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Estimating two-point statistics from derivatives of a signal containing
noise: Application to auto-correlation functions of turbulent
Lagrangian tracks
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1Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195-2600, USA
2Laboratoire de Physique, ENS de Lyon, UMR CNRS 5672, Université de Lyon, Lyon, France

(Received 24 February 2017; accepted 4 June 2017; published online 27 June 2017)

This article describes a method for calculating moments and correlation functions of signal derivatives,
which were rid of experimental noise without the use of filtering operations. The method is based on
the computation of the ensemble-average of different time (or spatial) increments of the signal. The
hypotheses are that the noise is white and not correlated with the signal; however, the method is
also shown to work with colored noise. The method is first developed, considering white noise, and
benchmarked with synthetic trajectories containing noise with variable signal-to-noise ratios. It is
then tested on experimental trajectories in the context of Lagrangian tracking of particles in turbulent
flows, either containing a short-correlated noise or a colored noise. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4986467]

I. INTRODUCTION

Any experimental measurement is subject to noise. While
the level of noise can generally be reduced by finely tuning the
experimental setup, the noise level in the signal’s derivatives
inevitably increases with the number of derivations, making
estimation of their moments and correlations difficult. A com-
mon solution is to filter the signal prior to differentiation, as
was already done for digital circuit differentiator,1 but great
care has to be taken concerning the choice of the filter width
and type in order to minimize the signal alteration.2 By trying
to remove the noise, the experimentalist incorporates a subjec-
tive bias into the data, which is unfortunately unavoidable in
certain analyses. However, when concerned by moments and
correlation functions of signal derivatives, we show in this arti-
cle that it is possible to directly remove the noise and access
unbiased quantities as long as the noise is not correlated with
the measured signal.

Classical sources of noise in a measurement can be exter-
nal perturbations, such as variations of the lighting when using
a digital camera or sensor inconsistency. Such noises can often
be described as a white noise, uncorrelated with the signal. By
assuming the latter, we show that the proposed method works
in this simple framework and also in the case of colored noise.
We have conducted this approach in the context of Lagrangian
particle tracks in turbulent flows which are non-stationary tem-
poral signals, but the method is valid for any signal, depending
either on space or time. It is based on the computation of the
ensemble-average of different time (or spatial) increments of
the signal and is inspired by previous works.3,4 Velocimetry
measurements based on the analysis of the motion of particles
have become the most commonly used metrology technique in
contemporary fluid mechanics research.5 For instance, particle
tracking velocimetry consists of recording particle positions

a)Electronic mail: nathanael.machicoane@ens-lyon.org

in successive images using digital cameras,6 while Extended
Laser Doppler Velocimetry (ELDV) directly yields particle
velocity trajectories using a photomultiplier and two crossing
laser beams.7 In the first case, the proper hardware (camera
spatial and time resolution, uniform lighting) and software
(camera calibration model,8 trajectory construction9,10) con-
siderations ensure that the noise is short-correlated and uncor-
related with the signal. For the second case, however, the par-
ticle velocity tracks are extracted from Doppler signals with a
recursive estimation using a Kalman filter,7,11 so that the noise
is colored. In both cases, the signal is usually time-filtered
prior to differentiation or a filtering-differentiating kernel is
used,12,13 which increases the signal-to-noise ratio at the cost
of a signal alteration. The goal of the proposed variable time
step method is to avoid such filtering operations. Before testing
the method for those two experimental cases, we have designed
a benchmark case where the noise is added synthetically to
position trajectories of tracer particles from a direct numerical
simulation of turbulence.14 This allows for the direct compar-
ison of the quantities estimated from the proposed method to
the one obtained from the signal prior to noise addition. As
the three test cases deal with a similar physical phenomenon,
they yield statistics (in particular correlation functions) that
behave similarly, constituting a common framework in which
the proposed method is tested.

This article is organized as follows. Section II presents
the method and its implementation, which is assessed by the
numerical benchmark in Sec. III. The method is then applied to
both experimental measurements and the results are compared
to what is obtained by filtering considerations in Sec. IV, which
is followed by a discussion (Sec. V).

II. SIGNAL PROCESSING
A. Second order moments

The method presented below seeks to obtain unbi-
ased one and two-point statistics of the derivatives of an
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experimental signal without introducing any filtering method.
It is valid for any measured signal whose typical correlation
scale is much larger than the noise correlation scale. While
one aims at obtaining the real signal x̂, the presence of noise b
implies that one measures x(t)= x̂ + b. For simplicity, we con-
sider here the case of a temporal signal x(t) that is centered,
i.e. 〈x〉= 0, which can be recovered by considering x(t) − 〈x〉,
where 〈.〉 is an ensemble average.

The method is based on the temporal increment dx
of the signal x over a time dt, which we express as
dx = x(t + dt)− x(t)= dx̂ + db. Assuming that the increments of
position and noise are uncorrelated, the variance of the posi-
tion increment is 〈(dx)2〉= 〈(dx̂)2〉 + 〈(db)2〉. Introducing the
velocity v̂ and acceleration â through a second order Taylor
expansion x̂(t + dt)= x̂(t) + v̂ dt + â dt2/2 + o(dt2), one obtains〈

(dx)2
〉
=

〈
(db)2

〉
+ 〈v̂2〉dt2 + 〈â.v̂〉 dt3 + o(dt3), (1)

where 〈(db)2〉= 2〈b2〉 in the case of a white noise. In Eq. (1),
〈(dx)2〉 is a function of dt so that one can recover the value
of the velocity variance 〈v̂2〉 by calculating time increments
of 〈(dx)2〉(dt) over different values of dt followed by a simple
polynomial fit in the form of Eq. (1). If the noise is colored,
〈(db)2〉= 2〈b2〉 − 2 〈b(t)b(t + dt)〉. The method hence requires
the noise to be correlated only on short times compared to
the signal correlation time, so that only the lowest values of
〈(dx)2〉(dt) are biased by 〈b(t)b(t + dt)〉 and a fit still success-
fully allows for the evaluation of the root mean square (rms)
velocity, v̂ ′ =

√
〈v̂2〉. For an experimentally measured signal x,

equally spaced at an acquisition rate f s, the minimal value of dt

is 1/f s; we can then obtain the values of dx for different values
of dt = n/f s. For this method, we need a value of the acqui-
sition rate f s that is purposefully higher than usual, in order
to be able to access derivatives of the signal without aliasing
error.

We can extend the previous calculation to higher order
derivative statistics by considering higher order increments.
The second order increment d2x = x(t + dt) + x(t � dt) � 2x(t),
which is related to the acceleration variance 〈â2〉 here, yields,
for instance,〈

(d2x)2
〉
=

〈
(d2b)2

〉
+ 〈â2〉dt4 +

1
6

〈
â.

d2â

dt2

〉
dt6 + o(dt6), (2)

where 〈d2b2〉= 6〈b2〉 in the case of a white noise, but other-
wise introduces additional noise correlation terms which are
functions of dt.

B. Auto-correlation functions

The approach developed above is not restricted to one time
statistics of the signal derivatives but can be generalized to
estimate the first and second order derivative auto-correlation
functions of the noiseless signal Cv̂ v̂ = 〈v̂(t)v̂(t + τ)〉 and
Cââ = 〈â(t)â(t + τ)〉. This is done by considering the correla-
tions of first and second order increments 〈dx(t).dx(t + τ)〉 and
〈d2x(t).d2x(t + τ)〉, which are functions of dt and τ. As was
done in Sec. II B for the variance, noiseless correlation func-
tions are estimated, for each time-lag τ, from a polynomial fit
of the signal time increment dt with the respective expressions,




Cdxdx(τ, dt) = Cv̂ v̂(τ)dt2 +
1
2

(Cv̂â(τ) + Câv̂(τ)) dt3 + Cdbdb(τ, dt) + o(dt3)

Cd2xd2x(τ, dt) = Cââ(τ)dt4 +
1

12

(
Câ(d2â/dt2)(τ) + C(d2â/dt2)â(τ)

)
dt6 + Cd2bd2b(τ, dt) + o(dt6),

(3)

where Cfg = 〈f (t)g(t + τ)〉 is a cross correlation function. It can
be noted that the case of the rms values corresponds to τ = 0,
and we remind the reader that 〈(dx)2〉 and 〈(d2x)

2
〉 are func-

tions of dt. In the previous expressions and in the case of a
white noise, we can express the auto-correlation functions of
the noise as first and second order increments. The signal being
sampled at a frequency f s, one has dt = n/f s and τ =m/fs.
The correlation functions of the digitized noise increments are
written as




Cdbdb(τ = m
fs

, dt = n
fs

) = 〈b2〉(2δm,0 − δm,n),

Cd2bd2b(τ = m
fs

, dt = n
fs

) = 〈b2〉(6δm,0 − 4δm,n + δm,2n),
(4)

where δm,n is the Kronecker symbol. For both derivatives,
the white noise magnitude in the first-order derivative auto-
correlation functions is the highest for τ = 0 and is an
additive term. The noise then yields a negative term for
m = n. In the case of second-order derivatives (for accel-
eration in the case of Lagrangian tracks), the noise mag-
nitude is larger and also contributes to a third time point

of the function (m = 2n) with a positive term of smaller
amplitude. Considering white noise terms up to dt6, all
other values of τ will directly yield the function without
noise.

III. NUMERICAL TEST

The numerical test uses tracer particles’ trajectories in
homogeneous isotropic turbulence from Refs. 15 and 16. The
particles are tracked in a periodic box of dimension L = 2π,
with 5123 grid points, in a turbulent flow at a Taylor-based
Reynolds number Reλ = 180. The trajectories (xp(t))p∈[1,N]
are multi-scale temporal signals with a smallest time scale
τη and an integral time scale T ' τη

√
Reλ. In the present

case, τη = 0.047 s and T = 0.59 s. Here, we use N = 2000
trajectories of duration 170τη� T which contain accelera-
tion signals measured at the particle positions at a frequency
f 0
s = 11.75/τη . These acceleration signals are therefore not

obtained by derivation of particle positions and can be con-
sidered to be noiseless. For the purpose of the present test, a
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FIG. 1. (a) Evolution of 〈(dx)2〉 with
(dt/τη )2. The dashed line is a lin-
ear fit over the range 0< dt/τη ≤ 0.07.

(b) Evolution of 〈(d2x)
2
〉 with dt/τη .

The dashed-dotted and dashed lines are,
respectively, fourth and sixth order fits
(α+βdt4, respectively, α+βdt4 +γdt6)
over the range 0< dt/τη ≤ 0.14. The
inset is a zoom on low values of dt/τη ;
the green cross (×) at dt = 0 in the inset
corresponds to 6〈b̂2〉.

higher sampling frequency is needed and we choose to inter-
polate acceleration signals so that the noiseless acceleration
trajectories, (âp(t))p∈[1,N], have a sampling frequency fs = 10f 0

s .
We then integrated them twice to obtain the noiseless position
trajectories (x̂p(t))p∈[1,N] to which a Gaussian random noise, b̂,
is added at each time step.

The method is tested on these noisy position trajec-
tories and the result can then be compared to quantities
computed on the originating signal of (interpolated) accel-
eration trajectories. To quantify the weight of the noise
on the raw acceleration signal, we compute the noise-to-

signal ratio as (b̂′f 2
s )/â′ = 19.7, where b̂′ =

√
〈b̂2〉= 23 µm and

â′ =
√
〈â2〉= 7.3 m s�2 are, respectively, the true rms value of

the noise and acceleration, emphasizing the need of a method
to eliminate this noise. While this value corresponds to a poor
signal-to-noise ratio, it is of the order of what can be found in
particles tracking experiments (see Sec. IV A).

A. Moments and correlations

Figure 1 shows the evolution of 〈(dx)2〉 and 〈(d2x)
2
〉

with dt, where 〈·〉 averages both over time (within a trajec-
tory) and over the number of trajectories. As the velocity is
only a first-order derivative, a low level of noise is observed
[(b̂′fs)/v̂ ′ = 0.05] and a linear function of dt2, without con-
sidering any higher order term, fits 〈(dx)2〉 almost perfectly.
For the acceleration, a sixth-order fit [α + βdt4 + γdt6, fol-
lowing Eq. (2)] is much better than considering a fourth-order
regression, as is underlined in the inset of Fig. 1(b). This is

expected because turbulent trajectories are known to exhibit
two time scales: one characteristic of velocity changes and a
much shorter one associated with acceleration (note that this is
not specific of turbulence but should hold for any multi-scale
signals). The range dt/τη (i.e., the number of points used in the
regression) considered by those fits is chosen to maximize the
fits agreement with the data and corresponds to the values of
the absciss indicated in the caption of Fig. 1. The influence of
this choice, while found not to be critical, is discussed in Sub-
section III B. The fact that the behavior of 〈(dx)2〉 and 〈(d2x)

2
〉

follows closely the one given in Eqs. (1) and (2) is expected
as this numerical test respects the hypotheses of the method
(considering a white noise uncorrelated with the signal).

By fitting 〈dx(t).dx(t + τ)〉 and 〈d2x(t).d2x(t + τ)〉 on each
instant τ considered, as is done in Fig. 1 for τ = 0, we esti-
mate the correlation functions, which are compared in Fig. 2
with their true counterparts (computed directly with noise-
free velocity and acceleration signals). We obtain an excellent
agreement in this benchmark case, where only a slight differ-
ence (respectively, 0.01% and 0.2% of maximal relative error)
is observed for the auto-correlation functions of the first and
second order derivatives.

B. Robustness of the method

This benchmark case allows for a quantitative compar-
ison between what is estimated by the method and the real
quantities. In order to do so, we define the acceleration time
scale of the noiseless signal, τâ, as the integral of the positive
part of the acceleration correlation function normalized by the

FIG. 2. Velocity (a) and acceleration
(b) auto-correlation functions from the
numerical data prior to noise addition
(continuous line) and estimated from
the proposed method on the noisy data
(dashed line). The noise-to-signal ratio
is b̂′f 2

s /â
′ = 19.7. The fit ranges used to

obtain the functions are the same than
that used in Fig. 1.
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TABLE I. Relatives errors on the estimation of the variance of the accelera-
tion and noise and on the estimation of the acceleration time scale for different
(sixth order) fit ranges and a noise-to-signal ratio b̂′f 2

s /â
′ = 19.7. 〈â2〉, τâ, and

〈b̂2〉 are the true quantities, and 〈a2〉, τa, and 〈b2〉 are the quantities estimated
with the method.

Fit ranges Relative errors

No. of points (dt)max/τη
〈a2〉 − 〈â2〉

〈â2〉

〈b2〉 − 〈b̂2〉

〈b̂2〉

τa − τâ

τâ

7 0.07 4.2 × 10�3 6.8 × 10�5 0.94
15 0.14 3.4 × 10�5 2.3 × 10�4 2.8 × 10�5

30 0.28 4.8 × 10�4 2.3 × 10�3 4.9 × 10�4

50 0.47 3 × 10�3 9.6 × 10�2 3.1 × 10�3

acceleration variance. Table I presents the relative errors on
the estimation of the acceleration, noise variance, and accel-
eration time scale evolution with the number of points used
for the fits. While it is clear that an optimum value exists
(around 15 in this case), one can appreciate that even using
only the bare minimum of points or exaggerating, this number
still yields very low errors (less than 0.4% for the accelera-
tion variance). It means that the only criterion to choose this
parameter should be the agreement between the fit and the data
points, as long as the range considered remains physically rel-
evant [in this example, (dt)max/τη should not be too close to 1,

so that 〈(d2x)
2
〉 is still relevant to an acceleration]. Note that

the high error of τa when considering only 7 points is linked
to the fact that the noise for τ = dt and τ = 2dt still strongly
biases the acceleration correlation function integral. The fact
that the noise variance error is a decreasing function of the
point number is easily understood considering that 〈(d2x)

2
〉 is

a polynomially growing function of dt; the more the points
considered, the lesser is the weight given to the first points.
This can be observed in the inset of Fig. 1(b) where the fit, by
overestimation over the first few points because of their lesser
weight, overestimates slightly the value of 〈b2〉.

Lastly, we consider the impact of the noise magnitude,
estimated as (b̂′f 2

s )/â′, on the accuracy of the method. Results
are given in Table II. A first impact of this parameter is the need
of more fit points to correctly estimate the acceleration time
scale τa. To obtain a relative error on τa below 1%, we need to
consider, respectively, at least 9, 12, 14, and 16 points for the
noise magnitudes shown in Table II. Note that this is not the

TABLE II. Relatives errors on the estimation of the variance of the accel-
eration and noise and on the estimation of the acceleration time scale for
different noise magnitudes, with a fixed fit range of (dt)max/τη = 0.15 (16 fit
points). 〈â2〉, τâ, and 〈b̂2〉 are the true quantities, and 〈a2〉, τa, and 〈b2〉 are
the quantities estimated with the method.

Relative errors

b̂′f 2
s /â

′ 〈a2〉 − 〈â2〉

〈â2〉

〈b2〉 − 〈b̂2〉

〈b̂2〉

τa − τâ

τâ

19.7 2.5 × 10�5 2.3 × 10�4 4 × 10�6

39.4 2.5 × 10�4 2.6 × 10�4 4.1 × 10�6

59.1 3.5 × 10�4 4.9 × 10�4 1 × 10�5

78.7 1.6 × 10�4 1.3 × 10�4 1 × 10�5

case for the error on the acceleration (or noise) variance that
stays below 0.4% whatever the noise magnitude even when
considering only 10 fit points. Hence, we have used 16 points
to compute the relative errors of this table. One can observe
that even by multiplying the noise by about 4 compared to
what has been considered in Subsection III A, the relative
errors barely change. This shows that as long as the noise is
white and uncorrelated with the signal, the proposed method
should work, irrespective of the noise level. We emphasize
that, with such low signal-to-noise ratios, it would probably
be impossible to directly measure the statistics estimated here
without a denoising strategy.

IV. EXPERIMENTAL TEST

This section is devoted to the test of the method in two
experimental configurations, where the noise is a priori either
white (or correlated on much shorter times than the signal) or
colored. Both cases consider Lagrangian tracks of particles in
a turbulent von Kármán flow produced by two counter-rotating
discs in a vessel filled with water.

A. Shortly correlated noise

This first case uses the raw position trajectories of mate-
rial particles from Ref. 17. The method has been tested suc-
cessfully for different particle diameters (from 6 to 24 mm),
Reynolds numbers (350 < Reλ < 520), and two density ratios
(0.9 and 1.14), as well as for isodense particles from Ref. 18.
We will focus only on the case of particles 6 mm in diameter
and of density ratio 1.14 at a Reynolds number Reλ = 520 in
the following. The position trajectories are obtained by stereo-
matching of successive image pairs obtained thanks to two
cameras and global lighting. The particles appear as large,
bright discs on an uniform dark background which yields sub-
pixel noise for the trajectories (the apparent particle diameter is
about 20 pixels) and is not correlated with the particle position
as the background is uniform (nor with its velocity as the expo-
sure time is short enough to fix the particles on the images). In
practical situations, the presence of sub-pixel displacements
can lead to a short-time correlation of the noise, typically on
a few frames.

Figure 3 shows the evolution of 〈(dx)2〉 and 〈(d2x)
2
〉 with

dt. As with the numerical test, a simple linear function of dt2 is
enough for 〈(dx)2〉 and a sixth-order one suits better 〈(d2x)

2
〉.

The first points of 〈(d2x)
2
〉 do not follow Eq. (2), which may

be due to the fact that we are not dealing with a purely white
noise as will be shown in Fig. 4(b). Using the estimated val-
ues of the rms acceleration, a′, and 〈(d2b)

2
〉, we can define

a noise-to-signal ratio b′f 2
s /a

′ = 11.9 where we have defined

b′ =
√
〈(d2b)2

〉/6 by analogy with the white noise case. When
considering the noise weight on the velocity signals, we of
course find a much smaller magnitude b′fs/v ′ = 0.14 as it is
only a first order derivative (v ′ being the rms of the velocity
estimated with the method).

Figure 4 shows the auto-correlation function of both the
velocity and acceleration estimated with the proposed method,
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FIG. 3. (a) Evolution of 〈(dx)2〉 with
(dt/τa)2, where τa = 8.1 ms is the par-
ticle acceleration time scale (integral of
the positive part of the particle accel-
eration auto-correlation function). The
dashed line is a linear fit over the
range 0< dt/τa ≤ 0.25. (b) Evolution of

〈(d2x)
2
〉 with dt/τa. The dashed-dotted

and dashed lines are, respectively, fourth
and sixth order fits [α + β(dt/τa)4,
respectively, α+β(dt/τa)4 +γ(dt/τa)6]
over the range 0< dt/τa ≤ 0.62. The
insets are zooms on low values of dt/τa.

compared to the raw functions. With the low level of noise in
this configuration, the velocity is almost unbiased and both
functions are indistinguishable except for the first points of
the raw function that are offset by the noise. Concerning
the second-order derivative quantity, it can be observed from
Fig. 4(b) that the raw acceleration auto-correlation function
is not biased only on the three first points (see inset). This is
because the noise is not white but has a short correlation time
compared to the signal. Combined with the finite duration of
the trajectories, the raw correlation function is noisy over the
whole range of time-lags τ. This curve is plotted together with
the one estimated with the method, fitting the coefficient up
to dt = 5 ms, which corresponds to 30% correlation loss in
acceleration signals [same range as in Fig. 3(b), but the pre-
cise choice is not critical]. Although the signal-to-noise ratio
is poor, the estimated correlation function seems to be follow-
ing the median line between the peaks caused by noise and
crosses zero at the location that seemed to be indicated by the
raw function. It is also close to the auto-correlation function
from Ref. 17, estimated by filtering the data with a Gaussian
kernel K =Aw exp(−t2/2w2) (with w = 12 points and a com-
pact support of width 2w) and Aw is a normalization factor.
It should be stressed that the value w = 12 was chosen arbi-
trarily as a compromise between suppressing oscillations at
small lags without altering the shape of the function too much
at larger lags.

With the new method, we compute an acceleration
time scale τa = 8.1 ms and an acceleration magnitude
a′ = 12.4 m s�2, which is close to the values τa = 8.8 ms and
a′ = 12.9 m s�2 found for the filtered data.17 However, in the

latter case, the value of a′ depends strongly of the choice of the
filter width w, so that one usually estimates a′ by computing it
for different filter widths which can then allow to extrapolate
a best estimate value (as introduced in Ref. 13).

B. Colored noise

The second case considers raw velocity trajectories from
Refs. 7 and 19 obtained by Extended Laser Doppler Velocime-
try (ELDV) measurements of tracer particles. The velocity is
directly obtained through a frequency demodulation by use
of an approximate maximum likelihood method coupled to a
Kalman filter.11 Although the signal is sampled at very high
frequency 1 MHz (the carrying frequency is 100 kHz), the
instantaneous frequency is estimated over a short window
(here 30 µs) and is influenced by its estimation at the pre-
vious time step. Even assuming that the noise, noted bv , is
initially white, it is low-pass filtered and becomes colored
in the process. Applying the Taylor expansion to the present
case v̂(t + dt)= v̂(t) + â(t)dt + 1

2
dâ
dt dt2 + o(dt2), the correlation

function of velocity increment is written as

〈d v̂(t)d v̂(t + τ)〉(τ, dt)= 〈dbv(t)dbv(t + τ)〉 + Cââ(τ)dt2

+
1
2

(
Câ(dâ/dt)(τ) + C(dâ/dt)â(τ)

)
dt3

+ o(dt3). (5)

The acceleration is directly obtained from the first order deriva-
tive of the velocity here, so that Cââ(τ) is estimated using
a fit of the form αv + βvdt2 + γvdt3 for each time-lag τ.

FIG. 4. Auto-correlation functions of
the velocity (a) or acceleration (b)
estimated from the proposed method
(dashed line) and directly computed
by differentiating the position signal
obtained by PTV (continuous line). The
insets are zooms on the low values of
τ. The fit ranges used to obtain the
functions are the same than used in
Fig. 3. The dashed-dotted line in (b) is
the correlation estimated from filtered
trajectories using a Gaussian kernel
K =Aw exp(−t2/2w2), where w = 12
points and Aw is a normalization factor.
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FIG. 5. (a) Acceleration auto-correlation functions estimated from the proposed method (dashed line) or directly computed by differentiating the velocity signal
obtained by ELDV (continuous line). The dashed-dotted line is the correlation estimated from filtered trajectories using a Gaussian kernel K =Aw exp(−t2/2w2),
where w = 20 points and Aw is a normalization factor. The inset is a zoom on the low values of τ (b) (+): evolution of 〈(dv)2〉 with dt (represented one point on
three for clarity). The dashed line is a third order fit (αv + βvdt2 + γvdt3). In both figures, the increments where fitted over the range 0< dt/τa < 1.

Figure 5(a) displays the auto-correlation function of the accel-
eration, raw or estimated by the proposed method, for a very
high Reynolds number Reλ = 950. The raw acceleration cor-
relation function clearly shows the correlated nature of the
noise, being strongly biased over a large range of time scales.
The estimated function has been obtained by fitting over a wide
range 0 < dt/τa < 1, so that a third order polynomial is required
to properly fit the evolution of velocity increments with dt
[Fig. 5(b)]. Although such a range was chosen to be larger
than the expected noise correlation time, its choice was not
critical and fits over smaller ranges down to (dt)max/τa = 0.6
changed the values by less than 3%. This demonstrates that
if the method framework was derived assuming an uncorre-
lated noise, it still can be used successfully in the case of a
colored noise. Indeed, the estimated function presents a shape
close to that which is expected in the absence of noise and is
found to be close to the auto-correlation function of filtered
data from Ref. 19, which still exhibits some slight oscilla-
tions (around τ = 0.15 ms) despite the large filter width w = 20
points. Increasing the filter width would suppress this oscilla-
tion at the cost of strongly decreasing the value at τ = 0, altering
more the shape of the function. The rms of the acceleration esti-
mation for new method a′ = 498.9 m s�2 is in good agreement
with the value a′ = 496 m s�2 which is found in Ref. 19 by
extrapolation of this quantity using different filter widths. The
acceleration time scale is found to be τa = 0.232 ms, changing
less than 0.1% when changing the fitting range from [0, 0.6τa]
to [0, τa], in very good agreement with the extrapolated value
τa = 0.234 ms from the variable filter width method.19 Given
the statistical convergence of the data, the different estimates
of the time scale should be considered the same, τa = 0.23 ms.
We would like to stress here that the choice of the fitting
range was not crucial in the analysis and did not require a
bias study as is the case for the extrapolated results of filtered
signals.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a general method to esti-
mate moments and auto-correlation functions of experimental

signal derivatives rid of measurement noise. This method relies
on two main assumptions as follows:

1. The signal has to be correlated on a longer time scale
than the noise.

2. The sampling frequency, f s, must be high enough so
that the signal first and second order derivatives can
be computed by taking increments over several (N)
points.

We observed in the numerical tests that this adjustable param-
eter (N) has a small influence on the results and we estimated
that fsτ2 = 20 is a good choice when one is interested in the
signal second derivative, τ2 being the correlation time of the
signal second derivative to be estimated. We have tested the
method in the context of Lagrangian particle tracks in tur-
bulence, considering both first- and second-order derivatives
of a time dependent signal. First, we used numerical data,
artificially adding a white noise and successfully comparing
quantities estimated through this method to those computed
prior to noise addition. Second, tests were conducted on clas-
sical particle tracking velocimetry and extended laser Doppler
velocimetry data. In the former, the noise is correlated on
times much shorter than the signal, and in the latter, the
noise becomes colored through a filtering operation inher-
ent in the measurement. Whatever the case, the results are
in good agreement to what is obtained by classical filtering
processes, which require a long bias study specific to the data
type,13,19 and we believe them to be more accurate. The method
avoids subjective tuning of the filter width and choice of fil-
ter type while yielding unbiased quantities by requiring data
fits in an appropriate range. While the fit range is still an
adjustable parameter, we observed its impact on the results
to be smaller than when filtering the data. We have shown
with the numerical test that the error remains very small even
while varying the fit range by a factor 7. Another advantage
of the method is an easy access to the noise magnitude. While
building a new experimental setup, one can gather just enough
statistics to converge second order moments to estimate the
noise magnitude and try and improve the setup iteratively.
With more statistics, having access to the noise correlation
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function ensures that the noise is not correlated (in cases where
it is not expected to be so). We have also tested the method in a
more general context of a random position signal whose first-
and second-derivative auto-correlation functions are known
(not shown here). The signal was generated using the 2-time
Sawford model20 which solves a coupled set of Langevin
equations for both the velocity and acceleration. Once again,
we found an almost perfect agreement between the analytical
function and the one obtained by the proposed method. The
method presents some drawbacks such as added computation
time. The major drawback is the need to sample the signal
at a larger rate than would usually be necessary. Indeed, this
offers a larger range over which d2x still can be related to
a second-order derivative. While this is easily achieved with
ELDV measurements, as the sample rate is already very high
and the data are not voluminous, this can cause a limitation
on the trajectories duration for typical PTV setup or other
measurements based on embarked-memory cameras, making
the trade-off between temporal resolution and duration even
harder.
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