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Pore pressure and phase transitions of water confined in nanopores 

with Non-Local Density Functional Theory 

In this paper, the non-local density functional theory is used in combination with 

SAFT-VR, to investigate the pore pressure behaviour of water confined in 

various nanopores. Due to the efficiency and low computational cost of the 

method, many configurations and thermodynamic conditions are explored. In 

particular, capillary condensation and evaporation of water, their impact on the 

pore pressure, and the effect of surface activation are evaluated. Successive first-

order phase transitions of ultra-confined water monolayer are also highlighted.  

 

Keywords: density functional theory; SAFT-VR; adsorption; phase transitions ; 

nanopores ; confinement. 

 

1. Introduction  

The static and dynamic physical properties of confined water are significantly different 

from their equivalent in bulk phase [1]. As an example, novel phases of ice have been 

discovered recently in carbon nanotubes by Koga and coworkers [2,3] and in other 

structures such as graphene slit pores [4]. Han et al. [5] have shown that water may freeze 

by means of both first-order and continuous phase transitions in hydrophobic nanopores. 

Ruiz-Barragan et al. [4] have already noticed the peculiar behaviour of highly confined 

water and found that its properties drastically change at the level of both H-bonding and 

electronic structure thanks to ab initio molecular dynamics simulations. In a recent review 

dedicated to the molecular simulation studies of water confined in slit geometries, Zangi 

[6] have summarized the major part of the recent works showing that, in that case, water 

stratifies into layers and exhibits an oscillatory stress response according to pore size. 

More recently, Bampoulis et al. [1] have reviewed the current knowledge of the structure 

and the dynamics of water in many confinement situations. It has thus been evidenced 
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that water behaviour is extremely sensitive to the specific confinement conditions. The 

major part of the current knowledge about confined water has been obtained from 

simulations (molecular dynamics, ab initio and molecular simulations) [3–5, 7–11] and 

from some experiments [12–15]. In this paper, we propose an alternative approach by 

using a molecular density functional theory (DFT). Indeed, it has already been 

demonstrated that non-local DFT could be as accurate as molecular simulations to 

estimate the thermodynamic properties of confined model or real fluids [16–21] but with 

two interesting key features: i) a much lower computational cost enabling to explore many 

configurations, ii) a continuum framework that could be coupled with other continuum 

theories, as for instance poromechanics to understand the effect of adsorption on 

macroscopic deformation of porous materials. The efficiency of DFT in modelling 

confined real fluids is controlled on the one hand by the non-local treatment of the 

repulsive and short-range interactions. To that extent, the Modified Fundamental Measure 

Theory [11,12], whose superiority over other treatments is unanimous, is used in the 

present study. On the other hand, DFT must be based on an efficient description of the 

bulk equilibrium properties and thus on the governing molecular interactions of the 

considered fluid. To do so for water, NLDFT is used in this work in combination with the 

SAFT framework with the original parametrization proposed by Clark et al. [24] for 

water. The efficiency of the proposed NLDFT/SAFT-VR coupling in predicting confined 

water density has already been assessed in a previous work [25] by comparison with 

molecular simulations performed with the same water molecular model. The principal 

objective of this study is to pursue the analysis of confined water with this thermodynamic 

model by investigating the pore pressure behaviour of water confined in various 

nanopores. Even if NLDFT is now widely used for simple fluids and especially for the 

characterization of porous materials [26–28], its application to water – or at least to hard 
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associating fluids [29–34] – is scarce because the inhomogeneous free energy related to 

hydrogen bonding is far from easy to build. Solely very recently, Trejos et al. [35] have 

used DFT to study the solvation force of water-like fluids in slit-like pores, which is the 

only work related to the pore pressure induced by adsorption of water within a DFT 

framework. The SAFT/DFT used by Trejos and his coworkers is similar to the one 

proposed here for the terms related to the hard-sphere contributions but are different for 

the attractive ones. They study the influence of parameters such as the range of the square-

well potential or the gas-solid potential depth on the solvation force, in the case of 

supercritical water or liquid water at room temperature. Here, the application of DFT for 

the computation of water pore pressure is essentially focused on subcritical water in order 

to focus on capillary phase transitions. The effect of surface activation is also analysed, 

which constitutes the other innovative point of this paper.   

 

2. Theoretical Section 

2.1. Brief overview of NLDFT-SAFT coupling for inhomogeneous water 

The principal equations concerning the version of the coupled NLDFT/SAFT-VR model 

used in this work to obtain the microstructure of confined water have been detailed 

elsewhere [25]. Therefore, the discussion on this theory will be limited to its most 

significant features. 

In the DFT framework [7,8], the grand thermodynamic potential W of an inhomogeneous 

fluid in the presence of an external potential Vext, in the grand canonical ensemble (µ,V,T) 

is assumed to be a functional of the molecular density !(#⃗) as 

 Ω[!(#⃗)] = ℱ[!(#⃗)] + ∫{./01(#⃗) − 3}(#⃗)5#⃗    (1) 

where ℱ[!(#⃗)] is the Helmholtz free energy of the fluid. 
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The equilibrium density distribution is calculated through the minimization of the grand 

potential by solving the corresponding Euler-Lagrange equation  

 67[8(9⃗)]
68(9⃗) = 6ℱ[8(9⃗)]

68(9⃗) + ./01(#⃗) − 3 = 0    (2) 

As in the bulk SAFT-VR framework, water is considered as one sphere with four identical 

associating sites placed in a tetrahedral geometry [24]. In order to describe this 

inhomogeneous spherical associative monomer, the Helmholtz free energy functional is 

separated in the following contributions  

 ℱ[!(#⃗)] = ℱ;</=>[!(#⃗)] + ℱ?@[!(#⃗)] + ℱAB9[!(#⃗)] + ℱC[!(#⃗)] + ℱ=11[!(#⃗)] +

ℱ=BBDE[!(#⃗)]     (3) 

where ℱ;</=>[!(#⃗)]	is the ideal free energy [17]. The interaction between monomers is 

described by [20]: (i) the hard-sphere contribution ℱ?@[!(#⃗)]	of the Modified 

Fundamental Measure Theory [11,12]; (ii) a Barker-Henderson high-temperature 

perturbation expansion treated in a mean-field approximation where ℱAB9[!(#⃗)]	is the 

first-order short-range contribution, ℱC[!(#⃗)]	the second-order contribution and 

ℱ=11[!(#⃗)]	the classical attractive term in the DFT formalism. 

The associating functional ℱ=BBD[!(#⃗)]	is [6,13] : 

 ℱ=BBD[!(#⃗)] = 4HIJ∫ 5#	KK⃗ LM (#⃗)N(#⃗) OPLQ(#⃗) − R(9⃗)
C + A

CS   (4) 

where LM(#⃗) is one of the weighted densities of the MFMT formalism, N(#⃗) is a 

proportional factor proposed by Yu et al. [32] to extend the bulk association free energy 

to inhomogeneous system. Q(#⃗) is the fraction of not-bonded sites as introduced in 

Wertheim’s theory [14,15] and is computed as proposed by Malheiro et al. [25]. 
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In order to apply the NLDFT formalism, the external potential Vext applied on the fluid 

must be specified. Here, water confined in slit-like pores is considered. Thus, the external 

potential applied to the fluid, due to the presence of the solid, is modeled by the “10-4-3” 

Steele’s potential [39] from both surfaces separated by the distance L : 

 ./01(T) = .BU(T) +	.BU(V − T)      (5) 

with  

    (6) 

where rs is the density of the solid, D is the spacing between two parallel layers of the 

molecules constituting the solid, ssf and esf are the interaction parameters determined by 

the Lorentz-Berthelot rules: ssf=(sss+sff)/2 and esf=(esseff)1/2 where the subscript ss refers to 

the solid while the subscript ff refers to the fluid. 

In order to mimic the case of a surface containing adsorption sites, an integrated potential 

can be added to the previous external potential, following the same philosophy that 

transforms the Lennard-Jones intermolecular potential to the Steele’s one when integrated 

over the carbon planes. Thus, considering a virtual homogenous surface S with a number 

of sites per area rsite placed at a distance zsite inside the pore, the potential fHB resulting from 

this surface is given by 

          (7) 

This potential fHB is the same SW intermolecular potential that describes hydrogen bond 

between water molecules in the fluid: 
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         (8) 

where we have defined sHB, from the site-site bonding volume kHB of SAFT-VR [24], by 

          (9) 

Integration of Equation (7) gives 

 W?I = 			 X−Y!@Z?I[[?I
C − (T − TB;1/)C]						\]	|T − TB;1/ | < [?I

0																																																										\]	|T − TB;1/| > [?I     (10) 

2.2. Pore pressure from NLDFT formalism 

The pore pressure Pf can be obtained from the grand thermodynamic potential [40] as: 

ΠU = 	− A
bc
Od7deSf,	bc,h         (11) 

where A0 is the surface of one wall constituting the pore. 

In a previous work [41], we had demonstrated that in the case of a Steele-type external 

potential, the pore pressure becomes :  

ΠU = 	−∫ !(T) dijkllmldn
e
M (T)5T      (12) 

Here, the extension to activated surfaces modelled with the potential defined in Equation 

(10) is proposed. The pore pressure is, in that case, made of two contributions as : 

ΠU = 	−∫ !(T) dijkllmldn
e
M (T)5T − 2YZ?I!@ ∫ !(T)e

M (T − TB;1/)5T   (13) 
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3. Results and Discussion 

 3.1. Pore pressure of water confined in graphitic micropores 

Let us first consider water confined between two parallel graphitic surfaces separated by 

a distance L from carbon-center to carbon-center. The interaction parameters of the solid 

[42] are sss = 0.34 nm and ess/kB = 28 K. The density of graphite is rs = 114 molecules/m3 

and the spacing between two parallel layers of graphite molecules constituting the wall is 

D = 0.335 nm. The water interaction parameters : s = 0.3303 nm, e/kB = 300.43 K, l = 

1.718, eHB/kB = 1336.9 K and kHB = 0.89369 10-3 nm3 are the ones obtained by Clark et al. 

[24]. At thermodynamic conditions corresponding to bulk liquid water (i.e. here T = 425 

K and P = 0.52 MPa), both the average density and pore pressure oscillate as a function 

of pore width for graphitic slit micropores as shown in Figure 1.  

 

 

Figure 1. Average pore density and pore pressure as a function of pore size for water 

confined in slit graphitic pores at 425 K.  
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The global variation and oscillatory behaviour of the average density of water in slit 

micropores shown in Figure 1 is not surprising. It has already been described for other 

non-polar and polar fluids with molecular simulations [20, 21] and DFT calculations [36]. 

As a consequence of the layered structure, the pore pressure oscillates as a function of the 

distance between the solid walls with a periodicity approximately equal to the molecular 

diameter. It can be positive (effect of swelling due to repulsive forces) or negative (effect 

of shrinkage due to attractive forces) as a function of pore size; i.e. the fluid oscillates 

between alternative stable and instable configurations. The same behaviour has already 

been observed for supercritical methane with NLDFT calculation [41]. As summarised in 

Zangi’s review [6], both experimental, molecular simulations and theoretical works have 

evidenced the oscillatory nature of the solvation forces of water confined between 

molecularly smooth surfaces. The NLDFT/SAFT-VR coupling is able to reproduce such 

an oscillatory behaviour with a period comparable to the one observed with transverse 

dynamic force microscopy [13].  

 

3.2. Capillary condensation, hysteresis and their effect on pore pressure 

Interesting pore pressure behaviour can also be observed when capillary condensation 

occurs. As an example, Figure 2 depicts the capillary condensation and evaporation of 

water in a slit graphitic pore of width L = 0.9 nm at 425 K, and the corresponding pore 

pressure behaviour. As seen in Figure 2, water average pore density increases with 

pressure upon adsorption until a capillary condensation due to confinement occurs at 

nearly half the saturation pressure. After this phase change, density of water saturated 

inside the pore continues increasing until bulk condensation at the bulk saturation 

pressure. The average density behaviour is monotonic and in agreement with molecular 

simulations. It can be well understood by looking at the density profiles plotted in Figure 
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3 for selected pressures. In all cases, the density profiles reveal the stratification of the 

confined water perpendicular to the graphitic walls. The stratified structure and the high 

densities of the water layers are consistent with results obtained with molecular dynamics 

simulations for water/graphene systems [4, 24]. 

 

Figure 2. Average pore density and pore pressure as a function of bulk pressure for 

water confined in a slit graphitic pore of width 0.9 nm at 425 K. Solid lines: adsorption. 

Dashed lines: desorption. Vertical dotted line shows bulk saturation pressure. 

 

Figure 3. Water density profiles corresponding to some configurations of Fig 2.  
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Unlike the density, the pore pressure variation is different before and after the capillary 

phase transition, with negative decreasing values before condensation (suction effect on 

the solid), and positive increasing values after capillary condensation (“pushing” effect 

on the solid walls). This sudden change of pore pressure at condensation is interesting to 

be evaluated as its intensity is directly linked to the capillary forces that can deform the 

porous structure. The same analysis can also be performed during desorption. This time, 

density in the pore is decreasing with decreasing bulk pressure until capillary evaporation. 

This behaviour was already observed in a previous study [25]. The same kind of 

hysteresis is observed for pore pressure, in relation with pore density, but with a change 

in sign corresponding to the transition between repulsive and attractive configurations. 

The computational low-cost of NLDFT/SAFT-VR coupling allows exploring 

many configurations. As observed in Figures 4a to 4d, detailed maps of density and pore 

pressure can be drawn. They allow to notice that the pore pressure behaviour is much 

more complex than the pore density one, passing from negative to positive values 

according to pore size, bulk pressure and adsorption or desorption. This leads us to say 

that, combined with water adsorption measurements, a measurable solvation pressure of 

water could be used as a good probe for pore size distribution determination. 
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Figure 4. Adsorption: average pore density (a) and pore pressure (b) as a function of 

bulk pressure for water confined in slit graphitic micropores at 425 K. Adsorption + 

desorption for the same configurations (c & d): Solid lines: adsorption. Dashed lines: 

desorption.  

 

 3.3. Influence of surface activation on water pore pressure 

The ability of the NLDFT/SAFT-VR coupling used in this work to capture the adsorption 

of water in activated pores thanks to the modified external potential (see Equation (7)) 

has been demonstrated in a previous work [25]. Here, the effect of surface activation on 

pore pressure is illustrated in Figure 5 in a graphitic slit pore of width 1.4 nm, with and 

without activation sites. For this pore width, there is no capillary condensation for water 

when the surfaces correspond to pure graphite. The pore pressure is always negative as 

this pore size can accommodate two distinct layers of water whose global contribution is 

attractive. When the surfaces of the pore are doped with active sites (surface sites density 

of 2 nm-2), capillary condensation occurs at 2.85 bar and is accompanied by an abrupt 

change in pressure sign leading to a repulsive configuration. This means that surface 

activation can have a drastic effect on water pore pressure and thus on the porous material 

deformation. Otherwise, this result shows that, if possible, pore pressure or swelling 

measurement could be used as an indirect measure of surface activation.   
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Figure 5. Average pore density (circles) and pore pressure (squares) as a function of 

bulk pressure for water confined in a slit micropore (L=1.4 nm) at 425 K. Solid lines: 

without activation. Dashed lines: with active sites (surface sites density of 2 nm-2).  

 

 3.4. Successive capillary phase transitions  

NLDFT allows to explore in detail the global phase diagram of confined water with small 

pressure and temperature steps and find interesting behaviours that occur in tight P-T 

ranges. As an example, a part of the phase diagram of water confined in a slit-slit graphitic 

ultramicropore of width 0.66 nm, able to accommodate only one monolayer of water, is 

presented in Figure 6. 
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Figure 6. Average pore density (a) and pore pressure (b) as a function of bulk pressure 

for water confined in a slit graphitic micropore of width 0.66 nm for different 

temperatures.  
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liquid values [24]. The value for the intermediate phase (i.e. between the two transitions) 

is lower, corresponding to a degree of association of approximately 50 %, signing a more 

organised phase, such as an ice-like monolayer as already observed by several studies 

dedicated to the freezing of confined water. As an example, in a recent study, Agrawal et 

al. [7] have measured such freezing transition of water in carbon nanotubes at 

temperatures as high as 420 K with Raman spectroscopy. Klein and E. Kumacheva [46] 

observed with a surface force balance that the water monolayer undergoes an abrupt 

transition “to become solid-like” and Jinesh and Frenken [12] have observed with a high-

resolution friction force microscope, at room temperature, that water confined between a 

tungsten tip and a graphite surface behaves like a solid. Mashl et al. [47] have shown with 

molecular dynamics simulations that water confined into carbon nanotubes under ambient 

conditions undergoes a transition into a state having an ice-like mobility. On the contrary, 

Zangi and Mark [8] have shown with molecular simulations that, for this confinement, 

water does not crystallize but forms a disordered liquid layer, which is also the conclusion 

of Bianco and Franzese [9] who observed a liquid-liquid phase transition ending in a 

critical point in the universality class of the two-dimensional Ising model. 

 To conclude with these capillary transitions, Brovchenko et al. [48] have made 

molecular simulations for TIP4P water confined in various hydrophobic pores. For a slit-

like pore of 0.6 nm width, they have found a critical point at T = 402.5 ± 2.5 K, in perfect 

agreement with the value obtained here with the NLDFT/SAFT-VR model. 

Conclusions 

In this paper, we have used the non-local density functional theory, in combination with 

the SAFT-VR, to compute the pore pressure of water in various nanopores. We have 

shown that NLDFT is a relevant and tractable tool to characterize confinement effects in 

that case as it allows computing many configurations (simple or activated surfaces) at 
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various thermodynamic conditions. It was shown that the pore pressure behavior of water 

in graphitic slit pores is much more complex than pore density, passing from negative to 

positive values according to pore size, bulk pressure and adsorption or desorption. This 

may have significant consequences at the macroscale such as volumetric swelling or 

shrinkage of nanoporous materials upon water adsorption/desorption. The capillary 

condensation and evaporation of water in nanopores and its impact on the pore pressure 

was also evaluated. 

Finally, the NLDFT/SAFT-VR coupling has allowed to highlight successive first-

order phase transitions of ultraconfined water monolayer, in agreement with recent 

experimental and simulations works. 
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