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THE ESSENTIAL SPECTRUM OF THE DISCRETE LAPLACIAN ON

KLAUS-SPARSE GRAPHS

SYLVAIN GOLÉNIA AND FRANÇOISE TRUC

Abstract. In 1983, Klaus studied a class of potentials with bumps and computed the essential spectrum

of the associated Schrödinger operator with the help of some localisations at infinity. A key hypothesis

is that the distance between two consecutive bumps tends to infinity at infinity. In this article, we
introduce a new class of graphs (with patterns) that mimics this situation, in the sense that the distance

between two patterns tends to infinity at infinity. These patterns tend, in some way, to asymptotic

graphs. They are the localisations at infinity. Our result is that the essential spectrum of the Laplacian
acting on our graph is given by the union of the spectra of the Laplacian acting on the asymptotic

graphs. We also discuss the question of the stability of the essential spectrum in the appendix.
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1. Introduction

The computation of the essential spectrum of an operator is a standard question in spectral theory. For
a large family of Schrödinger operators, it is well-known that the essential spectrum is characterised by
the behaviour at infinity of the potential. In 1983, Klaus introduces in his article [Kla] a type of potential
with bumps with a crucial feature, that is, the distance between two such bumps tends to infinity. He
computes the essential spectrum of this 1d (continuous) Schrödinger operator in terms of the union of
the spectrum of some simpler operators. The common patterns, that define the localisations at infinity,
are given by the behaviour of the potential. In [LaSi], this notion is illustrated by the use of R-limits, see
also [CWL] for this concept and references therein. The example of Klaus was generalised and encoded in
some C∗-algebraic context in [GeIf1, GeIf2], see also [MaPuRi]. We refer to [Ge] for more general results
and historical references. We mention also [NaTa1, NaTa2] for recent developments in a sparse context.

In the context of graphs, the computation of essential spectra is done in many places e.g., [Kel, Ra,
SaSu]. In [BrDeEl, El] they extend the R-limit technique to discrete graphs. We refer to [Gol1, GeGo1]
for a C∗-algebra approach.

Our motivation in this paper is to analyse a graph analog of the example of Klaus where the “bumps”
are no more due to a potential but to patterns coming from the structure of the graph. We call this
family of graphs Klaus-sparse graphs. The approaches of R-limits and C∗-algebras do not seem to apply
here. We rely directly on the construction of Weyl sequences.
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We start with some definitions and fix our notation for graphs. We refer to [CdV, Chu] for surveys on
the matter. Let V be a countable set. Let E := V × V → [0,∞) and assume that

E(x, y) = E(y, x), for all x, y ∈ V.
We say that G := (V, E ,m) is an unoriented weighted graph with vertices V and weighted edges E and

where m is a positive weight on the vertices

m : V → (0,∞).

In the setting of electrical networks, the weights correspond to the conductances. We say that x, y ∈ V
are neighbours if E(x, y) 6= 0 and denote it by x ∼ y. We say that there is a loop in x ∈ V if E(x, x) 6= 0.
The set of neighbours of x ∈ E is denoted by

NG(x) := {y ∈ E , x ∼ y}.
A graph is locally finite if |NG(x)| is finite for all x ∈ V. A graph is connected, if for all x, y ∈ V, there
exists an x-y-path, i.e., there is a finite sequence

(x1, . . . , xN+1) ∈ VN+1 such that x1 = x, xN+1 = y and xn ∼ xn+1,

We recall that a graph G is simple if E has values in {0, 1}, m = 1, and if it has no loop.

In the sequel, all graphs G = (V, E ,m) are locally finite, connected and have no loop.

We now associate a certain Hilbert space and some operators on it to a given graph G = (V, E ,m).
Let `2m(V) := `2(V,m;C) be the set of functions f : V → C, such that ‖f‖2`2m(V) :=

∑
x∈V m(x)|f(x)|2 is

finite. The associated scalar product is given by

〈f, g〉G := 〈f, g〉`2m(V) :=
∑
x∈V

m(x)f(x)g(x), for f, g ∈ `2m(V).

We also denote by Cc(V) the set of functions f : V → C, which have finite support. We define the
quadratic form:

QG(f, f) :=
1

2

∑
x,y∈V

E(x, y)|f(x)− f(y)|2 ≥ 0, for f ∈ Cc(V).(1.1)

It is closable and there exists a unique self-adjoint operator ∆G , such that

QG(f, f) = 〈f,∆Gf〉G , for f ∈ Cc(V)

and D(∆
1/2
G ) = D(QG), where the latter is the completion of Cc(V) under ‖ · ‖2 + QG(·, ·). This operator

is the Friedrichs extension associated to the form QG (e.g., [Gol3]). It acts as follows:

∆Gf(x) :=
1

m(x)

∑
y∈V
E(x, y)(f(x)− f(y)), for f ∈ Cc(V).(1.2)

When m = 1 and E has values in {0, 1}, the operator is essentially self-adjoint on Cc(V), c.f., [Woj]. A
large literature is devoted to this subject.

We define the degree associated to G = (V, E ,m) by

degG(x) :=
1

m(x)

∑
y∈V
E(x, y), for x ∈ V.

Given a function V : V → C, we denote by V (·) the operator of multiplication by V . It is elementary

that D(deg
1/2
G (.)) ⊂ D(∆

1/2
G ). Indeed, one has:

0 ≤ 〈f,∆Gf〉G =
1

2

∑
x∈V

∑
y∼x
E(x, y)|f(x)− f(y)|2

≤
∑
x∈V

∑
y∼x
E(x, y)(|f(x)|2 + |f(y)|2) = 2〈f, degG(·)f〉G ,(1.3)

for f ∈ Cc(V). Moreover, setting δ̃x(y) := m−1/2(x)1{x}(y) for any x, y ∈ V, 〈δ̃x,∆G δ̃x〉 = degG(x), so
∆G is bounded if and only if supx∈V degG(x) is finite, e.g. [KL2, Gol3]. Here we have used the following
standard notation: for any given set X, 1X(x) := 1 is x ∈ X and 0 otherwise.
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The aim of our work is to study the essential spectrum of ∆G for Klaus-sparse graphs. The precise
definition is given in Section 2 but let us give a rough description of such a graph: it consists of a (double
infinite) family of finite graphs {Gi,k}(i,k) which are patterns that are connected by a “medium graph”
GM. The latter has a uniformly bounded degree. For any given k, there is a kind of increasing limit of
Gi,k when i → ∞ which is an infinite graph G∞,k. The graphs {G∞,k}k are the localisations at infinity
of G. Moreover the distance in G between the Gi,k goes to infinity as lim(i, k) → ∞ with respect to the
Fréchet filter. We prove the following theorem :

Theorem 1.1. Assume that G := (V, E ,m) is a Klaus-sparse graph. Using notation of Definition 2.1,
we have

1) ∆G is essentially self-adjoint on Cc(V).
2) The essential spectrum of ∆G is given by the union of the spectra of ∆G∞,k

, the localisations at infinity,
namely:

σess(∆G) =
⋃
k∈J

σ(∆G∞,k
).

First of all, to simplify the presentation we do not include any potential and stick to perturbation of
graphs. The proof of 1) is inspired by [Gol2]. Let us mention that the inclusion ⊂ in 2) holds for a wider
class of graphs and is the easy part of 2). The reverse inclusion is the interesting and difficult part. To our
knowledge, in the context of C∗-algebra, the only result that could tackle this issue is in [Ge]. However it
is complicated to compare his results to ours, since they are given in terms of some abstract ultra-filters.
Moreover, in our result the union that we obtain is minimal, e.g., Section 3.4.1. We now compare to [El].
In his chapter 4, the author’s more general results overlap with ours but they do not contain ours. They
are complementary. Let us explain in which sense they do not contain our result. First we point out that
the author is dealing only with bounded operators and with m = 1. We do not believe that it is a strong
obstacle for his method. However, his approach relies fundamentally on a reverse Shnol’s Theorem that
is fulfilled under a uniform sub-exponential growth: ∀γ > 1,∃C > 0 so that ∀r ∈ N∗

sup
x∈V
|{y ∈ V, dG(x, y) = r}| ≤ Cγr.(1.4)

We construct in Section 3.4.2 a general family of Klaus-sparse graphs that do not have a uniform expo-
nential growth.

Finally in the appendix, Theorem A.1 ensures the stability of the essential spectrum under a pertur-
bation of the metric that is small at infinity.

Acknowledgements: We would like to thank Eric Amar and Michel Bonnefont for fruitful discus-
sions. We thank Latif Eliaz and Jonathan Breuer for mentioning their interesting results.

2. Klaus-sparse graphs

2.1. Further notation. We introduce some further notation and definitions. Given a, b ∈ Z, we denote
by [[a, b]] := [a, b]∩Z and [[a,∞[[:= [a,∞[∩Z. Given X ⊂ Y , we denote by Xc := Y \X the complementary
set of X, when no confusion can arise. Given H,K Hilbert spaces, we denote by B(H,K) and K(H,K) the
set of bounded and compact operators from H to K. Set also B(H) := B(H,H) and K(H) := K(H,H).

Given Gi := (Vi, Ei,mi) and xi ∈ Vi for i = 1, 2, we say that G1 is induced by G2 and denote it by
G1 ⊂ G2 if there is an injection f : V1 → V2 such that

f(V1) ⊂ V2, E1(x, y) = E2(f(x), f(y)), and m1(x) = m2(f(x)), ∀x, y ∈ V1.

We shall write (G1, x1) ⊂ (G2, x2) if we have in addition f(x1) = x2. To simplify, we shall often simply
write

V1 ⊂ V2, E1 = E2|V1,V1 , m1 = m2|V1 , and x1 = x2.

Moreover, given a graph G = (E ,V,m) and X ⊂ V, we denote by [X]G := (X, E|X×X ,m|X) the induced
graph of G by X.

We denote by dG the (unweighted) distance for G (over V) given by

dG(x, y) := min(n, x = x0 ∼ x1 ∼ . . . ∼ xn = y, with xi ∈ V),

for x, y ∈ V when x 6= y and dG(x, x) := 0. It is a distance on V when G is connected. Given r ≥ 0, we
set

BG(x, r) := {y ∈ V, dG(x, y) ≤ r}.
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2.2. The Klaus-sparse graph. In the introduction we explained by hand-waving the notion of Klaus-
sparse graph that we present in this article. Here is the precise definition.

Definition 2.1. A graph G := (V, E ,m) is called a Klaus-sparse graph if the following is satisfied.

• Set of patterns: Let J be at most countable such that |J | ≥ 1. There exist a family of connected
subgraphs Gi,k := (Vi,k, Ei,k,mi,k) with i ∈ N and k ∈ J , that are induced by G .
• Localisations at infinity: There are G∞,k := (V∞,k, E∞,k,m∞,k), for all k ∈ J , and GM :=

(VM, EM,mM) and xM ∈ VM, with uniformly bounded degree:

sup
y∈VM

degGM(y) <∞.(2.1)

Here M stands for medium.

These two families verify the following compatibilities:

(a) For all i ∈ N and k ∈ J , there are 0 < rint
i,k < rext

i,k such that

lim
(i,k)→∞

rint
i,k =∞ and lim

(i,k)→∞
rext
i,k − rint

i,k =∞,

where the limit is taken with respect to the Fréchet filter, i.e., the one given by the complementary
of finite sets.

(b) For all i ∈ N and k ∈ J , there exist xi,k ∈ Vi,k and x∞,k ∈ V∞,k, so that

([BG(xi,k, r
ext
i,k )]G , xi,k) ⊂ (G∞,k, x∞,k),

and for all r > 0 and k ∈ J , there is i ∈ N such that

([BG∞,k
(x∞,k, r)]

G∞,k , x∞,k) ⊂ ([BG(xi,k, r
int
i,k − 1)]G , xi,k).

(c) We set

{Cl}l∈L := {connected component of [V \ ∪i∈N,k∈JBG(xi,k,r
int
i,k − 1)]G}.

Here L ⊂ N∗. It is finite or not. We suppose that for all l ∈ L, there are a vertex xl of Cl and an
order C on L such that

∀l,m ∈ L, l Cm =⇒ (Cl, xl) ⊂ (Cm, xm) ⊂ (GM, xM).

(d) For all i, j ∈ N and k, k′ ∈ J , such that (i, k) 6= (j, k′), we have

BG(xi,k, r
ext
i,k ) ∩BG(xj,k′ , r

ext
j,k′) = ∅.

(e) For all r > 0, there is (i, k) ∈ N× J such that

[BGM(xM, r)]
GM ⊂ [BG(xi,k, r

ext
i,k − 1) \BG(xi,k, r

int
i,k + 1)]G .(2.2)

At first sight, it looks a bit abstruse but will be more intuitive by relying on the figures. In Figure 1,
Ci ' [[−ai, bi]] where ai and bi are integers that tend to ∞. The medium graph is GM = Z, see Figure 2.
Note that we could have chosen GM = N.

In Figure 3, [V \ ∪i∈NBG(xi, r
int
i )]G is connected. Therefore L is reduced to an element and GM = Z2,

see Figure 4.

3. Proof of the main theorem

3.1. Essential self-adjointness. In this section we prove the first part of Theorem 1.1. We rely on a
perturbative approach. We assume that G := (V, E ,m) is a Klaus-sparse graph and we use notation of
Definition 2.1. We set:

V] :=
⋃
i,k

BG(xi,k, r
ext
i,k ), E] := E × 1V]×V] , and G] := (V], E],m|V]).

Due to Definition 2.1 (d), the balls that are constituting V] are two-by-two disjoint. Using the notation
of induced graph given in Section 2.1, we deduce that

∆G] =
⊕
i,k

∆[BG(xi,k,rexti,k )]G .

Since [BG(xi,k, r
ext
i,k )]G is a finite graph for all i, k, we infer that ∆G] is essentially self-adjoint on Cc(V]).

We extend it to V by 0, we obtain that ∆G] ⊕ 0 is essentially self-adjoint on Cc(V).
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x1,1

x2,1

x3,1

x1,2

x2,2

x3,2

x4,2x4,2

C1

C2

C3

C4

C5

C6
C7

C8

C9 C10

C11

C12

C13 C14

C15

C16

BG(x2,1, r
ext
2,1 )

BG(x2,1, r
int
2,1)

Figure 1. G is a Klaus-sparse star-like graph. Here L = N.

Then, mimicking the proof of (1.3), we have:

|〈f, (∆G −∆G] ⊕ 0)f〉G | ≤ 2〈f,W (·)f〉G ,(3.1)

where

W (x) :=
1

m(x)

∑
y∈V
|E(x, y)− E](x, y)|, for x ∈ V.

Note that

W (x) =



1

m(x)

∑
y/∈V]

E(x, y), when x ∈ V],

1

m(x)

∑
y∈V
E(x, y), when x /∈ V].
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x∞,1 x∞,2 xM

G∞,1 G∞,2 GM

BG∞,1(x∞,1, r)
BG∞,2(x∞,2, r)

BGM(xM, r)

Figure 2. Localisations at infinity for the Star-like graph given in Figure 1
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Figure 3. G is a Klaus-sparse Z2-like graph. Here L = {1}.
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Figure 4. Localisations at infinity for the Z2-like graph given in Figure 3
.

Therefore, recalling (c) of Definition 2.1, we have that the support of W is contained in {Cl}l∈L. Moreover,
using again (c), we obtain that

sup
x∈V

W (x) ≤ sup
x∈VM

degGM(x).

In particular, this implies that ∆G−∆G]⊕0 is a bounded operator. Hence by the Kato-Rellich Theorem,
e.g., [RS, Proposition X.12], we conclude that ∆G is also essentially self-adjoint on Cc(V). �

3.2. General facts about the essential spectrum. For the proof of the second point of the main
theorem, we rely extensively on the properties of approximate eigenfunctions. For the convenience of the
reader, we recall these results.

We start by characterising the spectrum and the essential spectrum of a general self-adjoint operator,
e.g., [RS, p. 268].

Theorem 3.1. Let H be a self-adjoint operator acting in a Hilbert space (H, ‖ · ‖). We have:

1) λ ∈ σ(H) if and only if there are ϕn ∈ H such that ‖ϕn‖ = 1 and limn→∞(H − λ)ϕn = 0. The
functions (ϕn)n∈N are called approximate eigenfunctions.

2) λ ∈ σess(H) if and only if there are ϕn ∈ H such that
(a) ‖ϕn‖ = 1,
(b) w − limn→∞ ϕn = 0,
(c) limn→∞(H − λ)ϕn = 0.
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The sequence of functions (ϕn)n∈N is called a Weyl sequence.

For the next theorem, the first point is a one-line proof. The second one relies on Persson’s Lemma,
e.g., [KL, Proposition 18].

Theorem 3.2. Let G := (V, E ,m) be such that ∆G is essentially self-adjoint on Cc(V). It follows that:

1) λ ∈ σ(∆G) if and only if there are ϕn ∈ Cc(V) such that ‖ϕn‖ = 1 and limn→∞(∆G − λ)ϕn = 0.
2) λ ∈ σess(H) if and only if there are ϕn ∈ Cc(V) such that

(a) ‖ϕn‖ = 1,
(b) for all finite set K ⊂ V, we have supp(ϕn) ∩K = ∅, for n large enough,
(c) limn→∞(∆G − λ)ϕn = 0.

3.3. Computation of the essential spectrum. In this last section, we finish the proof of the main
theorem. We start with two lemmas.

Lemma 3.1. Let G := (V, E ,m) be such that ∆G is essentially self-adjoint on Cc(V). Let χ : V → R be
bounded, and define

G(x) :=
1

m(x)

∑
y∈V
E(x, y)|χ(y)− χ(x)|.

We have:

(a) For all f ∈ Cc(V), we have

|〈f, [∆G , χ(·)]f〉G)| ≤ 〈f,G(·)f〉G .

(b) Assuming that G is bounded, [∆G , χ(·)] extends to a bounded operator that we denote by [∆G , χ(·)]◦.
(c) The operator [∆G , χ(·)]◦ is compact if

lim
|x|→∞

G(x) = 0.(3.2)

Proof. Take f ∈ Cc(V). Using the Cauchy-Schwartz inequality, we have:

|〈f, [∆, χ(·)]f〉G)| ≤
∑
x∈V
|f(x)| ·

∑
y∼x
E(x, y) |(χ(y)− χ(x))| · |f(y)|

≤ 1

2

∑
x∈V

∑
y∼x
E(x, y)|χ(y)− χ(x)| · |f(x)|2 + E(x, y)|χ(y)− χ(x)| · |f(y)|2

=
∑
x∈V

G(x)m(x)|f(x)|2 = 〈f,G(·)f〉G .

The boundedness is immediate and the compactness follows from the min-max theory, e.g., [Gol3][Propo-
sition 2.8]. �

Lemma 3.2. Assume that G := (V, E ,m) is Klaus-sparse. Using the notation of Definition 2.1, there
exists χ : V → [0, 1] such that

1) χ(x) = 1 when x ∈ ∪i∈N,k∈JBG(xi,k, r
int
i,k) and χ(x) = 0 when x ∈

(
∪i,kBG(xi,k, r

ext
i,k − 2)

)c
.

2) The operator [∆G , χ(·)]◦ is compact.

Proof. Set

χ(x) :=

 1−
dG(x,BG(xi,k, r

int
i,k))

rext
i,k − rint

i,k − 1
, if x ∈ BG(xi,k, r

ext
i,k − 1) for some i ∈ N and k ∈ J ,

0, otherwise.

Recalling Definition 2.1 (d), this can be rewritten as follows:

χ(x) =
∑

i∈N,k∈J
max

(
1−

dG(x,B(xi,k, r
int
i,k))

rext
i,k − rint

i,k − 1
, 0

)
Given x ∈ V, we have

G(x) :=
1

m(x)

∑
y∼x
E(x, y)|χ(y)− χ(x)| ≤ degG(x)× F (x),
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where

F (x) :=


1

rext
i,k − rint

i,k − 1
, if x ∈ ∪i∈N,k∈JBG(xi,k, r

ext
i,k − 1) \BG(xi,k, r

int
i,k − 1),

0, otherwise.

Thanks to the support of F and recalling Definition 2.1 (c), we refine the estimate as follows:

G(x) ≤ sup
y∈VM

degGM(y)× F (x).

Moreover, we have that F (x) → 0 as |x| → ∞ due to Definition 2.1 (a) and the Fréchet convergence.
This implies (3.2), which ensures that [∆, χ(·)]◦ is a compact operator. �

Lemma 3.3. Assume that G := (V, E ,m) is Klaus-sparse. Using the notation of Definition 2.1, we have
σ(∆M) ⊂ σess(⊕k∈J∆G∞,k

).

Proof. Let λ ∈ σ(∆M). First note that ∆M is bounded by (1.3) and (2.1). In particular, Cc(VM) is a core
for ∆M. Then, by Theorem 3.2, there are ϕn ∈ Cc(VM) so that ‖ϕn‖GM = 1 and limn→∞(∆M−λ)ϕn = 0.
Let rn > 0 be chosen such that supp(ϕn) ⊂ BGM(xM, rn − 1). Using properties (d) and (e) of Definition
2.1, we see that there exist an isometric graph embedding Tn and an injective function φ : N → N × J
such that

Tn : [BGM(xM, rn)]GM → [BG(xφ(n), r
ext
φ(n) − 1) \BG(xφ(n), r

int
φ(n) + 1)]G

(b)
⊂ G∞,k(n),

for all n ∈ N and φ(n) = (i(n), k(n)). Since φ is injective, note that φ(n)→∞ in the Fréchet sense, as n
goes to infinity. The last inclusion is due to Definition 2.1 (b).

Since it is a graph embedding and recalling that supp(ϕn) ⊂ BGM(xM, rn − 1), we have(
⊕k∈J

(
∆G∞,k

− λ
))
Tnϕn = (∆G∞,k(n)

− λ)Tnϕn
(b)
= (∆G − λ)Tnϕn = Tn((∆M − λ)ϕn)→ 0,

as n → ∞. Moreover, since it is an isometry we have ‖Tnϕn‖∪kG∞,k
= 1. Since lim(i,k)→∞ rint

i,k = ∞,
up to a subsequence, recalling the support of Tnϕn, we see that w − limn→∞ Tnϕn = 0. This is a Weyl
sequence for ⊕k∈J∆G∞,k. This yields that λ ∈ σess(⊕k∈J∆G∞,k). �

We turn to the proof of the main result.

Proof of Theorem 1.1: We prove the two inclusions.
⊃: Let λ ∈ σ(∆G∞,k

) for some k ∈ J . One can find functions ϕn ∈ Cc(VG∞,k
) such that ‖ϕn‖G∞,k

= 1 and
limn→∞(∆G∞,k

−λ)ϕn = 0 by Theorem 3.2. Let rn > 0 be chosen so that supp(ϕn) ⊂ BG∞,k
(x∞,k, rn−1).

By Definition 2.1 (b) and (d), we see that there exist an isometric graph embedding Tn and a strictly
increasing function φ : N→ N such that

Tn : [BG∞,k
(x∞,k, rn)]G∞,k → [BG(xφ(n),k, r

int
φ(n),k − 1)]G ,

for all n ∈ N. Since it is a graph embedding, we have

(∆G − λ)Tnϕn = Tn((∆G∞,k
− λ)ϕn)→ 0,

as n→∞ and since it is an isometry we have ‖Tnϕn‖G = 1.
Recalling (d), we see that the supports of (Tnϕn)n∈N are two by two disjoint. In particular, we obtain

w − limn→∞ Tnϕn = 0. We infer that Tnϕn is a Weyl sequence for (∆G , λ). In particular λ ∈ σess(∆G).
This implies that ∪k∈J σ(∆∞,k) ⊂ σess(∆G). Since σess(∆G) is closed, we obtain the first inclusion.
⊂: Let λ ∈ σess(∆G). There are ϕn ∈ Cc(V) verifying 2 (a)-(c) in Theorem 3.2. Take χ as in Lemma 3.2
and distinguish two cases.

i) Suppose that lim infn→∞ ‖(1− χ(·))ϕn‖G > 0. Set

Ψn :=
1

‖(1− χ(·))ϕn‖G
(1− χ(·))ϕn.

We have ‖Ψn‖G = 1, for all n ∈ N with support in ∩i,kBG(xi,k, r
int
i,k)c. By Definition 2.1 (c), we have the

following direct sums:

Ψn =
∑
l∈L

1ClΨn and ∆GΨn =
∑
l∈L

1Cl∆GΨn.(3.3)
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For each l ∈ L, we inject 1ClΨn into GM and denote it by Ψl
n,M. Since Ψl

n,M is with finite support, there

is p = p(l, n) such that

1 =
∑
l∈L

‖Ψl
n,M‖2GM =

p∑
l=0

‖Ψl
n,M‖2GM .

By Lemma 3.4 (b), there exist (θl,n)l∈L,n∈N such that∥∥∥∥∥∑
l∈L

eiθl,nΨl
n,M

∥∥∥∥∥
GM

≥ 1.(3.4)

Set now

Ψ̃n,M :=
1∥∥∥∑l∈L e

iθl,nΨl
n,M

∥∥∥
GM

∑
l∈L

eiθl,nΨl
n,M.

Then,

‖(∆M − λ)Ψ̃n,M‖GM =
1∥∥∥∑l∈L e

iθl,nΨl
n,M

∥∥∥
GM

∥∥∥∥∥(∆G − λ)
∑
l∈L

eiθl,n1ClΨn

∥∥∥∥∥
G

(3.4)

≤

∥∥∥∥∥∑
l∈L

eiθl,n(∆G − λ)1ClΨn

∥∥∥∥∥
G

=
∑
l∈L

‖(∆G − λ)1ClΨn‖G

(3.3)
= ‖(∆G − λ)Ψn‖G =

‖(∆G − λ)(1− χ(·))ϕn‖G
‖(1− χ(·))ϕn‖G

≤ 1

‖(1− χ(·))ϕn‖G
(‖1− χ‖∞ · ‖(∆G − λ)ϕn‖G + ‖[∆G , χ(·)]ϕn‖G)→ 0,

as n → ∞, since [∆G , χ(·)]◦ is compact by Lemma 3.2 and ϕn tends weakly to 0. This implies that
λ ∈ σ(∆M) ⊂ σess(∆⊕k∈JG∞,k

), by Lemma 3.3.
ii) Suppose now that lim infn→∞ ‖(1 − χ(·))ϕn‖G = 0. Up to a subsequence, we can suppose that

limn→∞ ‖χ(·)ϕn‖G = 1. Thanks to Lemma 3.2, note that

supp(χ(·)ϕn) ⊂
⋃
i,k

BG(xi,k, r
ext
i,k − 2).

Set

Ψn :=
1

‖χ(·)ϕn‖G
χϕn =

1

‖1⋃
i,k BG(xi,k,rexti,k−2)χ(·)ϕn‖G

1⋃
i,k BG(xi,k,rexti,k−2)χ(·)ϕn ∈

⋃
i,k

BG(xi,k, r
ext
i,k − 2).

Note that ‖Ψn‖G = 1. Using Definition 2.1 (d), we have

Ψn = ⊕k∈J ⊕∞i=0 1BG(xi,k,rexti,k−2)Ψn and ∆GΨn = ⊕k∈J ⊕∞i=0 1BG(xi,k,rexti,k−1)∆GΨn(3.5)

where the sum is taken over a finite number since ϕn is with compact support. Moreover,

1 = ‖Ψn‖2G =
∑
k∈J

∞∑
i=0

‖1BG(xi,k,rexti,k−2)Ψn‖2G .

We now inject 1BG(xi,k,rexti,k−2)Ψn into G∞,k using Definition 2.1 (b). We denote by Ψi,k
n,∞ : V∞,k → C the

new function. Trivially, we have ∑
k∈J

∞∑
i=0

‖Ψi,k
n,∞‖2G∞,k

= 1.

Since Ψi,k
n,∞ is with finite support, there is p = p(k, n) such that

αn,k :=

∞∑
i=0

‖Ψi,k
n,∞‖2G∞,k

=

p∑
i=0

‖Ψi,k
n,∞‖2G∞,k

.

Thanks to Lemma 3.4 b), there exist (θi,k,n)i∈N,k∈J ,n∈N ∈ [0, 2π]N×J such that∑
k∈J

∥∥∥∥∥
∞∑
i=0

eiθi,k,nΨi,k
n,∞

∥∥∥∥∥
2

G∞,k

≥
∑
k∈J

∞∑
i=0

∥∥Ψi,k
n,∞
∥∥2

G∞,k
=
∑
k∈J

αn,k = 1.(3.6)
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Set

Ψ̃k
n,∞ :=

1∑
k′∈J

∥∥∥∑∞i=0 e
iθi,k′,nΨi,k′

n,∞

∥∥∥
G∞,k′

∞∑
i=0

eiθi,k,nΨi,k
n,∞.

Note that
∑
k∈J ‖Ψ̃k

n,∞‖G∞,k
= 1 for all n ∈ N. Using again Definition 2.1 (b) and (d), we have∥∥∥∥∥⊕

k∈J

(∆G∞,k
− λ)Ψ̃k

n,∞

∥∥∥∥∥
∪k∈JG∞,k

=
∑
k∈J

∥∥∥(∆G∞,k
− λ)Ψ̃k

n,∞

∥∥∥
G∞,k

(b)
=

1∑
k′∈J

∥∥∥∑∞i=0 e
iθi,k′,nΨi,k′

n,∞

∥∥∥
G∞,k′

∑
k∈J

∥∥∥∥∥(∆G − λ)

( ∞∑
i=0

eiθi,k,n1BG(xi,k,rexti,k−2)Ψn

)∥∥∥∥∥
G

(3.6)

≤
∑
k∈J

∥∥∥∥∥
∞∑
i=0

eiθi,k,n(∆G − λ)
(
1BG(xi,k,rexti,k−2)Ψn

)∥∥∥∥∥
G

(d)
=
∑
k∈J

∞∑
i=0

∥∥∥(∆G − λ)
(
1BG(xi,k,rexti,k−2)Ψn

)∥∥∥
G

(3.5)
= ‖(∆G − λ)Ψn‖G

≤ 1

‖χ(·)ϕn‖G
(‖χ‖∞ · ‖(∆G − λ)ϕn‖G + ‖[∆G , χ(·)]ϕn‖G)→ 0,

as n→∞, since [∆G , χ(·)]◦ is compact by Lemma 3.2 and ϕn tends weakly to 0. Thus (⊕k∈J Ψ̃k
n,∞)n∈N

is a Weyl sequence for ∆⊕k∈JG∞,k
. We conclude that λ ∈ σ(∆⊕k∈JG∞,k

) = ∪k∈J σ(∆G∞,k
). �

We have used the following Lemma coming originally from [Am].

Lemma 3.4. a) Let (ei)i∈N be included in a Hilbert space H such that ‖ei‖ = 1. Let (βi)i∈N ∈ CN. For
all p ∈ N∗, we have:

∃ θ1, . . . , θp ∈ [0, 2π] such that

∥∥∥∥∥∥
p∑
j=1

eiθjβjej

∥∥∥∥∥∥
2

≥
p∑
j=1

|βj |2.(3.7)

b) In particular, let (fj)j∈N be included in a Hilbert space H. For all p ∈ N∗, set α(p) :=
∑p
j=1 ‖fj‖2.

There exist (θj)j∈[[1,p]] ⊂ [0, 2π][[1,p]] such that∥∥∥∥∥∥
p∑
j=1

eiθjfj

∥∥∥∥∥∥
2

≥ α(p).

Proof. a) We prove the result by induction. The case p = 1 is trivial. Suppose that we have (3.7). Set
k :=

∑p
j=1 e

iθjβjej . Let θp+1 ∈ [0, 2π] such that 2<〈eiθp+1βp+1ep+1, k〉 ≥ 0. We have:∥∥∥∥∥∥
p+1∑
j=1

eiθjβjej

∥∥∥∥∥∥
2

= ‖k‖2 + |βp+1|2 + 2<〈eiθp+1βn+1ep+1, k〉 ≥ ‖k‖2 + |βp+1|2.

which concludes the proof.
b) Set fj := βjej such that ‖ej‖ = 1 and apply a). �

3.4. Sharpness. We conclude by discussing further examples.

3.4.1. The closeness of the union is not automatic. In the context of R-limits and C∗-algebra, the union
of the spectra of the localisations at infinity is always closed. A contrario, in the context of Klaus-sparse
graphs, we prove in this section that this union is not always a closed set. Theorem 1.1 is sharp.

To see this let us consider a Klaus-sparse graph G := (V, E ,m) constructed as in Figure 1 where the
localisations at infinity of G are of the following types:

1) Let G∞,0(V∞,0, E∞,0, 1) be a simple 3-star infinite graph. Namely, let V∞,0 := {0} ∪ ({1, 2, 3} × N∗)
and set E∞,0(0, (i, 1)) := 1 and E∞,0((i, j), (i, k)) := 1 if |k − j| = 1, for all i ∈ {1, 2, 3} and j, k ∈ N∗
and set E∞,0(x, y) := 0 otherwise.
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•
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xM
•

GM = Z

Figure 5. Localisations at infinity, counter example for the closeness

2) For each k ∈ N∗, let G∞,k := (V∞,k, E∞,k,m∞,k) be given by

V∞,k = Z, E∞,k(x, y) = EZ(x, y) =

{
1, if |x− y| = 1,
0, elsewhere,

m∞,k(x) :=

{
s(k), if x = 0,
1, elsewhere.

where s(k) is a sequence such that 0 < s(k) < 1 , to be fixed later.
3) Let GM = (Z, EZ, 1).

We refer to Figure 5 for an illustration. We have:

σ(∆∞,0) = [0, 4] ∪
{

9

2

}
, σ(∆G∞,k

) = [0, 4] ∪
{

4

s(k)(2− s(k))

}
.

The former is well-known, e.g, [BrDeEl, Lemma 4.4.5] with a verbatim proof. The latter comes from a
direct computation: the spectrum has an absolute continuous part and a discrete one, constituted by a

unique eigenvalue λk = 4
s(k)(2−s(k)) . Let us choose s(k) := 1−

√
2

2 + 1
2k . When k goes to +∞, (s(k)− 1)2

tends to 1
2 , so that λk tends to 8, which shows that the set

⋃
k∈J σ(∆G∞,k

) is not a closed set. A suitable
sequence sk can be chosen in order to get any limit l for λk , provided 4 < l <∞.

3.4.2. A graph without uniform sub-exponential growth. Take a graph G1 := (V, E , 1)) such that (1.4) is
wrong and G2 := Z. Then take x ∈ V and glue G1 with G2 in a direct way such that x is identified with 0.
We denote by G∞,0 this graph. Take a Klaus-graph constructed as in 1 where the localisation at infinity
is given by G∞,0, see Figure 6 and GM = Z as medium graph. Clearly G has no uniform sub-exponential
growth. The result of [El] cannot apply whereas ours can.

Appendix A. Stability of the essential spectrum

Stability of the essential spectrum is a wild subject. The general idea is that if a perturbation is small
at infinity then the essential remains the same. To establish it, given H and Hpertu being self-adjoint, one
usually proves that (Hpertu + i)−1 − (H + i)−1 is compact to obtain that σess(Hpertu) = σess(H). This is
the Weyl’s theorem, e.g, [RS, Theorem XIII.14]. The difficulty lies in proving the compactness by taking
advantage of the smallness of the perturbation at infinity. We refer [GeGo2] historical references therein
and also for a general abstract method. However, our situation does not fall exactly in the abstract
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Figure 6. An antitree with spheres Sn of size (n + 1)! glued with Z at 0, a counter-
example with non-exponential growth

setting of [GeGo2] and we need some adaptations. We present an extended version of [Gol3, Proposition
5.2] (where m = m̃).

Theorem A.1. Let G := (E ,V,m) be such that D
(

∆
1/2
G

)
= D

(
deg

1/2
G (·)

)
. Let G̃ := (Ẽ , Ṽ, m̃) with

Ṽ := V and such that there is c with Ẽ(x, y) ≤ c E(x, y), for all x, y ∈ V and

lim
|x|→∞

m(x)

m̃(x)
= 1 and lim

|x|,|y|→∞
E(x, y)− Ẽ(x, y) = 0.(A.1)

Then D
(

∆
1/2

G̃

)
= D

(
deg

1/2
G (·)

)
and

σess(∆G) = σess(∆G̃).

We stress that the operators ∆G̃ are not necessarily supposed to be essentially self-adjoint Cc(V) and
that we consider their Friedrichs’s extension.

Proof. First we transport unitarily ∆G̃ from `2(V, m̃) into `2(V,m). Namely, we set ∆̃ :=
√

m̃(·)
m(·)∆G̃

√
m(·)
m̃(·) .

We shall prove that

∆G − ∆̃ ∈ K
(

deg
1/2
G (·),

(
deg

1/2
G (·)

)∗)
,(A.2)

here ∗ denotes the antidual and we have identified `2(V,m) with its antidual.
We have:

∆G − ∆̃ =

(
1−

√
m̃(·)
m(·)

)
∆G +

√
m̃(·)
m(·)

(∆G −∆G̃)

√
m(·)
m̃(·)

+

√
m̃(·)
m(·)

∆G

(
1−

√
m(·)
m̃(·)

)

By (1.3), ∆G is bounded in B
(

deg
1/2
G (·),

(
deg

1/2
G (·)

)∗)
and

(
1−

√
m̃(·)
m(·)

)
∈ K

((
deg

1/2
G (·)

)∗)
by (A.1).

The first term is compact in K
(

deg
1/2
G (·),

(
deg

1/2
G (·)

)∗)
. In a same way, since

√
m̃(·)
m(·) ∈ B

((
deg

1/2
G (·)

)∗)
,

the third term is also compact. We turn to the second one. Given f ∈ Cc(V), we have:

0 ≤ |〈f, (∆G −∆G̃)f〉G | ≤ 〈f, |degG(·)− degG̃(·)|f〉G +
∑
x,y∈V

|f(x)| · |f(y)| ·
∣∣∣∣E(x, y)− m(x)

m̃(x)
Ẽ(x, y)

∣∣∣∣
≤ 〈f, |degG(·)− degG̃(·)|f〉G +

1

2

∑
x,y∈V

|f(x)|2 ·
∣∣∣∣E(x, y)− m(x)

m̃(x)
Ẽ(x, y)

∣∣∣∣
+

1

2

∑
x,y∈V

|f(x)|2 ·
∣∣∣∣E(x, y)− m(y)

m̃(y)
Ẽ(x, y)

∣∣∣∣
≤ 〈f, F (·)f〉G ,(A.3)
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where

F (x) = o(1 + degG(x)), as |x| → ∞.(A.4)

To see this we use (A.1) and the Lebesgue convergence. We justify the domination of the first term by

〈f, |degG(·)− degG̃(·)|f〉G =
∑
x∈V

m(x)|f(x)|2 ·

∣∣∣∣∣∣ 1

m(x)

∑
y∈V
E(x, y)− 1

m̃(x)

∑
y∈V
Ẽ(x, y)

∣∣∣∣∣∣
≤
∑
x∈V

m(x)|f(x)|2 ·

∣∣∣∣∣∣
(

1

m(x)
− 1

m̃(x)

)∑
y∈V
E(x, y)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

m̃(x)

∑
y∈V
E(x, y)− Ẽ(x, y)

∣∣∣∣∣∣


≤
((

1 + sup
t∈V

m(t)

m̃(t)

)
+

(
(1 + c) sup

t∈V

m(t)

m̃(t)

))
〈f, degG(·)f〉

and that of the last term, as follows:

1

2

∑
x,y∈V

|f(x)|2 ·
∣∣∣∣E(x, y)− m(y)

m̃(y)
Ẽ(x, y)

∣∣∣∣ =
1

2

∑
x,y∈V

m(x)|f(x)|2 ·
∣∣∣∣ 1

m(x)
E(x, y)− 1

m(x)

m(y)

m̃(y)
Ẽ(x, y)

∣∣∣∣
≤ 1

2

(
1 + c sup

t∈V

m(t)

m̃(t)

)
〈f, degG(·)f〉.

The treatment of the second term is similar. Thanks to (A.4), we infer that the operator F (·)(1 + deg(·))
is compact in K

(
deg

1/2
G (·),

(
deg

1/2
G (·)

)∗)
. By the min-max principle, e.g., [Gol3, Proposition 2.4], (A.3)

ensures that the second term also belongs to K
(

deg
1/2
G (·),

(
deg

1/2
G (·)

)∗)
. We conclude that (A.2) follows.

We turn to the consequences of (A.2). Using the KLMN’s theorem, e.g. [RS, Theorem X.17], we

obtain that D(∆̃1/2) = D(deg
1/2
G (·)). Going back by unitary transform into `2(V, m̃), we obtain the

result for D(∆
1/2

G̃
). Concerning the equality of the essential spectra, the compactness of ∆G − ∆̃ implies

that (∆G + i)−1 − (∆̃ + i)−1 is a compact operator, e.g., [GeGo2, Condition (AB)] or [Gol3, Proof of
Proposition 5.2]. The Weyl’s Theorem concludes, e.g, [RS, Theorem XIII.14]. �

To apply this theorem we suppose crucially that the form-domain of ∆G is equal to that of degG(·).
Recalling (1.3), we have D

(
deg

1/2
G (·)

)
⊂ D

(
∆

1/2
G

)
in general but the reverse inclusion is not automatic.

We refer to [Gol3] for the beginning of this question and [BoGoKe] for an equivalence. We refer also
to [BoGoKeal] for a magnetic version. In our context, it is enough to suppose the equality of the form-
domains for the localisations at infinity. This is the aim of the next Proposition.

Proposition A.1. Let G := (V, E ,m) be a Klaus-sparse graph defined as in Definition 2.1. Assume that

D
(

∆
1/2
⊕k∈JG∞,k

)
= D

(
deg

1/2
⊕k∈JG∞,k

(·)
)

, for all k ∈ J . Then D
(

∆
1/2
G

)
= D

(
deg

1/2
G (·)

)
.

Proof. Recalling (1.3) it is enough to show that D
(

∆
1/2
G

)
⊂ D

(
deg

1/2
G (·)

)
. By hypothesis and with the

help of the uniform boundedness principle, there is C > 0 such that

〈f, deg⊕k∈JG∞,k
(·)f〉⊕k∈JG∞,k

≤ C(〈f,∆⊕k∈JG∞,k
f〉⊕k∈JG∞,k

+ ‖f‖2⊕k∈JG∞,k
),

for all f ∈ Cc(⊕k∈JV∞,k). Take χ as in Lemma 3.2. For all f ∈ Cc(V), we have

〈f,∆G f〉G = 〈χf,∆G χf〉G + 〈χf,∆G (1− χ)f〉G + 〈(1− χ)f,∆G χf〉G + 〈(1− χ)f,∆G (1− χ)f〉G

≥ 1

C
〈χf, degG(·)χf〉G − ‖χf‖2G − ‖(1− χ)∆G‖ · (2‖f‖G · ‖χf‖G + ‖f‖G · ‖(1− χ)f‖G) .

Recalling that ‖χ‖ = ‖1−χ‖ = 1 and that ‖(1−χ)∆G‖ and ‖(1−χ) degG(·)‖ are finite by (2.1), we infer
there is c such that

〈f, degG(·)f〉G ≤ c(〈f,∆Gf〉G + ‖f‖2G), for all f ∈ Cc(V),

which ensures that D
(

∆
1/2
G

)
⊂ D

(
deg

1/2
G (·)

)
and concludes. �
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[Măn] M. Măntoiu: C∗-algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger

operators, J. Reine Angew. Math. 550 (2002), 211–229.
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