, J. B.

Trinidad Head, California Sweeney, C.; Dlugokencky, E. J.

West Branch, Iowa Sweeney, C.; Dlugokencky, E. J.
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Appendix B

Figure B1. Evaluation of the GOBMs and flux products using the root-mean-squared error (RMSE) for the period 1985 to 2018, between

the individual surface ocean pCO2 estimates and the SOCAT v2019 database. The y axis shows the amplitude of the interannual variability

(A-IAV, taken as the standard deviation of a 12-month running mean over the monthly flux time series; Rödenbeck et al., 2015). Results are

presented for the globe, north (>30◦ N), tropics (30◦ S-30◦ N), and south (<30◦ S) for the GOBMs (circles) and for the pCO2-based flux

products (star symbols). The three pCO2-based flux products use the SOCAT database and therefore are not fully independent from the data

(see Sect. 2.4.1).
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Figure B2. Evaluation of the DGVM using the International Land Model Benchmarking system (ILAMB; Collier et al., 2018) (a) absolute
skill scores and (b) skill scores relative to other models. The benchmarking is done with observations for vegetation biomass (Saatchi et al.,

2011; GlobalCarbon, unpublished data; Avitabile et al., 2016), GPP (Jung et al., 2010; Lasslop et al., 2010), leaf area index (De Kauwe et

al., 2011; Myneni et al., 1997), net ecosystem exchange (Jung et al., 2010; Lasslop et al., 2010), ecosystem respiration (Jung et al., 2010;

Lasslop et al., 2010), soil carbon (Hugelius et al., 2013; Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al., 2011), and runoff

(Dai and Trenberth, 2002). For each model–observation comparison a series of error metrics are calculated, scores are then calculated as

an exponential function of each error metric, finally for each variable the multiple scores from different metrics and observational data sets

are combined to give the overall variable scores shown in (a). Overall variable scores increase from 0 to 1 with improvements in model

performance. The set of error metrics vary with data set and can include metrics based on the period mean, bias, root-mean-squared error,

spatial distribution, interannual variability, and seasonal cycle. The relative skill score shown in (b) is a Z score, which indicates in units of

standard deviation the model scores relative to the multi-model mean score for a given variable. Grey boxes represent missing model data.

Figure B3. Evaluation of the atmospheric inversion products. The mean of the model minus observations is shown for four latitude bands.

The four models are compared to independent CO2 measurements made on board aircraft over many places of the world between 2 and 7 km

above sea level. Aircraft measurements archived in the Cooperative Global Atmospheric Data Integration Project (CGADIP, 2019) from

sites, campaigns, or programmes that cover at least 9 months between 2001 and 2017 and that have not been assimilated have been used to

compute the biases of the differences in four 45◦ latitude bins. Land and ocean data are used without distinction. The number of data for each

latitude band is 5000 (90–45◦ S), 124 000 (45◦ S–0◦), 1 042 000 (0–45◦ N), and 139 000 (45–90◦ N), rounded off to the nearest thousand.
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Figure B4. Comparison of global carbon budget components released annually by GCP since 2006. CO2 emissions from (a) fossil CO2

emissions (EFF) and (b) land use change (ELUC), as well as their partitioning among (c) the atmosphere (GATM), (d) the land (SLAND), and

(e) the ocean (SOCEAN). See legend for the corresponding years and Tables 3 and A7 for references. The budget year corresponds to the year

when the budget was first released. All values are in gigatonnes of carbon per year. Grey shading shows the uncertainty bounds representing

±1σ of the current global carbon budget.
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