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In this article, we investigate the production and dissipation of turbulence in a region
where the mean flow topology presents a stagnation point. Our goal is to understand the
generation of anisotropic fluctuations and their influence on production, dissipation, and
transport of turbulent kinetic energy. In order to investigate the local turbulent kinetic
energy budget, we use a shadow particle tracking velocimetry technique (S-PTV) to track
Lagrangian tracers in a large portion of a turbulent von Kármán flow produced by counter-
rotating disks. We observe that the flow produced in a square tank is bistable, with each
of the two states resembling impinging jets. This stagnation-point topology is responsible
for the strong anisotropy of velocity fluctuations observed in these type of flows. The
production of turbulence locally exceeds the dissipation rate. As a consequence, the flow
is to be considered as strongly inhomogeneous as the fluxes of turbulent kinetic energy are
non-negligible when compared to the production and dissipation terms.

DOI: 10.1103/PhysRevFluids.2.084601

I. INTRODUCTION

A large part of turbulence theory has been developed in the context of homogeneous and isotropic
turbulence [1]. In such situations, the mean flow is considered to be zero and flow properties
are assumed to be invariant in space. However, common turbulent flows are often produced by
mechanical forcing in the presence of boundaries, leading to nonzero mean flows with complex
topologies. Such is the case of a mechanically forced flow in a closed volume, which results in
regions dominated by shear or recirculations with hyperbolic points. In this context, shear flows are
well documented [2,3], but the action of strain has received less attention and our knowledge relies
either on measurements performed in quasihomogeneous situations [4,5] or in near-wall regions [6].

We address the production and dissipation of turbulent fluctuations experimentally using a von
Kármán flow with a square cross section (described in Sec. II). A mean flow is produced by
counter-rotating impellers which impose inertial steering on the fluid and result in strong azimuthal
velocity gradients, and it is generally considered to give rise to shear-driven turbulence. However, the
central region’s stagnation point is typified by a strong straining motion, which is an often overlooked
aspect of this configuration. We investigate the role of this topology in turbulence production; in
particular, we address the origin of the anisotropic velocity fluctuations observed in these type of
flows [7–9].

The experiment is performed in a large volume in the central region where Lagrangian tracers are
tracked and all scales of their motions are resolved. We show that the flow is bistable (Sec. III), where
each of the two states resembles a pair of impinging jets with one stable and two unstable directions.
This situation is not observed to be “free-shear flow” turbulence, but rather its main features point
strongly to a stagnation-point topology whose study is lacking in the literature.

The local turbulent kinetic energy budget is presented (Sec. IV) where the quantity 〈�a′ · �v′〉 =
〈�a · �v〉 − 〈�a〉 · 〈�v〉 is shown to be an accurate local measurement of the dissipation in the vicinity of
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FIG. 1. (a) Sketch of the counter-rotating von Kármán flow. Arrows indicate the topology of the mean
flow when averaged over both states. (b) Optical setup for S-PTV with two identical optical arrangements
forming an angle θ = 90◦: parallel light is propagating through the flow volume before being collected using a
15-cm-diameter lens whose function is to redirect the light into the camera objective of the camera. The optical
system [L2 + objective] is focused on the output face of the vessel marked with a dash-dotted line. (c) Raw
axial position of particles, z2 (in pixels), as measured on cam 2 as a function of z1 measured on cam 1. The line
corresponds to a linear fit z2 = az1 + b with a = 0.98, b = 15.6 pixels.

the stagnation point. We demonstrate a mechanism by which energy is efficiently extracted from the
mean flow such that production of turbulence is twice the value of energy dissipation. As a result, a
significant amount of energy is transported by turbulent fluctuations in the vicinity of the stagnation
point and renders the flow spatially inhomogeneous.

II. EXPERIMENTAL SETUP

A. Description of the flow

The experimental apparatus is a von Kármán flow identical to the one used in Ref. [10]. A
water-UconTM mixture with viscosity 8.2 times that of water and equal density is used to fill a
square cylinder where the flow is produced using two bladed discs of diameter R = 7.1 cm that
counter-rotate at constant frequency � [Fig. 1(a)] and are separated by 20 cm while the tank width
is 15 cm. The angular velocity of the disks is adjusted so that they rotate at same velocity, but in
opposite directions, imposing an inertial forcing which generates a fully turbulent flow (Reλ ∼ 190).
As opposed to wind tunnel flows, the von Kármán flow has a mean tridimensional spatial structure
and is sketched in Fig. 1(a). The disks rotate in opposite directions and generate a large azimutal
velocity component of order 2πR� which goes to zero in the midplane (z = 0) of the square
tank. The presence of blades improves stirring and creates an intense poloidal recirculation with a
stagnation point in the geometrical center of the vessel. The dominant flow characteristics in the
central region are strong shear and intense and anisotropic fluctuations close to the stagnation point
[7–9], where most of the dissipation occurs [11,12]. Table I gives a summary of the flow parameters
measured at the stagnation point of the present setup.

B. Three-dimensional-particle tracking setup

We perform particle tracking of Lagrangian tracers (250-μm polystyrene particles, less than three
times the Kolmogorov scale) in a large volume 6 × 6 × 5.5 cm3 centered around the geometrical
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TABLE I. Parameters of the flow. �, rotation rate of the discs. The rms velocities are obtained at the
geometrical center of the flow using data points located in a sphere with a 1-cm radius. The kinematic viscosity
of the water-UconTM mixture is ν = 8.210−6 m2 s−1 with a density ρ = 1000 kg m−3. The dissipative time
scale is estimated from the zero crossing [t0 = (t0x + t0y + t0z)/3] of each component in the acceleration
autocorrelation function t0 � 2.2τη [9,14,15], the dissipation rate is estimated as ε = ν/τ 2

η , dissipative length

scale is η = (ν3/ε)1/4, and the Taylor-based Reynolds number is estimated as Reλ =
√

15u′4/νε with u′ =√
(u′

x
2 + u′

y
2 + u′

z
2)/3. The large-scale Reynolds number is Re = 2πR2�/ν.

� u′
x u′

y u′
z u′ τη η ε

Hz State ms−1 ms−1 ms−1 ms−1 ms μm Wkg−1 Rλ Re

4.2 x dominant 0.45 0.29 0.25 0.34 2.9 154 1.0 155 16200
Averaged 0.39 0.37 0.24 0.34 2.9 154 1.0 155 16200

5.5 x dominant 0.58 0.39 0.33 0.45 2.0 128 2.1 190 21200
Averaged 0.50 0.49 0.33 0.45 2.0 128 2.1 190 21200

6.9 x dominant 0.74 0.48 0.41 0.56 1.5 111 3.6 225 26700
Averaged 0.62 0.62 0.41 0.56 1.5 111 3.6 225 26700

center (x,y,z) = (0,0,0) of the flow. Tracers are tracked with two high-speed video cameras
(Phantom V.12, Vision Research, 1 Mpixel at 7 kHz) with a resolution of 800 × 768 pixels and
a high frame rate of fs = 12 kHz, chosen to adequately resolve particle acceleration. The camera
arrangement, inspired by previous work [10], is depicted in Fig. 1(b). It consists of two arms forming
an angle θ = 90◦ with parallel lighting. This large parallel ray (15 cm in diameter) intersects the
flow volume before being collected onto the camera using a doublet consisting of a large lens (15 cm
in diameter, with a 50-cm focal length) and the camera objective. The doublet is focused on the face
of the tank closest to the camera which was found to be the configuration best adapted to tracking
small objects. As this arrangement requires precision mounting, all optical elements are aligned
using large, homemade reticules also used to measure the magnification in each arm. When placing
an object in the field of view, it appears as a black shadow on a white background corresponding
to the parallel projection of the object on the sensor. As opposed to conventional PTV, particles are
tracked independently on each view prior to stereo matching so that camera 1 provides the (x1,z1)
positions while camera 2 measures their (y2,z2) positions [13]. The z coordinates are redundant
and an affine relationship [z2 = az1 + b, Fig. 1(c)] permits the stereo matching of trajectories
satisfying max(|z2(t) − az1(t) − b|) < 3 pix, which is smaller than the particle’s apparent radii on
the image. This affine relation is first obtained with a dilute ensemble of particles that permits easy
stereo matching within a pair of movies and recursive estimations of the fit parameters (a = 0.98,
b = 15.6 pix is used here). Together with the magnification of camera 1 (90 μm per pixel), the
calibration provides all requisite information concerning particle positions in laboratory coordinates.
As the experiment was run at a low particle concentration, each pair of movies leads to an ensemble
of trajectories from which single-particle statistics can be computed. For each Reynolds number
considered, we record 500 pairs of movies lasting 1.3 s, each pair leading to O(1000) trajectories
with a mean duration 〈t〉 ∼ 0.25/�. A large ensemble of O(4 × 105) trajectories allows Lagrangian
single-particle statistics to be conditioned in space in order to investigate the nonhomogeneity of the
flow properties.

III. BISTABILITY AND MEAN FLOW PROPERTIES

A. Mean flow topology

The counter-rotating von Kármán flow is known to exhibit long time dynamics [16]. To investigate
the stationarity of the flow, we conducted 8-h measurement campaigns, obtaining 100 films separated
by 5 min of data transfer. Figures 2(a) and 2(b) display the time evolution of the rms values of the
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FIG. 2. Panels (a) and (b): Time evolution of the rms value of the velocity computed from each movie at
Reλ = 190. The time is defined as t = kT where k is the number of the movie and T = 5 min is the time
between each successive recordings. •, x component; �, y component; and �, z component. Panels (c) and (d):
Backlight visualization of bubbles injected in the flow, and dark regions corresponding to bubbles concentrated
in vortices are marked with a box. The webcam and the LED panel are placed apart the vessel in the x direction,
with the disks being visible on the sides of each image. (c) System of two vertical vortices aligned with the
y direction. (d) System of two horizontal vortices aligned with the x direction. In all cases, the shear layer is
located at the midplane (marked with a dashed line).

velocity components using all trajectories in each pair of movies for the intermediate Reynolds
number and are computed directly from the trajectories by

vrms,i(t) =
√√√√ 1

Np

Np∑
p∈movie

[(
v

p

i

)2 − (
v

p

i

)2]
, i = x,y,z, (1)

where Np is the total number of particle trajectories p in the kth pair of movies (leading to t = 5k,

in minutes), and v
p

i is the velocity component i = x,y,z averaged in time over its duration Tp.
We observe that the axial component (vrms,z) is always close to 0.35 m s−1 while the transverse
components (vrms,x and vrms,y) alternate between two values: 0.35 and 0.55 m s−1. Moreover, vrms,x

and vrms,y never have a large value at the same time, but instead exchange values. This behavior
is observed regardless of the rotation frequency in the fully turbulent regime, indicating that the
large-scale flow is bistable with one transverse component dominating the other. The two states of
the flow can be directly observed by introducing bubbles into the apparatus and using a backlight
configuration with a webcam operating at 15 Hz oriented in the x direction to observe a field lit
by a LED panel. Upon visualization, coherent vortex structures trap the lighter bubble phase and
stand out clearly in the images [Figs. 2(c) and 2(d)]. These vortices occur in pairs attached to either
set of horizontal [Fig. 2(c)] or vertical [Fig. 2(d)] walls and are situated at equal distance from the
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FIG. 3. (a) �xz = (x,y = 0,z) cut of the reconstructed Eulerian mean velocity field of the x-dominant state.
Arrows are (〈vx〉,〈vz〉); the color coding is for the 〈vy〉. (b) Topology of the x-dominant state at the geometric
center. (c) �xy = (x,y,z = 0) cut of the x-dominant state. Arrows are (〈vx〉,〈vy〉); the color coding is for the
〈vz〉. Panels (d)–(f): Same figures as panels (a)–(c) for the y-dominant state.

midplane, which is also the location of the shear layer. The vortices have their own dynamics. Their
positions are observed to fluctuate and may be found nearly one vortex core away from their typical
wall-anchored positions. These vortices are thought to be central to the present bistability for which
the persistency of either horizontal or vertical state is much longer (several minutes, confirmed
by laser Doppler velocimetry measurements) than the large eddy turnover time of 1/� � 0.2 s.
Reversals are preceded by a “dancing” motion whereby the vortex pairs become unstable and detach
from their wall-anchored positions, eventually shifting 90◦ from a vertical set to a horizontal set or
vice versa. Such a scenario is specific to the square-cylinder geometry, and differs from the typical
bistability observed in circular cylinders for which the two states correspond to a displacement of
the shear layer and mirror each other in a reflexion about the midplane [16–18].

In order to characterize the flow properties of each state separately, the data set is separated into
two ensembles with the x-dominant (respectively y-dominant) state corresponding to movies with
high values of vrms,x (resp. vrms,y). Given these sets of trajectories, one may reconstruct the mean
velocity field in three dimensions (3d), 〈�v〉(x,y,z) = (〈vx〉,〈vy〉,〈vz〉), and the rms fluctuations of
each velocity component. This is achieved by an Eulerian conditioning of the Lagrangian datasets
on a 123 Cartesian grid, which corresponds to a spatial resolution of 5 mm in each direction. We
found this grid size to be sufficiently small with respect to the typical scale (R/2 = 3.5 cm) of the
flow, and sufficiently large to permit at least O(1000) trajectories to cross each bin, which is enough
to converge both the mean and rms values of the quantities considered.

Figures 3(a) and 3(c) [respectively, Figs. 3(d) and 3(f)] display cross sections of the reconstructed
mean flow of the x-dominant (resp., y-dominant) state in two perpendicular planes: the �xz plane
containing transverse and axial components, and the axially orthogonal midplane �xy(x,y,z = 0).
These figures demonstrate that neither state presents a mean structure resembling that of the
schematic view in Fig. 1(a), nor do they contain the double contracting axes (x,y) and a single
diverging direction (z) near the geometrical center. Considering the �xz plane in the x-dominant
state, stagnation-point topology is evident and indeed a single converging direction (x) is present
[Fig. 3(a)]. However, the same plane in the y-dominant state gives two diverging axes [Fig. 3(d)]. In
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fact, these two figures would be exchanged when presenting cross sections in the �yz plane instead
of �xz to properly account for the dominant converging direction. This reversal is an important
signature of the bistability in the mean flow and is apparent when observing cross sections in the
�xy plane, which illustrate dominant components coinciding invariably with a contracting direction,
similar to the topology of two impinging jets [Figs. 3(b) and 3(e)]. The presence of two unstable
directions and one stable direction is confirmed when computing the (normalized) gradient tensor
of the mean flow components and the Reynolds stress tensor at the origin (x,y,z) = (0,0,0) in the
x-dominant state:

1

2π�
[∂i〈vj 〉] =

⎛
⎝

−0.90 0.18 0.00
0.00 0.31 0.00
0.08 0.00 0.60

⎞
⎠,

1

2〈k〉 [〈v′
iv

′
j 〉] =

⎛
⎝

0.54 0.00 0.00
0.00 0.27 0.02
0.00 0.02 0.18

⎞
⎠,

〈k〉 = (〈
v′

x

2〉 + 〈
v′

y

2〉 + 〈
v′

z

2〉)/2. (2)

The principle axes of both tensors are nearly aligned with (x, y, z), indicating that strain and
turbulent fluctuations are highest in the dominant contracting direction. Such a result is surprising
because the flow is produced by the differential rotation of the discs and one may expect the
turbulence to be of the free-shear flow type. We find that the Reynolds stress tensor is diagonal with
fluctuation anisotropy coinciding with the contracting and dilating directions. The absence of cross
correlation between the velocity components indicates that the flow is not of the free-shear flow
type [3], but is typical of stagnation-point turbulence. All of the aforementioned results are valid
for the y-dominant state (exchanging contraction along x with y) and all of the Reynolds numbers
investigated. In what follows, we will consider the x-dominant state and the role of stagnation-point
topology in the production, dissipation, and transport of turbulent kinetic energy.

IV. TURBULENT KINETIC ENERGY BUDGET (TKE)

A. Velocity fluctuations

Velocity fluctuations in the central region are strongly anisotropic and nonhomogeneous in
space, as illustrated in Fig. 4(a), which displays the averaged kinetic energy of the fluctuations,
〈k〉 = (〈v′

x
2〉 + 〈v′

y
2〉 + 〈v′

z
2〉)/2, in the �xy plane. We find that the turbulent fluctuations present a

local minimum at (0,0,0) along the dilating direction (x = 0,y,z = 0) and a local maximum along the
contracting direction (x,y = 0,z = 0). Velocity components along the stable direction displaying
increasing anisotropy while approaching the geometric center in the �xy plane [Fig. 4(b)], due
primarily to the strong growth in dominant axis fluctuations (〈v′

x
2〉) contrasting with the weakly

varying values in the other two components.
Increasing anisotropy is understood by examining how velocity fluctuations are amplified or

attenuated along a mean trajectory. Given the mean flow in the x-dominant state, particles starting
at point M0 = (x < 0,0,0) travel directly toward the center and explore the corresponding velocity
fluctuations of Fig. 4(b). In the spirit of an analysis using rapid distortion theory [19,20], we use the
Reynolds decomposition (vi = 〈vi〉 + v′

i) to write the velocity fluctuation equation:

∂tv
′
i + 〈vj 〉∂jv

′
i + v′

k∂k〈vi〉 = − 1

ρ
∂ip

′ + ν∂j ∂jv
′
i + v′

k∂kv
′
i − 〈v′

k∂kv
′
i〉. (3)

When neglecting the right-hand side of the equation as a first approximation, this equation reads

Dv′
i

Dt
= ∂tv

′
i + 〈vj 〉∂jv

′
i � −v′

k∂k〈vi〉 (4)

and relates the amplification of v′
x along a trajectory (from x < 0 to x = 0) to the velocity gradient

(∂x〈vx〉 < 0). Conversely, v′
y must decrease as ∂y〈vy〉 > 0. Although our results are observed in

a complex geometry, they are similar to findings in pioneering wind tunnel experiments [5]. It is
worth mentioning that this first-order theory does not explain why the axial fluctuations only vary
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FIG. 4. (a) Section of the mean turbulent kinetic energy 〈k〉 = (〈v′
x

2〉 + 〈v′
y

2〉 + 〈v′
z

2〉)/2 in the plane
�xy = (x,y,z = 0) measured for the x-dominant state at Reλ = 190. (b) x profiles of the normalized velocity
components 〈v′

i
2〉(x,0,0)/2k0, where k0 = 〈k〉(0,0,0) as measured for the x-dominant state and the three

Reynolds numbers. ◦, x component; �, y component; �, z component. Statistical errors of each quantity,
computed from the convergence toward the mean value, are smaller than 2% of the mean. This corresponds at
most to the size of the symbols on the graph.

weakly in space along x, which is also true along y and z in all the explored volume |x,y,z| < 0.4R.
Fluctuations are not only distorted by the mean flow along particle trajectories but are also strongly
dissipated close to the center in order to maintain a statistically stationary state. We turn now to a
discussion of the turbulent kinetic energy balance.

B. Production and dissipation of turbulence

As previously observed, the stagnation point topology of the mean flow is responsible for the
strong anisotropy of velocity fluctuations close to the geometrical center. The anisotropy is larger
than in any other canonical flow (wind tunnel, channel, boundary layer, jet, or wake) and motivates
the investigation of the local production, dissipation, and transport of turbulent fluctuations. A
stationary, ensemble-averaged turbulent kinetic energy budget is written [2,3]:

〈vj 〉∂j 〈k〉 + ∂j 〈v′
j k〉 = P − 1

ρ ∂j 〈p′v′
j 〉 + ν∂j ∂j 〈k〉 − ε.

1 2 3 4 5 6 (5)

This equation is established far from the propellers where no forcing term is present. Its six
terms are as follows: 1, advection of mean kinetic energy 〈k〉 = 〈v′

iv
′
i〉/2; 2, transport of kinetic

energy by turbulent fluctuations; 3, production of turbulent fluctuations P = −〈v′
iv

′
j 〉∂i〈vj 〉; 4,

transport due to pressure velocity correlations; 5, diffusion of mean kinetic energy; and 6, dissipation
ε = ν〈(∂iv

′
j )(∂iv

′
j )〉. In this equation, if ν∂j ∂j 〈k〉 is negligible as compared to dissipation in fully

turbulent flows, the pressure-velocity correlation term cannot be measured directly as it would require
a measurement of pressure at the particle position. Although this correlation has been found to be
much smaller than dissipation in nearly homogeneous turbulent flows [2], it is kept in the budget so
that Eq. (5) is rewritten:

〈a′
j v

′
j 〉 = 〈vj 〉∂j 〈k〉 + ∂j 〈v′

j k〉 − P = −ε − 1
ρ ∂j 〈p′v′

j 〉, (6)
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FIG. 5. (a) x profiles of the different terms of Eq. (5) plotted along the line (x,y = 0,z = 0) for the
x-dominant state at Reλ = 190. −−, advection of mean kinetic energy 〈vj 〉∂j 〈k〉 = 1; �, turbulent transport
term ∂j 〈v′

j k〉 = 2; ◦, production of turbulence P = −〈v′
iv

′
j 〉∂i〈vj 〉 = 3; �, averaged power per unit mass

〈a′
j v

′
j 〉 = 4 + 6. (b) y profiles of the same quantities plotted along the line (x = 0,y,z = 0) with the same

legend. The error on both plots is given by ±3σ , where σ is defined as the standard deviation of the cumulative
mean of each quantity in the range N ∈ [3000,4000] trajectories.

where we have introduced the fluctuating acceleration a′
j = aj − 〈aj 〉. In Eq. (6), the first four

terms can be computed separately by averaging the Lagrangian data in each bin using the
fluctuating velocity v′

j = vj − 〈vj 〉 and acceleration a′
j = aj − 〈aj 〉, while the various mean fields

are interpolated at the positions of the particles.
Figures 5(a) and 5(b) display the x and y profiles (in the midplane, �xy) of the different terms

appearing in Eq. (6) obtained for the x-dominant state at Reλ = 190. These profiles have been
computed on a coarser Cartesian grid with 93 bins in order to get better convergence of 〈�a′ · �v′〉 and
〈�v′k〉 and correspond to raw data without any spatial filtering. These statistics are subject to statistical
errors (in the computation of the mean of a given quantity in each bin) inherent in the limited number
trajectories [O(4000)] passing through each bin. The error σ is defined as the standard deviation of
the cumulative mean in the range N ∈ [3000,4000] trajectories. The figures are analyzed term by
term below.

(1) Dissipation: The averaged power per unit mass 〈�a′ · �v′〉 is found to increase when approaching
the center and reaches up to −2.6 W/kg. Subtracting the mean flow contribution, 〈�a〉 · 〈�v〉, is
important because 〈�a · �v〉 is found to be proportional, though much larger than the nominal dissipation
rate. Our calculation of local dissipation should be compared to other estimates obtained from
the zero crossing of the acceleration auto-correlation function, τ0 � 2.2τη [9,14,15], which gives
(τ0,x,τ0,y ,τ0,z) = (4.7,4.4,3.9) ms, leading to ε ∈ [1.8,2.6] W/kg. This result holds for all bins on the
Cartesian grid at each Reynolds number investigated and we conclude that 〈�a′ · �v′〉 is a reasonable
estimate of the dissipation as the pressure-velocity transport term is smaller than 0.2–0.3ε. The
latter quantity is estimated as the difference between the value of ε calculated from the acceleration
autocorrelation function zero crossing and local value of 〈�a′ · �v′〉.

(2) Production of turbulence: Figures 5(a) and 5(b) demonstrate that the production term is
positive and locally exceeds dissipation by nearly a factor 2 close to the stagnation point. Such
large production in a turbulent flow is unusual, although it has been observed for instance in a
nonstationary mixing layer [21], and in the buffer layer of a channel flow [2], P � ε is more typical
in inhomogeneous flows. However, the mean flow serves to reinforce turbulent fluctuations in the x

084601-8



PRODUCTION AND DISSIPATION OF TURBULENT . . .

direction where the strain is strongest, giving P � −〈v′
x

2〉∂x〈vx〉 − 〈v′
y

2〉∂y〈vy〉 − 〈v′
z

2〉∂z〈vz〉 �
5 W kg−1. This dissipation deficit translates an overly efficient extraction of kinetic energy from the
mean flow in the central region and requires a compensatory mechanism.

(3) Transport of turbulent fluctuations: The transport of kinetic energy has two distinct
contributions, advection of mean kinetic energy 〈�v〉 · �∇〈k〉 and transport by fluctuations �∇ · 〈�v′k〉. The
latter is found to be dominant near the geometrical center where both the mean flow and the gradient
of mean kinetic energy vanish. It is found positive in a sphere of radius r =

√
x2 + y2 + z2 � 2 cm

so that an amount of energy nearly equivalent to the local value of ε is transported outward from
the center of the flow. However, the flux is very anisotropic and depends strongly on the distance to
the center, as was demonstrated in a cylindrical vessel using an alternative approach [11]. Indeed,
we observe advection of mean kinetic energy and turbulent transport in near equal proportions
along the x direction, while the turbulent flux of energy always corresponds to a loss in the y

direction. Although the mean properties of the turbulence vary weakly near the geometrical center,
our observations indicate that the counter-rotating von Kármán flow should not be considered a
quasihomogeneous turbulent flow.

V. CONCLUSION

We have implemented a shadow particle tracking velocimetry technique (S-PTV), using large
collimated beams, to track Lagrangian tracers in a large volume around a stagnation point located at
the geometrical center of a von Kármán flow. Using this dataset of Lagrangian trajectories resolving
the dissipative scales of the underlying turbulence, we were able to reconstruct 3 dimensions 3
components (3D3C) ensemble-averaged maps of velocity, acceleration, and fluxes of turbulent
kinetic energy, which are needed to investigate the turbulent kinetic energy budget.

A first and very general result of the present study concerns local energy dissipation, a quantity
very difficult to estimate in fully turbulent flows due to the high spatial resolution needed to resolve
small-scale velocity gradients. Here we demonstrated that 〈�a′ · �v′〉 = 〈�a · �v〉 − 〈�a〉 · 〈�v〉 is a good
proxy for the local dissipation ε � −〈�a′ · �v′〉 in the bulk of the flow, away from regions where
energy is injected. By resolving the acceleration of the particles in a nonhomogeneous flow, it
is possible to estimate the local dissipation using only one-particle statistics, without computing
spatial velocity increments as is usually done when estimating dissipation from Eulerian structure
functions [9,22]. Our approach complements the result 〈δ�a · δ�v〉 = −2ε, derived in the context
of homogeneous turbulence [23], which requires a higher particle concentration as it involves the
computation of spatial increments of acceleration and velocity between two particles [24] and makes
particle tracking harder.

A second result, specific to the present von Kármán flow, concerns its temporal dynamics. By a
careful inspection of trajectories obtained from each movie, we demonstrated that the flow is bistable
due to the presence of coherent structures attached to the walls, a consequence of the square tank
geometry. Conditioning the dataset on the two states, we have reconstructed corresponding mean
flows and demonstrated a rotation of π/2 around the axis of rotation. Consequently, the present
bistability is different from those observed in similar flows produced in a cylindrical vessel for
which the different states mirror each other in a reflexion about the midplane z = 0 [16–18,25].
Further work is needed to fully characterize the reversals and their temporal dynamics and to test
modeling approaches typically used in confined flows or more generally techniques pertaining to
turbulent multi-stability such as [16,26,27]. For a given state, one transverse component dominates
the other resulting in an impinging jet topology oriented toward the center and parallel to the x or
y axis, depending on the bistable state. In such configuration, the flow has a stagnation point near
the center which is responsible for the large anisotropy, which is most accentuated in the direction
of largest strain.

By a careful investigation of the turbulent kinetic energy budget, we demonstrated the extent
to which the stagnation-point topology, with only one stable direction and two unstable directions,
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is efficient at extracting energy from the mean flow. This was confirmed by our finding that the
production of turbulence is nearly twice the dissipation. Production to dissipation ratios (P/ε)
locally larger than unity are not uncommon in regions responsible for the generation of turbulence,
such as the near-wall region of boundary-layer flows. However, the measurement of P/ε � 2 in the
center of the vessel, several integral scales away from where the flow is forced, is unexpected.

As a consequence of such strong energy extraction, a significant part of turbulent kinetic energy,
of the same order of magnitude as ε, is transported by turbulent fluctuations so that such a flow
should be seen as strongly nonhomogeneous in space, even in the central region. Such a result is not
specific to the square tank geometry and should hold when a stagnation point is present with a high
level of anisotropy. This is confirmed by the data reported in Ref. [9], measured in the stagnation
point of von Kármán flow produced in a cylindrical vessel, for which an estimate of the production
term is found larger than dissipation [28].
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