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1 ABSTRACT

2
3 Background: Apathy is one of the most disabling neuropsychiatric symptoms in Parkinson’s 

4 disease (PD) patients, and has a higher prevalence in patients under subthalamic nucleus 

5 deep brain stimulation (STN-DBS). Indeed, despite its effectiveness for alleviating PD motor 

6 symptoms, its neuropsychiatric repercussion has not been fully uncovered yet. Because it 

7 can be alleviated by dopaminergic therapies, especially D2 and D3 dopaminergic receptor 

8 (D2R/D3R) agonists, the commonest explanation proposed for apathy after STN-DBS is a too 

9 strong reduction of dopaminergic treatments. 

10 Objectives: Whether or not STN-DBS can induce apathetic behaviors remains an important 

11 matter of concern. We aimed at unambiguously addressing this question of the motivational 

12 effects of chronic STN-DBS. 

13 Methods: We longitudinally assessed the motivational effects of chronic STN-DBS, by using 

14 innovative wireless micro-stimulators allowing continuous stimulation of STN in freely moving 

15 rats, and a pharmacological therapeutic approach. 

16 Results: We showed for the first time that STN-DBS induces a motivational deficit in naïve 

17 rats and intensifies those existing in a rodent model of PD neuropsychiatric symptoms. As 

18 reported from clinical studies, this loss of motivation was fully reversed by chronic treatment 

19 with pramipexole, a D2R/D3R agonist. 

20 Conclusion: Taken together, these data provide experimental evidence that chronic STN-

21 DBS by itself can induce a loss of motivation, reminiscent of apathy, independently of the 

22 dopaminergic neurodegenerative process or reduction of dopamine replacement therapy, 

23 presumably reflecting a dopaminergic driven deficit. Therefore, our data help to clarify and 

24 reconcile conflicting clinical observations by highlighting some of the mechanisms of the 

25 neuropsychiatric side-effects induced by chronic STN-DBS. 
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1 Introduction

2 Subthalamic nucleus deep brain stimulation (STN-DBS) is a neurosurgical treatment 

3 that efficiently alleviates the motor symptoms of Parkinson’s disease (PD).1 However, a 

4 plethora of psychiatric manifestations and cognitive deficits have been recently identified as 

5 an integral part of the clinical picture of the disease and STN-DBS has been suggested to 

6 influencethese symptoms, for better or for worse.2, 3  Apathy, which can be simplistically 

7 defined as a loss of motivation or a reduction in goal-directed behaviors accompanied by loss 

8 of emotions and flattening of affect,4-6 is the most frequently observed non-motor 

9 complication of PD and deeply contributes to worsen the patient’s quality of life2, 5, 7-12. 

10 Importantly, apathy has been reported to occur, or be exacerbated, in some patients under 

11 STN-DBS, as blunted affects8-10, 13-16. Yet, the clear repercussion of STN-DBS on apathy 

12 remains to be elucidated. 

13 Because dopaminergic replacement therapy (DRT) is reduced during STN-DBS, 

14 apathy in patients under STN-DBS is commonly attributed to the resurgence of pre-existing 

15 symptoms revealed by DRT reduction or withdrawal.17 This assumption is also supported by 

16 1) the alleviation of apathy after STN-DBS by dopaminergic agonists, especially those 

17 targeting the D2 and D3 DA receptors (D2R and D3R )18, 19 and 2) functional imaging studies 

18 in PD patients9, 17 and some preclinical data indicating that at least some forms of apathy are 

19 related to the degenerative process and DA loss.20

20 However, in several studies, the occurrence of apathy in patients under STN-DBS 

21 was not correlated with the reduction of DRT but with DBS-induced changes in glucose 

22 metabolism within the associative and limbic circuitry15, 21, 22 or with incorrect location of 

23 electrodes in the associative or limbic part of the STN.23 Thus, apathy in patients under STN-

24 DBS was also proposed to be a major side-effect of STN-DBS itself.15, 21-23 There is now an 

25 abundance of experimental and clinical studies  demonstrating that 1) the STN is involved in 

26 reward and motivational processes,24-31 2) manipulating the STN can modify motivational 

27 behaviors32-37 and 3) STN-DBS can alleviate dopamine dysregulation syndrome in some PD 
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1 patients14, 38, 39 and be a conceivable approach to treat addictive disorders40-45. Yet, a 

2 possible direct impact of STN-DBS on motivation in PD is not unanimously supported. 

3 This lack of consensus concerning the origin of apathy in patients under STN-DBS is 

4 a critical issue. Whereas the prevalence of apathy before STN-DBS is about 25%13, 46, 47, this 

5 percentage ranges from 8 % to 60 % during STN-DBS14, 17, 21, 48, according to the diagnostic 

6 approach used, whether  established according to cut-off scores on severity scales, 

7 instruments rated by caregivers, or clinical diagnostic criteria47. Thus, it considerably 

8 compromises the benefits of STN-DBS on motor symptoms.5 Investigating this question in 

9 patients is difficult because it is impossible to avoid the impact of the progressive process of 

10 degeneration and reduction of DRT during STN-DBS. In addition, the animal studies that 

11 have sought to explore the limbic and mood effects of STN-DBS may not have combined 

12 appropriate behavioral approaches to assess motivation with bilateral and continuous STN-

13 DBS41, 49, 50 as clinically applied most of the time in studies reporting onapathy5, 15, 19, 21, 51-53.

14 In the present study, we explored a potential effect of bilateral STN-DBS on 

15 motivation, by using a wireless micro-stimulation system enabling chronic continuous 

16 stimulation in rats during several weeks54. We first investigated the consequences of bilateral 

17 chronic STN-DBS in naïve rats and then in a preclinical model of neuropsychiatric symptoms 

18 related to PD that we have developed, using bilateral but partial denervation of the dorsal 

19 striatum (DS) by 6-hydroxydopamine (6-OHDA) lesion of SNc.20, 55 Because D2R and D3R 

20 agonists, such as pramipexole (PPX), can alleviate pre and post STN-DBS apathy in PD 

21 patients18, 19, 56 as well as in preclinical models20, 57 and because we reported that STN-DBS 

22 reduces the level of D2R and D3R in the nucleus accumbens (NAc) of rats,58 our working 

23 hypothesis was that post-STN-DBS apathy may be due to an alteration of DA transmission 

24 induced by STN-DBS itself. Thus, we also investigated the effect of STN-DBS with or without 

25 chronic treatment with PPX.

26
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1 Materials and Methods

2 Animals 

3 Experiments were performed on adult male Sprague-Dawley rats (Janvier, Le Genest-Saint-

4 Isle, France) weighing approximately 350g (8 weeks old) at the time of surgery. Animals 

5 were individually housed under standard laboratory conditions (12 h light/dark cycle, with 

6 lights on at 7 am) with food and water available ad libitum during all the experimental 

7 procedures. Protocols used complied with the European Union 2010 Animal Welfare Act and 

8 the French directive 2010/63.

9

10 Bilateral 6-OHDA lesions, bilateral implantation of electrodes and deep brain 

11 stimulation of subthalamic nucleus

12 See supplemental informations

13

14 Experimental design

15 After self-administration training and both surgeries, rats were subjected to a sequence of 

16 behavioral tests, with one resting day between the different tests (Figure 1A). In each 

17 experiment, all conditions were counter-balanced among the different test chambers and 

18 each apparatus was thoroughly cleaned after each trial or session. 

19 Rats were trained to self-administer a 2.5% sucrose solution before and after SNc lesion and 

20 electrodes implantation (Only the self-administration after electrode implantation is 

21 represented). After 10 to 15 days, stable performances were obtained (less than 20% 

22 performance variation over three consecutive sessions) and STN-DBS was turned ON. 

23 Pharmacological procedures were applied after a new stabilization period: PPX (Sigma, 0.3 

24 mg.kg-1, in 0.9% NaCl, 1 ml/kg) or vehicle was administered (sub-cutaneous) twice a day, 3h 

25 before the beginning of behavioral tests (i.e. injection at 7 am; test at 10 am) for and then at 

26 5 pm, during 20 days. This protocol, known to increase the expression of D2R and D3R,59 

27 was chosen to explore the chronic effects of PPX.60 STN-DBS and PPX treatment were 
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1 uninterrupted until rat euthanasia. After several days of sucrose self-administration, rats were 

2 submitted to a two-bottle choice procedure, as well as to a stepping test and 

3 locomotor/ambulatory activity evaluation in an open area55 (Figure 1A). At the end of the 

4 experiment, rats were euthanized and brains were processed for histological control of lesion 

5 and implantations.

6

7 See supplemental data for full description of behavioral procedures, quantification of the 

8 extent of the striatal DA denervation and control of electrode implantation.

9

10 Data and statistical analysis 

11 Data are shown as means  SEM and were analyzed by one or two-way ANOVAs, repeated 

12 or not as specified in Results. Concerning operant sucrose self-administration, the different 

13 experimental periods (Pre-STN-DBS, STN-DBS and STN-DBS + PPX) were analyzed 

14 independently by distinct repeated measure ANOVAs for figures 2A and 4A. When indicated, 

15 post hoc analyses were carried out with the Student Newman-Keuls procedure. 
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1 Results

2 Histological controls

3 Figure 1B provides the different electrode positions in left and right STN for the 

4 stimulated animals. Figures 1C and D illustrate two examples of the position of an electrode 

5 tip within the STN, stimulated respectively with the lowest (100 μA) and the highest (225 μA) 

6 intensity used in the study. See also supplemental figure 1 for additional examples of STN 

7 stimulated at 100 μA or 225 μA, still unaltered after chronic stimulation.

8 Bilateral lesion of SNc (Figure 1E, percent of TH-IR loss, left SNc: 73  5; right SNc: 

9 74  5) was obtained by 6-OHDA injection. The injection produced an important denervation 

10 of the dorsal striatum in its lateral portion (Figure 1F, left dorsal striatum: 68  5; right dorsal 

11 striatum: 74  6), along its rostro-caudal extent as revealed by decreased tyrosine 

12 hydroxylase immunoreactivity. As the lesion has been shown to specifically affect SNc, 

13 barely impacting VTA (Figure 1G, left VTA: 11  8; right VTA: 20  4; Two way ANOVA, 

14 Structure x Lesion interaction: F1,22 = 7.654, p < .0151), NAc was almost totally preserved 

15 from denervation (Figure 1H, left NAc: 21  3; right NAc: 24  4; Two way ANOVA, Structure 

16 x Lesion interaction: F1,22 = 125.758, p < .001).  

17

18 STN-DBS induces a motivational deficit in normal rats that is reversed by the D2R/D3R 

19 agonist pramipexole

20 Before STN-DBS was switched ON, rats were trained for 10 days in the operant task 

21 (only the last 3 days of training are represented in figure 2A). Groups were formed to have 

22 equivalent performance levels (Figure 2A, Pre STN-DBS period, repeated measure ANOVA, 

23 Session x STN-DBS x PPX interaction, F2,122 = 1.334, p = .2672). From day one of 

24 stimulation, STN-DBS induced a dramatic decrease of about 40% in instrumental responding 

25 for the sucrose solution in both stimulated groups before pharmacological treatment (STN-

26 DBS + Veh and STN-DBS + PPX) as compared with the pre STN-DBS levels (Figure 2A, 

27 STN-DBS period, repeated measure ANOVA, STN-DBS effect: F1,54 = 9.615, p = .0031; 
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1 Figure S2A, two way ANOVA, STN-DBS effect: F1,42 = 10.480, p = .002). PPX completely 

2 rescued the self-administration performances of stimulated rats from the second day of 

3 treatment, without bringing performances superior to baseline or to Control + Veh rat levels. 

4 (Figure 2A, STN-DBS + PPX period, repeated measure ANOVA, STN-DBS x PPX 

5 interaction: F1,58 = 4.658, p = .0351; Session x PPX interaction: F6,348 = 2.412, p = .0269). 

6 Both STN-DBS and PPX effects remained stable until the end of self-administration 

7 experimentation (Figure 2B, two ways ANOVA, STN-DBS x PPX interaction: F1,64 = 7.178, p 

8 = .009). In order to determine whether the decrease of operant performances induced by 

9 STN-DBS was due to impairment in the consummatory or preparatory components of 

10 motivated behaviors, we evaluated the sensitivity to the motivational properties of sucrose 

11 (consummatory behavior) in a two-bottle choice procedure. The preference for the sucrose 

12 solution that was used in the operant self-administration experiment over water was high and 

13 not altered by STN-DBS or PPX (Figure 2C, two way ANOVA, STN-DBS x PPX interaction: 

14 F1,61 = .966, p = .330). Therefore, the self-administration paradigm and the sucrose 

15 preference test indicate that STN-DBS affected the preparatory component of motivated 

16 behaviors during the operant task and that PPX specifically corrected this impairment.

17 In addition, STN-DBS-induced preparatory component deficit and subsequent self-

18 administration deficiency cannot be attributed to motor impairment, because STN-DBS did 

19 not induce any significant locomotor change during the first 20 minutes of the open area test, 

20 corresponding to the exploratory phase when locomotor activity is high, facilitating detection 

21 of motor deficit (Figure 3A, two way ANOVA, 0-20 min: F1,48 = .513; p = .477). Exploration 

22 and locomotor activity then progressively decreased to a basal level during the last 2 periods 

23 (20 to 60 min). Although it did not reach significance, STN-DBS tended to reduce ambulatory 

24 activity during this phase. (Figure 3A, STN-DBS effect, Two way ANOVA, 20-40 min: F1,48 = 

25 3.311, p = .075; 40-60 min: F1,48 = 3.525, p = .067) This effect of STN-DBS is unlikely to 

26 reflect a motor deficit but rather a decrease in general behavioral activity, because 

27 ambulatory speed during this test phase was not changed by the stimulation (Figure 3B, 

28 STN-DBS effect, Two way ANOVA, F1,48 = .196, p = .660). Moreover, fine motor skills of left 
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1 and right limbs assessed using a stepping test were not affected by the stimulation, 

2 confirming the absence of any motor deficit induced by chronic and bilateral STN-DBS 

3 (Figure 3C). As STN-DBS, PPX had no impact on fine motor skills (Figure 3C, two way 

4 ANOVA, STN-DBS x PPX interaction: left to right moves, left limb: F1,55 = .110, p = .742; right 

5 limb F1,55 = .000442, p = .983; right to left moves, left limb: F1,55 = .0135, p = .908; right limb: 

6 F1,55 = .0557, p = .814), but caused a significant increase in locomotor activity in the open 

7 area test (Figure 3A, PPX effect, Two way ANOVA, 20-40 min:  F1,48 = 5.686, p = .021; 40-60 

8 min: F1,48 = 5.047, p = .030). Interestingly, the combined effect of the behavioral hypoactivity 

9 induced by STN-DBS and hyperactivity due to PPX resulted in normalization of the general 

10 activity during the last 2 phases of the open area test (Figure 3A). 

11 Taken together, these results suggest that STN-DBS induced a clear motivational 

12 deficit that was alleviated by the D2R/D3R agonist, reminiscent of apathy in PD.

13

14  STN-DBS exacerbates motivational deficit in a rodent model of PD apathetic 

15 symptoms and affective disorders

16 We sought to confirm whether STN-DBS would also affect motivation in a 

17 pathological context. We used a rodent model of PD that we developed55 and that exhibits 

18 strong motivational deficits, without locomotor alterations. 

19 Before STN-DBS was switched-ON, rats were trained again for 10 days in the 

20 operant task (only the last 3 days of training are represented in figure 4A). All groups 

21 obtained equivalent performance levels (Figure 4A, 3 last days of Pre STN-DBS period, 

22 repeated measure ANOVA, Session x STN-DBS x PPX interaction, F2,32 = 1.088, p = .3490). 

23 As previously demonstrated,55 6-OHDA rats showed a marked and significant decrease in 

24 self-administration of sucrose as compared to non-lesioned animals (Figure S2A, two way 

25 ANOVA, Lesion effect: F1,42 = 26.592, p = < .001; Figure S2B, two way ANOVA, Lesion 

26 effect: F1,50 = 26.368, p = < .001) which was not reversed by PPX treatment alone (Figure 

27 S2B, two way ANOVA, PPX effect: F1,50 = .150, p = .701). Despite this important instrumental 

28 deficit induced by the lesion, STN-DBS was still able to reduce operant behavior by about 
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1 50% from day one of stimulation (Figure 4A, STN-DBS period, repeated measure ANOVA, 

2 STN-DBS effect F1,15 = 4.249, p = .0571), as observed in non-lesioned/control stimulated rats 

3 (Figure S2A, two way ANOVA, STN-DBS effect: F1,42 = 10.48, p = .002 and no STN-DBS x 

4 Lesion interaction: F1,42 = 1,112, p = .298). As for non-lesioned animals, PPX completely 

5 alleviated this STN-DBS-induced deficit from the second day of treatment (STN-DBS + PPX 

6 period, repeated measure ANOVA, STN-DBS x PPX x Session interaction effect F9,108 = 

7 2.712, p = .0069). Both STN-DBS and PPX effects remained stable until the end of the 

8 experiment (Figure 4B, two way ANOVA, STN-DBS x PPX interaction: F1,16 = .826, p = .377). 

9 We also assessed the consummatory components of motivated behaviors, with the two-

10 bottle choice procedure and we found that neither STN-DBS nor PPX modified the 

11 preference for sucrose (Figure 4C, two way ANOVA, STN-DBS x PPX interaction: F1,20 = 

12 .341, p = .567). 

13 PPX or STN-DBS tended to reduce ambulatory activity in the open area test while 

14 when they were combined, on average they promoted a high level of activity but with high 

15 variability (Figure 5A, two way ANOVA, STN-DBS x PPX interaction: F1,14 = 5.759, p = .031). 

16 These effects are likely to reflect changes in behavioral activity rather than alteration of 

17 motors skills per se, first because neither PPX nor STN-DBS affected the ambulatory speed 

18 during the open area test (Figure 5B, Two way ANOVA, STN-DBS x PPX interaction F1,48 = 

19 .214, p = .650) and second, adjustments during the stepping test were not impacted by either 

20 treatment (Figure 5B, two ways ANOVA, STN-DBS x PPX interaction: left to right moves, left 

21 limb: F1,18 = .184, p = .673; right limb: F1,18 = .653, p = .983; right to left moves, left limb: F1,18 

22 = .0017, p = .915; right limb: F1,18 = .764, p = .393).

23 Taken together, these results suggest that STN-DBS exacerbates the loss of 

24 motivation induced by the dopaminergic lesion and reduce behavioral activity, effects that 

25 were alleviated by PPX.

26

27
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1 Discussion
2

3 Combining a relevant in vivo model of neuropsychiatric PD symptoms, chronic 

4 bilateral STN-DBS in awake and freely moving animals and a pharmacological approach, we 

5 provide strong evidence for a direct deleterious effect of STN-DBS on motivation. STN-DBS 

6 induces a significant deficit in motivated behavior, due neither to a reward sensitivity deficit 

7 related to a potential anhedonic effect, nor to motor deficits. This behavioral effect was 

8 completely reversed by the activation of D2R/D3R with PPX, revealing the potential critical 

9 role of DA in this STN-DBS motivational effect. 

10 It is essential to better understand the pathophysiology of neuropsychiatric symptoms of PD 

11 and how they respond to current treatments such as STN-DBS. Here, we tried to be as close 

12 as possible to the clinical situation in PD, especially for the stimulation conditions. While most 

13 preclinical studies have been performed with acute STN-DBS that was applied daily only 

14 during the tasks and experiments (e.g.,41, 49), the novel stimulation system we used allowed 

15 continuous STN-DBS for several days. In addition, we used monopolar stimulation. Indeed, it 

16 is the most widely applied in PD patients1 as well as in studies describing apathy under STN-

17 DBS17, 21, 48, 61-64. Furthermore, a preclinical study in rat has clearly demonstrated that it 

18 reduces tissue damage compared to bipolar stimulation.65 Moreover, although monopolar 

19 stimulation is more likely to affect the surrounding STN fibers than bipolar stimulation, it was 

20 applied at intensities below 225 A to minimize current spreading as previously 

21 demonstrated.66 The motivational dimension of apathy especially concerns hum-drum daily 

22 tasks that are neither challenging nor particularly effortful.4 A sucrose self-administration 

23 procedure with a 2.5 % solution, in a fixed ratio 1 schedule, in non-food-deprived rats, is an 

24 appropriate way to operationalize a simple effort with a relatively moderate rewarding 

25 outcome. This approach has allowed us to demonstrate a clear effect of STN-DBS on 

26 motivated behaviors during an operant task. The decrease of baseline ambulatory activity 

27 detected during the open area test, unrelated to motor impairment, further suggests that the 

28 STN-DBS-induced operant deficit may be considered as a decrease in the maintenance of 
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1 behavioral activity, as observed in apathy.9 While we previously provided strong evidence 

2 that the dopaminergic denervation can account for the loss of motivation in PD, here we 

3 report that STN-DBS by itself could induce or exacerbate this motivational impairment via 

4 DA-driven mechanisms, independent of the hypodopaminergy induced by DRT reduction. 

5 Furthermore, the present study provides a missing link, reconciling apparently contradictory 

6 clinical observations on the origin of post-operative apathy in stimulated PD patients. 

7 The myriad of reported neuropsychiatric side effects of STN-DBS in PD patients3 has 

8 triggered several animal studies to understand their phenomenology. These studies have 

9 demonstrated the possible implication of STN-DBS in PD-related depression49, 67 or potent 

10 effects on impulsive behaviors,68 but few of them tackled the effects on pure motivational 

11 processes. As far as we know, only one report mentions data that could be interpreted as a 

12 transient reduced motivation under STN-DBS.69 However, another study showed no effect of 

13 STN-DBS on operant activity in a fixed-ratio schedule of reinforcement and even described 

14 an increase in performance in obtaining a sucrose pellet during a progressive ratio 

15 schedule.41 Major differences between this previous study and our protocol are likely to 

16 account for these discrepancies. Indeed, Rouaud et al., used acute bipolar stimulation 

17 conditions compared to our chronic monopolar STN-DBS; interestingly, psychiatric side 

18 effects of STN-DBS strongly depend on electrode polarity. For example, acute depressive 

19 states following regular monopolar STN-DBS are greatly reduced by switching to the scarcer 

20 bipolar STN-DBS.70, 71 Moreover, the design of the operant task was different enough to yield 

21 diverging results. In particular, our study avoided food-restriction. Whereas all the studies 

22 having inactivated the STN found an increase in motivation for food in restricted animals, one 

23 study demonstrated that this effect was completely occluded in rats fed ad libitum.37 Finally, 

24 while the conditioned place preference revealed an effect of STN-DBS on the rewarding 

25 properties of sucrose in this study,41 we did not find any modification of this parameter during 

26 the two bottle choice test. 

27 The STN can be functionally and anatomically subdivided into motor, associative and 

28 limbic sub-territories.72-74 Then it is part of the three respective basal ganglia loops.73, 74 In PD 
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1 patients, DBS is tailored to stimulate the motor part of the STN, and so to impact the whole 

2 motor circuitry. However, an inaccurate electrode placement within the STN can engage the 

3 circuitries involving its associative or limbic part rather than the motor one,75 potentially 

4 leading to non-motor side effects,70, 74 apathy in particular. In line with this assumption, a very 

5 recent study succeeded in alleviating post STN-DBS apathy in patients by displacing the 

6 electrode from the limbic STN to the motor part,23 demonstrating that apathy under STN-DBS 

7 could rely on a mechanism caused by the stimulation of the limbic part of the STN. Our data 

8 suggest that the dopaminergic system might be involved in this mechanism, at least in part.

9 In patients, apathy occurring after STN-DBS can be treated by dopaminergic 

10 agonists, including those targeting the D2R and D3R.18, 19 This, and the fact that 

11 methylphenidate can alleviate fatigue76, which is a related and/or confounding symptom of 

12 apathy77, has prompted the hypothesis that a strong hypodopaminergic state revealed by 

13 reduction of DRT, rather than STN-DBS per se, may be responsible for the resurgence of 

14 apathy.13 Using a pharmacological protocol allowing exploration of the chronic effects of PPX 

15 and known to increase D2R and D3R expression,59 we demonstrated that PPX, a D2R/D3R 

16 agonist, fully rescued the motivational deficit induced by STN-DBS in control and lesioned 

17 rats. It should be noted that this pharmacological protocol was not able to reverse the loss of 

18 motivation due to the dopaminergic lesion, indicating that even if both the lesion and STN-

19 DBS effects on motivation could be driven by dopaminergic mechanisms, these could be 

20 significantly different. This suggests that STN-DBS may impact on behavior via its own 

21 effects on DA transmission, which is consistent with previous animal model studies showing 

22 that STN-DBS modulates DA system.58, 78-82 The three so-called basal ganglia limbic, 

23 associative and motor loops including the STN are not completely segregated; the different 

24 structures involved are functionally interconnected83 by an ascending striato-midbrain-striatal 

25 spiraling circuitry.84 Moreover, beyond this complex organization, which has yet to be 

26 demonstrated in rats, SNc and VTA are overlapping structures85 and the whole striatum is 

27 characterized by a dense local microcircuitry86, 87 which could also contribute to this 

28 interconnection. Thus, STN-DBS may modulate DA transmission within the basal ganglia 
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1 and, through these subcortical interactions, disrupt the complex chain of events that 

2 transforms intentions into adapted action, and thereby influence non-motor functions.6, 9 

3 Nonetheless, we cannot exclude a potential involvement of the structures surrounding the 

4 STN . It is unlikely that the electric field emanating from the electrode is restrained to the 

5 STN borders and DBS of  some of these structures in the vicinity of the STN, such as the 

6 lateral hypothalamus, can also modulate DA transmission88. We previously found that short 

7 STN-DBS can decrease the level of D2R and D3R within the NAc.58 Given the critical 

8 implication of the D2R and D3R in motivational processes,89-92 our data suggest a causal 

9 involvement of these receptors in the motivational deficit that we observed. In addition, D2R 

10 and D3R are expressed in several other non-motor structures impacted by PPX treatment93 

11 and  some of them are part of down-stream circuits with metabolic activities  known to be 

12 affected by STN-DBS.22, 94 Thus, beyond the NAc, both STN-DBS and PPX effects could 

13 differentially engage some common system responsible for behavior changes highlighted in 

14 this study. However, dopaminergic agonists do not always efficiently alleviate apathy under 

15 STN-DBS22. Non dopaminergic lesions frequently occur during the course of disease95, 96, 

16 and serotonin for example is proposed to participate in PD apathy97. In rats, STN-DBS has 

17 been shown to decrease serotonin release promoting depressive like behavior. 49, 98 Thus, 

18 we cannot completely exclude the implication of other neurotransmitters in the loss of 

19 motivation observed in patients or in this study.

20 As previously reported,99 PPX at 0.3 mg/kg induces hyperlocomotricity in the open 

21 area test in control rats. This hyperactivity is unlikely to be responsible for the reversion of 

22 the self-administration deficit observed in PPX-treated STN-DBS rats since first, the level of 

23 non-stimulated treated rats remains similar to that of control rats, and second, PPX induced 

24 hypoactivity in non-stimulated lesioned rats whereas it also reversed the operant deficit 

25 induced by STN-DBS in those lesioned rats. This hypoactivity promoted by PPX in lesioned 

26 rats has previously been reported during the 120 minutes post injection window in control 

27 animals99 and could rely on a sedating effect mediated by the presynaptic D3R100. We chose 

28 to separate the behavioral test from injection by 3h to avoid this effect. Since we previously 
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1 demonstrated that the 6-OHDA lesion modifies D3R expression within the dorsolateral part of 

2 the striatum101,  local imbalance between pre and post synaptic D2R and/or D3R expression 

3 or activity102 could be responsible for DA transmission blunting, thus promoting this 

4 hypoactivity. Very intriguingly, in some rats of both the control and lesioned groups, the 

5 combination of STN-DBS and PPX induced a very high- level of activity that could emphasize 

6 the importance of individual traits, as demonstrated for the expression or severity of impulse 

7 control disorder in PD103-105 or compulsive drug taking.106 Thus, depending on complex 

8 interactions with dopaminergic treatments and according to pre-existing individual traits, 

9 STN-DBS could also lead to the development of hyperdopaminergic states reminiscent of 

10 hypomanic behaviors also observed in PD patients under STN-DBS.62, 74, 107, 108

11 Altogether, these data bring coherence to clinical observations that seemed 

12 contradictory until today: apathy in PD patients, at least its motivational dimension, could be 

13 induced by STN-DBS itself and attenuated by activation of D2R/D3R, regardless of (or in 

14 addition to) DRT reduction and the DA-mediated hypofunction. More detailed molecular 

15 analysis or techniques such as optogenetics could enable us to clarify the structures or sub-

16 territories involved in this STN-DBS induced DA-driven loss of motivation. While it is beyond 

17 the scope of the present study, it would be also of interest to further investigate the effect of 

18 STN-DBS on the emotional and affective component of apathy, as STN has been proposed 

19 to be involved in such processes109.

20 STN-DBS has been shown to prevent cocaine or heroin re-escalation intake in rats40, 

21 44 and to reduce dopamine dysregulation syndrome or addictive behavior such as 

22 pathological gambling.110-114 Thus, STN-DBS is currently explored as an effective treatment 

23 for addiction.45, 115 However, our results suggest that this apparent beneficial effect could be 

24 underlain by a general motivational deficit. In rats, inhibiting the STN can abolish affective 

25 responses for salient reward109 and STN-DBS can induce depression-like behaviors.49, 67, 116 

26 Furthermore, PD patients for whom addictive behavior was reduced under STN-DBS can 

27 also co-express apathy.14, 110 These convergent facts are raising the question of the nature of 

28 this apparent “anti-addictive” effect of STN-DBS. This neurosurgical treatment could rather 
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1 induce a state of negative affect, comparable to a certain extent to the blunted dopaminergic 

2 transmission observed during prolonged drug consumption117-119 , increasing the risk of 

3 addictive behavior resurgence in the same way as drugs of abuse withdrawal syndrome 

4 promotes relapse.120 

5 Thus, this new insight calls for reconsideration of the role of STN-DBS on mood in PD 

6 to improve patient care and quality of life, and more broadly, to rethink the use of STN-DBS 

7 in psychiatry.

8

9

10

11
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1
2
3
4
5 Figures legends
6

7 FIGURE 1: Experimental design and electrode implantation.

8 (A) Time course of the study, groups of animals and histological controls

9 After learning the sucrose self-administration task, lesion and implantation of electrodes, rats 

10 were divided into a stimulated and a non-stimulated group according to their performances, 

11 to constitute initially equal performance groups. Then, after 4 days of subthalamic nucleus 

12 deep brain stimulation (STN-DBS) with further sucrose self-administration, pramipexole 

13 (PPX) or vehicle (Veh) was injected twice a day into half of the stimulated (Non lesioned rats: 

14 STN-DBS + PPX, n = 8; STN-DBS + Veh, n = 13; lesioned rats: Lesion + STN-DBS + PPX, n 

15 = 5; Lesion + STN-DBS + Veh, n = 5) and non-stimulated rats (Control + PPX, n = 22; 

16 Control + Veh, n = 22; Lesioned rats: Lesion + PPX, n = 4; Lesion + Veh, n = 6) for 20 days. 

17 During this time, sucrose self-administration was continued for several days and then 

18 followed successively by other behavioral tests: the two-bottle choice test, the stepping test 

19 and finally the open area test. (B) Positions of bilateral DBS electrode tips in left and right 

20 STNs of stimulated animals in representative coronal sections (anteroposterior relative to 

21 Bregma: -3.60 mm; -3.80 mm; -4.16 mm), reproduced from Paxinos and Watson.121 Each bar 

22 represents the placement of one electrode. (C) and (D) Example of electrode trace within the 

23 left STN stimulated at 100 μA (C) or 225 μA (D), after Cresyl violet staining. Scale bar: 1 mm. 

24 IC, Internal Capsule; LH, Lateral Hypothalamus; ZI, Zona Incerta.

25  (E) and (F) Representative photomicrographs of coronal sections stained for tyrosine 

26 hydroxylase (TH) in striatal (bottom, 1.6 mm to bregma) and mesencephalic (top, -5.6 mm to 

27 bregma) regions from naïve (top) and lesioned (bottom) rats.121 Scale bar = 1 mm. (G, H) 

28 Quantification of TH ImmunoReactivity (IR) loss in the midbrain (G) and the striatum (H), 

29 expressed as the percentage difference compared to the mean value obtained for sham 

30 operated animals. The SNc bilateral lesion produced an important but partial denervation of 
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1 the dorsal striatum. The ventral tegmental area and the nucleus accumbens were preserved 

2 from the lesion. Control + Veh: n = 22; Lesion: n = 20. Control + Veh versus Lesion: *p < .05; 

3 ***p < .001. DS: dorsal striatum; NAc: nucleus accumbens; SNc: substantia nigra compacta, 

4 VTA: ventral tegmental area. 

5

6 FIGURE 2: Subthalamic nucleus deep brain stimulation (STN-DBS) induces a deficit of 

7 preparatory behaviors in 2.5% sucrose self-administration that is rescued by pramipexole 

8 (PPX). (A) Time course of the sucrose self-administration experiment. STN-DBS induced a 

9 significant decrease of the number of sucrose deliveries. PPX induced a total reversion of 

10 this deficit. (B) Mean sucrose deliveries over the last 3 days of experiment. (C) STN-DBS 

11 and PPX did not alter the preference for sucrose. 

12 Control + Veh: n = 22; Control + PPX: n = 22; STN-DBS + Veh: n = 13; STN-DBS + PPX: n = 

13 8. Data shown as means  SEM. Control + Veh versus STN-DBS + Veh: *p < .05; **p < .01; 

14 STN-DBS + Veh versus STN-DBS + PPX: #p < .05; ##p < .01. 

15

16 FIGURE 3: Subthalamic nucleus deep brain stimulation (STN-DBS) and pramipexole (PPX) 

17 promote hypo and hyper locomotor activity respectively but do not impair motor abilities. (A) 

18 Total distance travelled during a 1h open area test. STN-DBS induced a non-significant 

19 tendency towards decreased basal locomotor activity that was counteracted by treatment 

20 with PPX. In control rats, PPX induced a dramatic increase in the distance traveled. (B) STN-

21 DBS and PPX did not change the mean ambulatory speed during the last 2 periods of the 

22 open area test. (C) STN-DBS and/or PPX did not alter the fine motor skills of front limbs as 

23 demonstrated by adjusting steps in the course of the stepping test. Control + Veh: n = 22; 

24 Control + PPX: n = 22; STN-DBS + Veh: n = 6; STN-DBS + PPX: n = 8. Data shown as 

25 means  SEM. Control + PPX versus Control + Veh: *p < .05.

26
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1 FIGURE 4: STN-DBS exacerbates the deficit of preparatory behaviors of the existing 

2 motivational deficit in a rodent model of the neuropsychiatric symptoms of PD. (A) Time 

3 course of the sucrose self-administration experiment. STN-DBS decreased the number of 

4 sucrose deliveries. PPX induced a complete reversion of this deficit. (B) Mean sucrose 

5 deliveries over the last 5 days of experiment. (C) STN-DBS and PPX did not alter the 

6 preference for sucrose in 6-OHDA rats. Lesion + Veh: n = 6; Lesion + PPX: n = 4; Lesion + 

7 STN-DBS + Veh: n = 5; Lesion + STN-DBS + PPX: n = 5. Data shown as means  SEM. 

8 Lesion + Veh versus Lesion + STN-DBS + Veh: *p < .05; Lesion + STN-DBS + Veh versus 

9 Lesion + STN-DBS + PPX: #p < .05.

10

11 FIGURE 5: Subthalamic nucleus deep brain stimulation (STN-DBS) or pramipexole (PPX) 

12 individually promote hypoactivity but do not impair motor abilities. (A) Total distance traveled 

13 during a 1h open area test. STN-DBS induced a non-significant tendency towards decreased 

14 basal locomotor activity. In non-stimulated rats, PPX induced a dramatic decrease in the 

15 distance traveled. The combination of both treatments increased activity. (B) STN-DBS and 

16 PPX did not change the mean ambulatory speed during the open area test. (C) STN-DBS 

17 and/or PPX did not alter the fine motor skills of front limbs as demonstrated by adjusting 

18 steps in the course of the stepping test. Lesion + Veh: n = 6; Lesion + PPX: n = 4; Lesion + 

19 STN-DBS + Veh: n = 5; Lesion + STN-DBS + PPX: n = 5. Data shown as means  SEM. 

20 Lesion + PPX versus Lesion + STN-DBS + PPX: *p < .05.
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1 ABSTRACT

2
3 Background: Apathy is one of the most disabling neuropsychiatric symptoms in Parkinson’s 

4 disease (PD) patients, and has a higher prevalence in patients under subthalamic nucleus 

5 deep brain stimulation (STN-DBS). Indeed, despite its effectiveness for alleviating PD motor 

6 symptoms, its neuropsychiatric repercussion has not been fully uncovered yet. Because it 

7 can be alleviated by dopaminergic therapies, especially D2 and D3 dopaminergic receptor 

8 (D2R/D3R) agonists, the commonest explanation proposed for apathy after STN-DBS is a too 

9 strong reduction of dopaminergic treatments. 

10 Objectives: Whether or not STN-DBS can induce apathetic behaviors remains an important 

11 matter of concern. We aimed at unambiguously addressing this question of the motivational 

12 effects of chronic STN-DBS. 

13 Methods: We longitudinally assessed the motivational effects of chronic STN-DBS, by using 

14 innovative wireless micro-stimulators allowing continuous stimulation of STN in freely moving 

15 rats, and a pharmacological therapeutic approach. 

16 Results: We showed for the first time that STN-DBS induces a motivational deficit in naïve 

17 rats and intensifies those existing in a rodent model of PD neuropsychiatric symptoms. As 

18 reported from clinical studies, this loss of motivation was fully reversed by chronic treatment 

19 with pramipexole, a D2R/D3R agonist. 

20 Conclusion: Taken together, these data provide experimental evidence that chronic STN-

21 DBS by itself can induce a loss of motivation, reminiscent of apathy, independently of the 

22 dopaminergic neurodegenerative process or reduction of dopamine replacement therapy, 

23 presumably reflecting a dopaminergic driven deficit. Therefore, our data help to clarify and 

24 reconcile conflicting clinical observations by highlighting some of the mechanisms of the 

25 neuropsychiatric side-effects induced by chronic STN-DBS. 
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1 Introduction

2 Subthalamic nucleus deep brain stimulation (STN-DBS) is a neurosurgical treatment 

3 that efficiently alleviates the motor symptoms of Parkinson’s disease (PD).1 However, a 

4 plethora of psychiatric manifestations and cognitive deficits have been recently identified as 

5 an integral part of the clinical picture of the disease and STN-DBS has been suggested to 

6 influencethese symptoms, for better or for worse.2, 3  Apathy, which can be simplistically 

7 defined as a loss of motivation or a reduction in goal-directed behaviors accompanied by loss 

8 of emotions and flattening of affect,4-6 is the most frequently observed non-motor 

9 complication of PD and deeply contributes to worsen the patient’s quality of life2, 5, 7-12. 

10 Importantly, apathy has been reported to occur, or be exacerbated, in some patients under 

11 STN-DBS, as blunted affects8-10, 13-16. Yet, the clear repercussion of STN-DBS on apathy 

12 remains to be elucidated. 

13 Because dopaminergic replacement therapy (DRT) is reduced during STN-DBS, 

14 apathy in patients under STN-DBS is commonly attributed to the resurgence of pre-existing 

15 symptoms revealed by DRT reduction or withdrawal.17 This assumption is also supported by 

16 1) the alleviation of apathy after STN-DBS by dopaminergic agonists, especially those 

17 targeting the D2 and D3 DA receptors (D2R and D3R )18, 19 and 2) functional imaging studies 

18 in PD patients9, 17 and some preclinical data indicating that at least some forms of apathy are 

19 related to the degenerative process and DA loss.20

20 However, in several studies, the occurrence of apathy in patients under STN-DBS 

21 was not correlated with the reduction of DRT but with DBS-induced changes in glucose 

22 metabolism within the associative and limbic circuitry15, 21, 22 or with incorrect location of 

23 electrodes in the associative or limbic part of the STN.23 Thus, apathy in patients under STN-

24 DBS was also proposed to be a major side-effect of STN-DBS itself.15, 21-23 There is now an 

25 abundance of experimental and clinical studies  demonstrating that 1) the STN is involved in 

26 reward and motivational processes,24-31 2) manipulating the STN can modify motivational 

27 behaviors32-37 and 3) STN-DBS can alleviate dopamine dysregulation syndrome in some PD 
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1 patients14, 38, 39 and be a conceivable approach to treat addictive disorders40-45. Yet, a 

2 possible direct impact of STN-DBS on motivation in PD is not unanimously supported. 

3 This lack of consensus concerning the origin of apathy in patients under STN-DBS is 

4 a critical issue. Whereas the prevalence of apathy before STN-DBS is about 25%13, 46, 47, this 

5 percentage ranges from 8 % to 60 % during STN-DBS14, 17, 21, 48, according to the diagnostic 

6 approach used, whether  established according to cut-off scores on severity scales, 

7 instruments rated by caregivers, or clinical diagnostic criteria47. Thus, it considerably 

8 compromises the benefits of STN-DBS on motor symptoms.5 Investigating this question in 

9 patients is difficult because it is impossible to avoid the impact of the progressive process of 

10 degeneration and reduction of DRT during STN-DBS. In addition, the animal studies that 

11 have sought to explore the limbic and mood effects of STN-DBS may not have combined 

12 appropriate behavioral approaches to assess motivation with bilateral and continuous STN-

13 DBS41, 49, 50 as clinically applied most of the time in studies reporting onapathy5, 15, 19, 21, 51-53.

14 In the present study, we explored a potential effect of bilateral STN-DBS on 

15 motivation, by using a wireless micro-stimulation system enabling chronic continuous 

16 stimulation in rats during several weeks54. We first investigated the consequences of bilateral 

17 chronic STN-DBS in naïve rats and then in a preclinical model of neuropsychiatric symptoms 

18 related to PD that we have developed, using bilateral but partial denervation of the dorsal 

19 striatum (DS) by 6-hydroxydopamine (6-OHDA) lesion of SNc.20, 55 Because D2R and D3R 

20 agonists, such as pramipexole (PPX), can alleviate pre and post STN-DBS apathy in PD 

21 patients18, 19, 56 as well as in preclinical models20, 57 and because we reported that STN-DBS 

22 reduces the level of D2R and D3R in the nucleus accumbens (NAc) of rats,58 our working 

23 hypothesis was that post-STN-DBS apathy may be due to an alteration of DA transmission 

24 induced by STN-DBS itself. Thus, we also investigated the effect of STN-DBS with or without 

25 chronic treatment with PPX.

26
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1 Materials and Methods

2 Animals 

3 Experiments were performed on adult male Sprague-Dawley rats (Janvier, Le Genest-Saint-

4 Isle, France) weighing approximately 350g (8 weeks old) at the time of surgery. Animals 

5 were individually housed under standard laboratory conditions (12 h light/dark cycle, with 

6 lights on at 7 am) with food and water available ad libitum during all the experimental 

7 procedures. Protocols used complied with the European Union 2010 Animal Welfare Act and 

8 the French directive 2010/63.

9

10 Bilateral 6-OHDA lesions, bilateral implantation of electrodes and deep brain 

11 stimulation of subthalamic nucleus

12 See supplemental informations

13

14 Experimental design

15 After self-administration training and both surgeries, rats were subjected to a sequence of 

16 behavioral tests, with one resting day between the different tests (Figure 1A). In each 

17 experiment, all conditions were counter-balanced among the different test chambers and 

18 each apparatus was thoroughly cleaned after each trial or session. 

19 Rats were trained to self-administer a 2.5% sucrose solution before and after SNc lesion and 

20 electrodes implantation (Only the self-administration after electrode implantation is 

21 represented). After 10 to 15 days, stable performances were obtained (less than 20% 

22 performance variation over three consecutive sessions) and STN-DBS was turned ON. 

23 Pharmacological procedures were applied after a new stabilization period: PPX (Sigma, 0.3 

24 mg.kg-1, in 0.9% NaCl, 1 ml/kg) or vehicle was administered (sub-cutaneous) twice a day, 3h 

25 before the beginning of behavioral tests (i.e. injection at 7 am; test at 10 am) for and then at 

26 5 pm, during 20 days. This protocol, known to increase the expression of D2R and D3R,59 

27 was chosen to explore the chronic effects of PPX.60 STN-DBS and PPX treatment were 
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1 uninterrupted until rat euthanasia. After several days of sucrose self-administration, rats were 

2 submitted to a two-bottle choice procedure, as well as to a stepping test and 

3 locomotor/ambulatory activity evaluation in an open area55 (Figure 1A). At the end of the 

4 experiment, rats were euthanized and brains were processed for histological control of lesion 

5 and implantations.

6

7 See supplemental data for full description of behavioral procedures, quantification of the 

8 extent of the striatal DA denervation and control of electrode implantation.

9

10 Data and statistical analysis 

11 Data are shown as means  SEM and were analyzed by one or two-way ANOVAs, repeated 

12 or not as specified in Results. Concerning operant sucrose self-administration, the different 

13 experimental periods (Pre-STN-DBS, STN-DBS and STN-DBS + PPX) were analyzed 

14 independently by distinct repeated measure ANOVAs for figures 2A and 4A. When indicated, 

15 post hoc analyses were carried out with the Student Newman-Keuls procedure. 
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1 Results

2 Histological controls

3 Figure 1B provides the different electrode positions in left and right STN for the 

4 stimulated animals. Figures 1C and D illustrate two examples of the position of an electrode 

5 tip within the STN, stimulated respectively with the lowest (100 μA) and the highest (225 μA) 

6 intensity used in the study. See also supplemental figure 1 for additional examples of STN 

7 stimulated at 100 μA or 225 μA, still unaltered after chronic stimulation.

8 Bilateral lesion of SNc (Figure 1E, percent of TH-IR loss, left SNc: 73  5; right SNc: 

9 74  5) was obtained by 6-OHDA injection. The injection produced an important denervation 

10 of the dorsal striatum in its lateral portion (Figure 1F, left dorsal striatum: 68  5; right dorsal 

11 striatum: 74  6), along its rostro-caudal extent as revealed by decreased tyrosine 

12 hydroxylase immunoreactivity. As the lesion has been shown to specifically affect SNc, 

13 barely impacting VTA (Figure 1G, left VTA: 11  8; right VTA: 20  4; Two way ANOVA, 

14 Structure x Lesion interaction: F1,22 = 7.654, p < .0151), NAc was almost totally preserved 

15 from denervation (Figure 1H, left NAc: 21  3; right NAc: 24  4; Two way ANOVA, Structure 

16 x Lesion interaction: F1,22 = 125.758, p < .001).  

17

18 STN-DBS induces a motivational deficit in normal rats that is reversed by the D2R/D3R 

19 agonist pramipexole

20 Before STN-DBS was switched ON, rats were trained for 10 days in the operant task 

21 (only the last 3 days of training are represented in figure 2A). Groups were formed to have 

22 equivalent performance levels (Figure 2A, Pre STN-DBS period, repeated measure ANOVA, 

23 Session x STN-DBS x PPX interaction, F2,122 = 1.334, p = .2672). From day one of 

24 stimulation, STN-DBS induced a dramatic decrease of about 40% in instrumental responding 

25 for the sucrose solution in both stimulated groups before pharmacological treatment (STN-

26 DBS + Veh and STN-DBS + PPX) as compared with the pre STN-DBS levels (Figure 2A, 

27 STN-DBS period, repeated measure ANOVA, STN-DBS effect: F1,54 = 9.615, p = .0031; 
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1 Figure S2A, two way ANOVA, STN-DBS effect: F1,42 = 10.480, p = .002). PPX completely 

2 rescued the self-administration performances of stimulated rats from the second day of 

3 treatment, without bringing performances superior to baseline or to Control + Veh rat levels. 

4 (Figure 2A, STN-DBS + PPX period, repeated measure ANOVA, STN-DBS x PPX 

5 interaction: F1,58 = 4.658, p = .0351; Session x PPX interaction: F6,348 = 2.412, p = .0269). 

6 Both STN-DBS and PPX effects remained stable until the end of self-administration 

7 experimentation (Figure 2B, two ways ANOVA, STN-DBS x PPX interaction: F1,64 = 7.178, p 

8 = .009). In order to determine whether the decrease of operant performances induced by 

9 STN-DBS was due to impairment in the consummatory or preparatory components of 

10 motivated behaviors, we evaluated the sensitivity to the motivational properties of sucrose 

11 (consummatory behavior) in a two-bottle choice procedure. The preference for the sucrose 

12 solution that was used in the operant self-administration experiment over water was high and 

13 not altered by STN-DBS or PPX (Figure 2C, two way ANOVA, STN-DBS x PPX interaction: 

14 F1,61 = .966, p = .330). Therefore, the self-administration paradigm and the sucrose 

15 preference test indicate that STN-DBS affected the preparatory component of motivated 

16 behaviors during the operant task and that PPX specifically corrected this impairment.

17 In addition, STN-DBS-induced preparatory component deficit and subsequent self-

18 administration deficiency cannot be attributed to motor impairment, because STN-DBS did 

19 not induce any significant locomotor change during the first 20 minutes of the open area test, 

20 corresponding to the exploratory phase when locomotor activity is high, facilitating detection 

21 of motor deficit (Figure 3A, two way ANOVA, 0-20 min: F1,48 = .513; p = .477). Exploration 

22 and locomotor activity then progressively decreased to a basal level during the last 2 periods 

23 (20 to 60 min). Although it did not reach significance, STN-DBS tended to reduce ambulatory 

24 activity during this phase. (Figure 3A, STN-DBS effect, Two way ANOVA, 20-40 min: F1,48 = 

25 3.311, p = .075; 40-60 min: F1,48 = 3.525, p = .067) This effect of STN-DBS is unlikely to 

26 reflect a motor deficit but rather a decrease in general behavioral activity, because 

27 ambulatory speed during this test phase was not changed by the stimulation (Figure 3B, 

28 STN-DBS effect, Two way ANOVA, F1,48 = .196, p = .660). Moreover, fine motor skills of left 
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1 and right limbs assessed using a stepping test were not affected by the stimulation, 

2 confirming the absence of any motor deficit induced by chronic and bilateral STN-DBS 

3 (Figure 3C). As STN-DBS, PPX had no impact on fine motor skills (Figure 3C, two way 

4 ANOVA, STN-DBS x PPX interaction: left to right moves, left limb: F1,55 = .110, p = .742; right 

5 limb F1,55 = .000442, p = .983; right to left moves, left limb: F1,55 = .0135, p = .908; right limb: 

6 F1,55 = .0557, p = .814), but caused a significant increase in locomotor activity in the open 

7 area test (Figure 3A, PPX effect, Two way ANOVA, 20-40 min:  F1,48 = 5.686, p = .021; 40-60 

8 min: F1,48 = 5.047, p = .030). Interestingly, the combined effect of the behavioral hypoactivity 

9 induced by STN-DBS and hyperactivity due to PPX resulted in normalization of the general 

10 activity during the last 2 phases of the open area test (Figure 3A). 

11 Taken together, these results suggest that STN-DBS induced a clear motivational 

12 deficit that was alleviated by the D2R/D3R agonist, reminiscent of apathy in PD.

13

14  STN-DBS exacerbates motivational deficit in a rodent model of PD apathetic 

15 symptoms and affective disorders

16 We sought to confirm whether STN-DBS would also affect motivation in a 

17 pathological context. We used a rodent model of PD that we developed55 and that exhibits 

18 strong motivational deficits, without locomotor alterations. 

19 Before STN-DBS was switched-ON, rats were trained again for 10 days in the 

20 operant task (only the last 3 days of training are represented in figure 4A). All groups 

21 obtained equivalent performance levels (Figure 4A, 3 last days of Pre STN-DBS period, 

22 repeated measure ANOVA, Session x STN-DBS x PPX interaction, F2,32 = 1.088, p = .3490). 

23 As previously demonstrated,55 6-OHDA rats showed a marked and significant decrease in 

24 self-administration of sucrose as compared to non-lesioned animals (Figure S2A, two way 

25 ANOVA, Lesion effect: F1,42 = 26.592, p = < .001; Figure S2B, two way ANOVA, Lesion 

26 effect: F1,50 = 26.368, p = < .001) which was not reversed by PPX treatment alone (Figure 

27 S2B, two way ANOVA, PPX effect: F1,50 = .150, p = .701). Despite this important instrumental 

28 deficit induced by the lesion, STN-DBS was still able to reduce operant behavior by about 
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1 50% from day one of stimulation (Figure 4A, STN-DBS period, repeated measure ANOVA, 

2 STN-DBS effect F1,15 = 4.249, p = .0571), as observed in non-lesioned/control stimulated rats 

3 (Figure S2A, two way ANOVA, STN-DBS effect: F1,42 = 10.48, p = .002 and no STN-DBS x 

4 Lesion interaction: F1,42 = 1,112, p = .298). As for non-lesioned animals, PPX completely 

5 alleviated this STN-DBS-induced deficit from the second day of treatment (STN-DBS + PPX 

6 period, repeated measure ANOVA, STN-DBS x PPX x Session interaction effect F9,108 = 

7 2.712, p = .0069). Both STN-DBS and PPX effects remained stable until the end of the 

8 experiment (Figure 4B, two way ANOVA, STN-DBS x PPX interaction: F1,16 = .826, p = .377). 

9 We also assessed the consummatory components of motivated behaviors, with the two-

10 bottle choice procedure and we found that neither STN-DBS nor PPX modified the 

11 preference for sucrose (Figure 4C, two way ANOVA, STN-DBS x PPX interaction: F1,20 = 

12 .341, p = .567). 

13 PPX or STN-DBS tended to reduce ambulatory activity in the open area test while 

14 when they were combined, on average they promoted a high level of activity but with high 

15 variability (Figure 5A, two way ANOVA, STN-DBS x PPX interaction: F1,14 = 5.759, p = .031). 

16 These effects are likely to reflect changes in behavioral activity rather than alteration of 

17 motors skills per se, first because neither PPX nor STN-DBS affected the ambulatory speed 

18 during the open area test (Figure 5B, Two way ANOVA, STN-DBS x PPX interaction F1,48 = 

19 .214, p = .650) and second, adjustments during the stepping test were not impacted by either 

20 treatment (Figure 5B, two ways ANOVA, STN-DBS x PPX interaction: left to right moves, left 

21 limb: F1,18 = .184, p = .673; right limb: F1,18 = .653, p = .983; right to left moves, left limb: F1,18 

22 = .0017, p = .915; right limb: F1,18 = .764, p = .393).

23 Taken together, these results suggest that STN-DBS exacerbates the loss of 

24 motivation induced by the dopaminergic lesion and reduce behavioral activity, effects that 

25 were alleviated by PPX.

26

27
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1 Discussion
2

3 Combining a relevant in vivo model of neuropsychiatric PD symptoms, chronic 

4 bilateral STN-DBS in awake and freely moving animals and a pharmacological approach, we 

5 provide strong evidence for a direct deleterious effect of STN-DBS on motivation. STN-DBS 

6 induces a significant deficit in motivated behavior, due neither to a reward sensitivity deficit 

7 related to a potential anhedonic effect, nor to motor deficits. This behavioral effect was 

8 completely reversed by the activation of D2R/D3R with PPX, revealing the potential critical 

9 role of DA in this STN-DBS motivational effect. 

10 It is essential to better understand the pathophysiology of neuropsychiatric symptoms of PD 

11 and how they respond to current treatments such as STN-DBS. Here, we tried to be as close 

12 as possible to the clinical situation in PD, especially for the stimulation conditions. While most 

13 preclinical studies have been performed with acute STN-DBS that was applied daily only 

14 during the tasks and experiments (e.g.,41, 49), the novel stimulation system we used allowed 

15 continuous STN-DBS for several days. In addition, we used monopolar stimulation. Indeed, it 

16 is the most widely applied in PD patients1 as well as in studies describing apathy under STN-

17 DBS17, 21, 48, 61-64. Furthermore, a preclinical study in rat has clearly demonstrated that it 

18 reduces tissue damage compared to bipolar stimulation.65 Moreover, although monopolar 

19 stimulation is more likely to affect the surrounding STN fibers than bipolar stimulation, it was 

20 applied at intensities below 225 A to minimize current spreading as previously 

21 demonstrated.66 The motivational dimension of apathy especially concerns hum-drum daily 

22 tasks that are neither challenging nor particularly effortful.4 A sucrose self-administration 

23 procedure with a 2.5 % solution, in a fixed ratio 1 schedule, in non-food-deprived rats, is an 

24 appropriate way to operationalize a simple effort with a relatively moderate rewarding 

25 outcome. This approach has allowed us to demonstrate a clear effect of STN-DBS on 

26 motivated behaviors during an operant task. The decrease of baseline ambulatory activity 

27 detected during the open area test, unrelated to motor impairment, further suggests that the 

28 STN-DBS-induced operant deficit may be considered as a decrease in the maintenance of 
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1 behavioral activity, as observed in apathy.9 While we previously provided strong evidence 

2 that the dopaminergic denervation can account for the loss of motivation in PD, here we 

3 report that STN-DBS by itself could induce or exacerbate this motivational impairment via 

4 DA-driven mechanisms, independent of the hypodopaminergy induced by DRT reduction. 

5 Furthermore, the present study provides a missing link, reconciling apparently contradictory 

6 clinical observations on the origin of post-operative apathy in stimulated PD patients. 

7 The myriad of reported neuropsychiatric side effects of STN-DBS in PD patients3 has 

8 triggered several animal studies to understand their phenomenology. These studies have 

9 demonstrated the possible implication of STN-DBS in PD-related depression49, 67 or potent 

10 effects on impulsive behaviors,68 but few of them tackled the effects on pure motivational 

11 processes. As far as we know, only one report mentions data that could be interpreted as a 

12 transient reduced motivation under STN-DBS.69 However, another study showed no effect of 

13 STN-DBS on operant activity in a fixed-ratio schedule of reinforcement and even described 

14 an increase in performance in obtaining a sucrose pellet during a progressive ratio 

15 schedule.41 Major differences between this previous study and our protocol are likely to 

16 account for these discrepancies. Indeed, Rouaud et al., used acute bipolar stimulation 

17 conditions compared to our chronic monopolar STN-DBS; interestingly, psychiatric side 

18 effects of STN-DBS strongly depend on electrode polarity. For example, acute depressive 

19 states following regular monopolar STN-DBS are greatly reduced by switching to the scarcer 

20 bipolar STN-DBS.70, 71 Moreover, the design of the operant task was different enough to yield 

21 diverging results. In particular, our study avoided food-restriction. Whereas all the studies 

22 having inactivated the STN found an increase in motivation for food in restricted animals, one 

23 study demonstrated that this effect was completely occluded in rats fed ad libitum.37 Finally, 

24 while the conditioned place preference revealed an effect of STN-DBS on the rewarding 

25 properties of sucrose in this study,41 we did not find any modification of this parameter during 

26 the two bottle choice test. 

27 The STN can be functionally and anatomically subdivided into motor, associative and 

28 limbic sub-territories.72-74 Then it is part of the three respective basal ganglia loops.73, 74 In PD 
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1 patients, DBS is tailored to stimulate the motor part of the STN, and so to impact the whole 

2 motor circuitry. However, an inaccurate electrode placement within the STN can engage the 

3 circuitries involving its associative or limbic part rather than the motor one,75 potentially 

4 leading to non-motor side effects,70, 74 apathy in particular. In line with this assumption, a very 

5 recent study succeeded in alleviating post STN-DBS apathy in patients by displacing the 

6 electrode from the limbic STN to the motor part,23 demonstrating that apathy under STN-DBS 

7 could rely on a mechanism caused by the stimulation of the limbic part of the STN. Our data 

8 suggest that the dopaminergic system might be involved in this mechanism, at least in part.

9 In patients, apathy occurring after STN-DBS can be treated by dopaminergic 

10 agonists, including those targeting the D2R and D3R.18, 19 This, and the fact that 

11 methylphenidate can alleviate fatigue76, which is a related and/or confounding symptom of 

12 apathy77, has prompted the hypothesis that a strong hypodopaminergic state revealed by 

13 reduction of DRT, rather than STN-DBS per se, may be responsible for the resurgence of 

14 apathy.13 Using a pharmacological protocol allowing exploration of the chronic effects of PPX 

15 and known to increase D2R and D3R expression,59 we demonstrated that PPX, a D2R/D3R 

16 agonist, fully rescued the motivational deficit induced by STN-DBS in control and lesioned 

17 rats. It should be noted that this pharmacological protocol was not able to reverse the loss of 

18 motivation due to the dopaminergic lesion, indicating that even if both the lesion and STN-

19 DBS effects on motivation could be driven by dopaminergic mechanisms, these could be 

20 significantly different. This suggests that STN-DBS may impact on behavior via its own 

21 effects on DA transmission, which is consistent with previous animal model studies showing 

22 that STN-DBS modulates DA system.58, 78-82 The three so-called basal ganglia limbic, 

23 associative and motor loops including the STN are not completely segregated; the different 

24 structures involved are functionally interconnected83 by an ascending striato-midbrain-striatal 

25 spiraling circuitry.84 Moreover, beyond this complex organization, which has yet to be 

26 demonstrated in rats, SNc and VTA are overlapping structures85 and the whole striatum is 

27 characterized by a dense local microcircuitry86, 87 which could also contribute to this 

28 interconnection. Thus, STN-DBS may modulate DA transmission within the basal ganglia 
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1 and, through these subcortical interactions, disrupt the complex chain of events that 

2 transforms intentions into adapted action, and thereby influence non-motor functions.6, 9 

3 Nonetheless, we cannot exclude a potential involvement of the structures surrounding the 

4 STN . It is unlikely that the electric field emanating from the electrode is restrained to the 

5 STN borders and DBS of  some of these structures in the vicinity of the STN, such as the 

6 lateral hypothalamus, can also modulate DA transmission88. We previously found that short 

7 STN-DBS can decrease the level of D2R and D3R within the NAc.58 Given the critical 

8 implication of the D2R and D3R in motivational processes,89-92 our data suggest a causal 

9 involvement of these receptors in the motivational deficit that we observed. In addition, D2R 

10 and D3R are expressed in several other non-motor structures impacted by PPX treatment93 

11 and  some of them are part of down-stream circuits with metabolic activities  known to be 

12 affected by STN-DBS.22, 94 Thus, beyond the NAc, both STN-DBS and PPX effects could 

13 differentially engage some common system responsible for behavior changes highlighted in 

14 this study. However, dopaminergic agonists do not always efficiently alleviate apathy under 

15 STN-DBS22. Non dopaminergic lesions frequently occur during the course of disease95, 96, 

16 and serotonin for example is proposed to participate in PD apathy97. In rats, STN-DBS has 

17 been shown to decrease serotonin release promoting depressive like behavior. 49, 98 Thus, 

18 we cannot completely exclude the implication of other neurotransmitters in the loss of 

19 motivation observed in patients or in this study.

20 As previously reported,99 PPX at 0.3 mg/kg induces hyperlocomotricity in the open 

21 area test in control rats. This hyperactivity is unlikely to be responsible for the reversion of 

22 the self-administration deficit observed in PPX-treated STN-DBS rats since first, the level of 

23 non-stimulated treated rats remains similar to that of control rats, and second, PPX induced 

24 hypoactivity in non-stimulated lesioned rats whereas it also reversed the operant deficit 

25 induced by STN-DBS in those lesioned rats. This hypoactivity promoted by PPX in lesioned 

26 rats has previously been reported during the 120 minutes post injection window in control 

27 animals99 and could rely on a sedating effect mediated by the presynaptic D3R100. We chose 

28 to separate the behavioral test from injection by 3h to avoid this effect. Since we previously 
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1 demonstrated that the 6-OHDA lesion modifies D3R expression within the dorsolateral part of 

2 the striatum101,  local imbalance between pre and post synaptic D2R and/or D3R expression 

3 or activity102 could be responsible for DA transmission blunting, thus promoting this 

4 hypoactivity. Very intriguingly, in some rats of both the control and lesioned groups, the 

5 combination of STN-DBS and PPX induced a very high- level of activity that could emphasize 

6 the importance of individual traits, as demonstrated for the expression or severity of impulse 

7 control disorder in PD103-105 or compulsive drug taking.106 Thus, depending on complex 

8 interactions with dopaminergic treatments and according to pre-existing individual traits, 

9 STN-DBS could also lead to the development of hyperdopaminergic states reminiscent of 

10 hypomanic behaviors also observed in PD patients under STN-DBS.62, 74, 107, 108

11 Altogether, these data bring coherence to clinical observations that seemed 

12 contradictory until today: apathy in PD patients, at least its motivational dimension, could be 

13 induced by STN-DBS itself and attenuated by activation of D2R/D3R, regardless of (or in 

14 addition to) DRT reduction and the DA-mediated hypofunction. More detailed molecular 

15 analysis or techniques such as optogenetics could enable us to clarify the structures or sub-

16 territories involved in this STN-DBS induced DA-driven loss of motivation. While it is beyond 

17 the scope of the present study, it would be also of interest to further investigate the effect of 

18 STN-DBS on the emotional and affective component of apathy, as STN has been proposed 

19 to be involved in such processes109.

20 STN-DBS has been shown to prevent cocaine or heroin re-escalation intake in rats40, 

21 44 and to reduce dopamine dysregulation syndrome or addictive behavior such as 

22 pathological gambling.110-114 Thus, STN-DBS is currently explored as an effective treatment 

23 for addiction.45, 115 However, our results suggest that this apparent beneficial effect could be 

24 underlain by a general motivational deficit. In rats, inhibiting the STN can abolish affective 

25 responses for salient reward109 and STN-DBS can induce depression-like behaviors.49, 67, 116 

26 Furthermore, PD patients for whom addictive behavior was reduced under STN-DBS can 

27 also co-express apathy.14, 110 These convergent facts are raising the question of the nature of 

28 this apparent “anti-addictive” effect of STN-DBS. This neurosurgical treatment could rather 
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1 induce a state of negative affect, comparable to a certain extent to the blunted dopaminergic 

2 transmission observed during prolonged drug consumption117-119 , increasing the risk of 

3 addictive behavior resurgence in the same way as drugs of abuse withdrawal syndrome 

4 promotes relapse.120 

5 Thus, this new insight calls for reconsideration of the role of STN-DBS on mood in PD 

6 to improve patient care and quality of life, and more broadly, to rethink the use of STN-DBS 

7 in psychiatry.

8

9

10

11
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1
2
3
4
5 Figures legends
6

7 FIGURE 1: Experimental design and electrode implantation.

8 (A) Time course of the study, groups of animals and histological controls

9 After learning the sucrose self-administration task, lesion and implantation of electrodes, rats 

10 were divided into a stimulated and a non-stimulated group according to their performances, 

11 to constitute initially equal performance groups. Then, after 4 days of subthalamic nucleus 

12 deep brain stimulation (STN-DBS) with further sucrose self-administration, pramipexole 

13 (PPX) or vehicle (Veh) was injected twice a day into half of the stimulated (Non lesioned rats: 

14 STN-DBS + PPX, n = 8; STN-DBS + Veh, n = 13; lesioned rats: Lesion + STN-DBS + PPX, n 

15 = 5; Lesion + STN-DBS + Veh, n = 5) and non-stimulated rats (Control + PPX, n = 22; 

16 Control + Veh, n = 22; Lesioned rats: Lesion + PPX, n = 4; Lesion + Veh, n = 6) for 20 days. 

17 During this time, sucrose self-administration was continued for several days and then 

18 followed successively by other behavioral tests: the two-bottle choice test, the stepping test 

19 and finally the open area test. (B) Positions of bilateral DBS electrode tips in left and right 

20 STNs of stimulated animals in representative coronal sections (anteroposterior relative to 

21 Bregma: -3.60 mm; -3.80 mm; -4.16 mm), reproduced from Paxinos and Watson.121 Each bar 

22 represents the placement of one electrode. (C) and (D) Example of electrode trace within the 

23 left STN stimulated at 100 μA (C) or 225 μA (D), after Cresyl violet staining. Scale bar: 1 mm. 

24 IC, Internal Capsule; LH, Lateral Hypothalamus; ZI, Zona Incerta.

25  (E) and (F) Representative photomicrographs of coronal sections stained for tyrosine 

26 hydroxylase (TH) in striatal (bottom, 1.6 mm to bregma) and mesencephalic (top, -5.6 mm to 

27 bregma) regions from naïve (top) and lesioned (bottom) rats.121 Scale bar = 1 mm. (G, H) 

28 Quantification of TH ImmunoReactivity (IR) loss in the midbrain (G) and the striatum (H), 

29 expressed as the percentage difference compared to the mean value obtained for sham 

30 operated animals. The SNc bilateral lesion produced an important but partial denervation of 
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1 the dorsal striatum. The ventral tegmental area and the nucleus accumbens were preserved 

2 from the lesion. Control + Veh: n = 22; Lesion: n = 20. Control + Veh versus Lesion: *p < .05; 

3 ***p < .001. DS: dorsal striatum; NAc: nucleus accumbens; SNc: substantia nigra compacta, 

4 VTA: ventral tegmental area. 

5

6 FIGURE 2: Subthalamic nucleus deep brain stimulation (STN-DBS) induces a deficit of 

7 preparatory behaviors in 2.5% sucrose self-administration that is rescued by pramipexole 

8 (PPX). (A) Time course of the sucrose self-administration experiment. STN-DBS induced a 

9 significant decrease of the number of sucrose deliveries. PPX induced a total reversion of 

10 this deficit. (B) Mean sucrose deliveries over the last 3 days of experiment. (C) STN-DBS 

11 and PPX did not alter the preference for sucrose. 

12 Control + Veh: n = 22; Control + PPX: n = 22; STN-DBS + Veh: n = 13; STN-DBS + PPX: n = 

13 8. Data shown as means  SEM. Control + Veh versus STN-DBS + Veh: *p < .05; **p < .01; 

14 STN-DBS + Veh versus STN-DBS + PPX: #p < .05; ##p < .01. 

15

16 FIGURE 3: Subthalamic nucleus deep brain stimulation (STN-DBS) and pramipexole (PPX) 

17 promote hypo and hyper locomotor activity respectively but do not impair motor abilities. (A) 

18 Total distance travelled during a 1h open area test. STN-DBS induced a non-significant 

19 tendency towards decreased basal locomotor activity that was counteracted by treatment 

20 with PPX. In control rats, PPX induced a dramatic increase in the distance traveled. (B) STN-

21 DBS and PPX did not change the mean ambulatory speed during the last 2 periods of the 

22 open area test. (C) STN-DBS and/or PPX did not alter the fine motor skills of front limbs as 

23 demonstrated by adjusting steps in the course of the stepping test. Control + Veh: n = 22; 

24 Control + PPX: n = 22; STN-DBS + Veh: n = 6; STN-DBS + PPX: n = 8. Data shown as 

25 means  SEM. Control + PPX versus Control + Veh: *p < .05.

26

27

28
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1 FIGURE 4: STN-DBS exacerbates the deficit of preparatory behaviors of the existing 

2 motivational deficit in a rodent model of the neuropsychiatric symptoms of PD. (A) Time 

3 course of the sucrose self-administration experiment. STN-DBS decreased the number of 

4 sucrose deliveries. PPX induced a complete reversion of this deficit. (B) Mean sucrose 

5 deliveries over the last 5 days of experiment. (C) STN-DBS and PPX did not alter the 

6 preference for sucrose in 6-OHDA rats. Lesion + Veh: n = 6; Lesion + PPX: n = 4; Lesion + 

7 STN-DBS + Veh: n = 5; Lesion + STN-DBS + PPX: n = 5. Data shown as means  SEM. 

8 Lesion + Veh versus Lesion + STN-DBS + Veh: *p < .05; Lesion + STN-DBS + Veh versus 

9 Lesion + STN-DBS + PPX: #p < .05.

10

11 FIGURE 5: Subthalamic nucleus deep brain stimulation (STN-DBS) or pramipexole (PPX) 

12 individually promote hypoactivity but do not impair motor abilities. (A) Total distance traveled 

13 during a 1h open area test. STN-DBS induced a non-significant tendency towards decreased 

14 basal locomotor activity. In non-stimulated rats, PPX induced a dramatic decrease in the 

15 distance traveled. The combination of both treatments increased activity. (B) STN-DBS and 

16 PPX did not change the mean ambulatory speed during the open area test. (C) STN-DBS 

17 and/or PPX did not alter the fine motor skills of front limbs as demonstrated by adjusting 

18 steps in the course of the stepping test. Lesion + Veh: n = 6; Lesion + PPX: n = 4; Lesion + 

19 STN-DBS + Veh: n = 5; Lesion + STN-DBS + PPX: n = 5. Data shown as means  SEM. 

20 Lesion + PPX versus Lesion + STN-DBS + PPX: *p < .05.

21

22

23
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FIGURE 1: Experimental design and electrode implantation. 
(A) Time course of the study, groups of animals and histological controls 

After learning the sucrose self-administration task, lesion and implantation of electrodes, rats were divided 
into a stimulated and a non-stimulated group according to their performances, to constitute initially equal 

performance groups. Then, after 4 days of subthalamic nucleus deep brain stimulation (STN-DBS) with 
further sucrose self-administration, pramipexole (PPX) or vehicle (Veh) was injected twice a day into half of 
the stimulated (Non lesioned rats: STN-DBS + PPX, n = 8; STN-DBS + Veh, n = 13; lesioned rats: Lesion + 
STN-DBS + PPX, n = 5; Lesion + STN-DBS + Veh, n = 5) and non-stimulated rats (Control + PPX, n = 22; 
Control + Veh, n = 22; Lesioned rats: Lesion + PPX, n = 4; Lesion + Veh, n = 6) for 20 days. During this 
time, sucrose self-administration was continued for several days and then followed successively by other 

behavioral tests: the two-bottle choice test, the stepping test and finally the open area test. (B) Positions of 
bilateral DBS electrode tips in left and right STNs of stimulated animals in representative coronal sections 

(anteroposterior relative to Bregma: -3.60 mm; -3.80 mm; -4.16 mm), reproduced from Paxinos and 
Watson.119 Each bar represents the placement of one electrode. (C) and (D) Example of electrode trace 
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within the left STN stimulated at 100 μA (C) or 225 μA (D), after Cresyl violet staining. Scale bar: 1 mm. IC, 
Internal Capsule; LH, Lateral Hypothalamus; ZI, Zona Incerta. 

(E) and (F) Representative photomicrographs of coronal sections stained for tyrosine hydroxylase (TH) in 
striatal (bottom, 1.6 mm to bregma) and mesencephalic (top, -5.6 mm to bregma) regions from naïve (top) 
and lesioned (bottom) rats.119 Scale bar = 1 mm. (G, H) Quantification of TH Immuno Reactivity (IR) loss 

in the midbrain (G) and the striatum (H), expressed as percentage difference in the mean value obtained for 
sham operated animals. The SNc bilateral lesion produced an important but partial denervation of the dorsal 
striatum. The ventral tegmental area and the nucleus accumbens were preserved from the lesion. Control + 

Veh: n = 22; Lesion: n = 20. Control + Veh versus Lesion: *p < .05; ***p < .001. DS: dorsal striatum; 
NAc: nucleus accumbens; SNc: substantia nigra compacta, VTA: ventral tegmental area. 
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FIGURE 2: Subthalamic nucleus deep brain stimulation (STN-DBS) induces a deficit of preparatory behaviors 
in 2.5% sucrose self-administration that is rescued by pramipexole (PPX). (A) Time course of the sucrose 

self-administration experiment. STN-DBS induced a significant decrease of the number of sucrose deliveries. 
Pramipexole induced a total reversion of this deficit. (B) Mean sucrose deliveries over the last 3 days of 

experiment. (C) Subthalamic nucleus deep brain stimulation (STN-DBS) and pramipexole (PPX) do not alter 
the preference for sucrose. 

Control + Veh: n = 22; Control + PPX: n = 22; STN-DBS + Veh: n = 13; STN-DBS + PPX: n = 8. Data 
shown as means ± SEM. Control + Veh versus STN-DBS + Veh: *p < .05; **p < .01; STN-DBS + Veh 

versus STN-DBS + PPX: #p < .05; ##p < .01. 

190x275mm (300 x 300 DPI) 

Page 57 of 68

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

FIGURE 3: Subthalamic nucleus deep brain stimulation (STN-DBS) and pramipexole (PPX) promote hypo and 
hyper locomotor activity respectively but do not impair motor abilities. (A) Total distance travelled during a 
1h open area test. STN-DBS induced a non-significant tendency towards decreased basal locomotor activity 

that was counteracted by treatment with pramipexole. In control rats, pramipexole induced a dramatic 
increase in the distance traveled. (B) STN-DBS and pramipexole did not change the mean ambulatory speed 
during the last 2 periods of the open area test. (C) STN-DBS and/or pramipexole did not alter the fine motor 
skills of front limbs as demonstrated by adjusting steps in the course of the stepping test. Control + Veh: n 

= 22; Control + PPX: n = 22; STN-DBS + Veh: n = 6; STN-DBS + PPX: n = 8. Data shown as means ± 
SEM. Control + PPX versus Control + Veh: *p < .05. 
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FIGURE 4: STN-DBS exacerbates the deficit of preparatory behaviors of the existing motivational deficit in a 
rodent model of the neuropsychiatric symptoms of PD. (A) Time course of the sucrose self-administration 

experiment. STN-DBS induced a decrease of the number of sucrose deliveries. Pramipexole induced a 
complete reversion of this deficit. (B) Mean sucrose deliveries over the last 5 days of experiment. (C) 

Subthalamic nucleus deep brain stimulation (STN-DBS) and pramipexole (PPX) do not alter the preference 
for sucrose in 6-OHDA rats. Lesion + Veh: n = 6; Lesion + PPX: n = 4; Lesion + STN-DBS + Veh: n = 5; 
Lesion + STN-DBS + PPX: n = 5. Data shown as means ± SEM. Lesion + Veh versus Lesion + STN-DBS + 

Veh: *p < .05; Lesion + STN-DBS + Veh versus Lesion + STN-DBS + PPX: #p < .05. 

190x275mm (300 x 300 DPI) 

Page 59 of 68

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

FIGURE 5: Subthalamic nucleus deep brain stimulation (STN-DBS) and pramipexole (PPX) individually 
promotes hypoactivity but do not impair motor abilities. (A) Total distance travelled during a 1h open area 

test. STN-DBS induced a non-significant tendency towards decreased basal locomotor activity. In non-
stimulated rats, pramipexole induced a dramatic decrease in the distance traveled. The combination of both 

treatments increased activity. (B) STN-DBS and pramipexole did not change the mean ambulatory speed 
during the open area test. (C) STN-DBS and/or pramipexole did not alter the fine motor skills of front limbs 
as demonstrated by adjusting steps in the course of the stepping test. Lesion + Veh: n = 6; Lesion + PPX: n 

= 4; Lesion + STN-DBS + Veh: n = 5; Lesion + STN-DBS + PPX: n = 5. Data shown as means ± SEM. 
Lesion + PPX versus Lesion + STN-DBS + PPX: *p < .05. 
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13

14 Supplemental Material and Methods

15 Bilateral 6-OHDA lesions

16 As previously described,1-4 rats were first treated with desipramine hydrochloride (25 mg.kg-1 

17 in 0.9% NaCl, subcutaneously; Sigma; St Quentin-Fallavier, France) to protect noradrenergic 

18 neurons 30 min before 6-OHDA injection.5 They were then anesthetized with a mixture of 

19 xylazine (15 mg.kg-1, i.p) and ketamine (100 mg.kg-1, i.p) and secured in a Kopf stereotaxic 

20 apparatus (Phymep, Paris, France). As previously described2, 6 µg of 6-OHDA dissolved in 

21 2.3 µl sterile 0.9% NaCl with 0.2% ascorbic acid (Sigma), or 2.3 µl of vehicle (0.9% NaCl, 

22 0.02% ascorbic acid) were injected bilaterally, at a flow rate of 0.5 µl min-1. The stereotaxic 

23 coordinates of the injection site relative to bregma according to the stereotaxic atlas of 

24 Paxinos and Watson6 were as follows: anteroposterior (AP), -5.4 mm; mediolateral (L), ±1.8 

25 mm, and dorsoventral (DV), -8.1 mm; with the incisor bar at +3.2 mm below the interaural 

26 plane. The cannulae were left in position for 5 min after each injection to allow absorption of 

27 the solution without spreading. After recovery from anesthesia, the animals were returned to 

28 the facility for 3 weeks, to allow the 6-OHDA lesion to develop and stabilize.
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2

1 Bilateral implantation of electrodes in the subthalamic nucleus

2 Rats were bilaterally implanted with monopolar electrodes consisting of platinum-iridium wire 

3 insulated with Teflon with a 400 m exposed end (wire diameter, 110 m insulated, 76 m 

4 bare, PT-IR Teflon, Phymep, Paris, France). Stereotaxic coordinates (relative to bregma, 

5 according to the stereotaxic atlas of Paxinos and Watson6) were: AP, -3.8 mm; L, ±2.4 mm, 

6 and DV, -7. 8 mm; with the incisor bar at +3.2 mm below the interaural plane. The exposed 

7 end of the electrode, located in the STN, corresponded to the negative stimulation pole. A 

8 screw (Phymep, Paris, France, 0-80x1/16) fixed on the skull was used as the positive pole. 

9 Electrodes were soldered to corresponding contacts of the microstimulator support 

10 (ISENUSTIMV7, ISEN, Toulon, France) which was permanently fixed to the rat skull with 

11 dental cement (Superbond, Phymep, Paris, France). After recovery from anesthesia, animals 

12 were returned to the facility for 3 days, to allow recovery before the beginning of the 

13 behavioral experiments. 

14

15 Subthalamic nucleus deep brain stimulation

16 Chronic long-lasting bilateral STN-DBS was performed using an electrical portable 

17 microstimulator system already validated in freely moving rats.7 This system has the 

18 advantages of leaving the animals free to move during behavioral tasks, of being removable 

19 and of allowing rapid and easy activation (ON/OFF), modulation of DBS parameters or 

20 battery change without strain of rats or anesthesia. Monopolar rather than bipolar electrodes 

21 were utilized because the former is the most widely applied in PD patients8 as well as in 

22 studies describing apathy under STN-DBS.9-15  Furthermore, a preclinical study in rat has 

23 clearly demonstrated that it reduces tissue damage compared to bipolar stimulation.16

24 The interface between electrodes and the microstimulator is a support with the top side 

25 designed as a platform to receive a microstimulator’s plug in. The microstimulator is made up 

26 with classical structures allowing to regulate the frequency and the duty cycle. The power 

27 supply of the microstimulator consists of two 3 V flat lithium watch batteries (CR1220) 

28 connected in series. 
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3

1 The frequency and pulse width used, 130 Hz and 60 s respectively, were similar to those 

2 applied in humans. For each animal, the intensity was gradually increased until dyskinetic 

3 movement of the contralateral forelimb appeared as previously described17 and then 

4 adjusted just below this pro-dyskinetic threshold. This value was conserved throughout the 

5 study. The stimulation intensity was 183 +/- 13 A on average and ranged between 100 and 

6 225 A.

7

8 Behavioral procedures 

9 Rats were not food or water deprived during the experimental procedures.

10 Sucrose self-administration

11 Rats were trained to work for 2.5% sucrose reward, chosen for its relatively moderate 

12 rewarding outcome, in a self-administration task in operant chambers (Med Associates, St 

13 Albans, VT, USA) under a fixed ratio 1 reinforcement schedule. Rats were given the choice 

14 between two levers: an active and reinforced one, delivering 0.2 ml sucrose solution in a 

15 receptacle when pressed, and an inactive, non-reinforced lever, producing nothing1-4. 

16

17 Two bottle choice

18 In their home cage, rats were given continuous access to two graduated 250 ml plastic 

19 bottles (Techniplast, Lyon, France), for 3 days. One bottle contained tap water, whereas the 

20 other contained 2.5% sucrose (Sigma) in tap water. Rats and bottles were weighed daily, 

21 with the position of the bottles (left or right) alternated to control for side preference. The first 

22 day was for acclimatation. The volumes of sucrose solution and water consumed on the 

23 second and third days were averaged to determine preference for sucrose over water 

24 (sucrose intake/total intake, expressed as a percentage). 

25

26

27
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1 Stepping test 

2 Animals were moved sideways along a smooth-surfaced table over 90 cm and the number of 

3 forelimb adjusting steps measured. The test was carried out three times for each paw.

4

5 Open area

6 Rats were placed in a dimly lit white Perspex (Castorama, Saint Martin d’Hères, France) 

7 open arena (50 x 25 x 40cm) and horizontal distances traveled were recorded with a video-

8 tracking system to assess locomotor and basal activity (Viewpoint S.A., Champagne au Mont 

9 d’Or, France), over a 1h period.

10

11 Histological analysis

12 Briefly, rats were sacrificed under chloral hydrate anesthesia at the end of the behavioral 

13 experiments, intracardially perfused with NaCl (0.9%) and their brains frozen in cooled 

14 isopentane (-40°C) and stored at -30°C. Serial coronal sections (14 μm-thick) of striatum, 

15 mesencephalon and subthalamic nucleus were cut with a cryostat (Microm HM 500, Microm, 

16 Francheville, France), collected on slides and stored at -30°C.

17

18 Immunohistochemistry:

19 Immunohistochemical analysis was performed as previously described.2, 17 14 µm-thick 

20 coronal sections from the striatum and the mesencephalon were incubated with an anti-TH 

21 antibody, and then with a biotinylated goat anti-mouse IgG antibody. Immunoreactivity was 

22 visualized with avidin-peroxidase conjugate. 

23  

24 Quantification of the extent of the striatal DA denervation 

25 As described previously,2 TH immunoreactivity (TH-IR) was quantified with the ICS 

26 FrameWork computerized image analysis system (TRIBVN, 2.9.2 version, Châtillon, France) 

27 coupled to a light microscope (Nikon, Eclipse 80i) and a Pike F-421C camera (ALLIED Vision 

28 Technologies, Stadtroda, Germany) for digitalization of the DS and the NAc (+ 0.7 to 2.2 mm 
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1 anterior to bregma), and of the SNc and the ventral tegmental area (VTA), (-5.6 mm to -4.8 

2 mm). For all measurements, masks from these different striatal and mesencephalic sub-

3 regions were drawn with the computer analysis system to ensure that appropriate 

4 comparisons were made between homologous anatomical regions. For each striatal sub-

5 region, optical densities (OD) were measured and averaged. The OD value obtained for an 

6 unlabeled area (the corpus callosum) was used as the background and was subtracted from 

7 each of the OD values measured. OD were expressed as percentages relative to the mean 

8 optical density values obtained for the homologous regions of the sham-operated animals.

9

10 Histological control of electrodes implantation

11 Sections through the subthalamic nucleus were stained with Cresyl violet and analyzed 

12 under a light microscope (Nikon, Eclipse 80i, TRIBVN, Châtillon, France) coupled to the ICS 

13 FrameWork computerized image analysis system (TRIBVN, 2.9.2 version, Châtillon, France) 

14 in order to check the positions of electrodes. Animals with incorrect electrode locations were 

15 excluded from the study.

16

17 Supplemental Figure and Figure Legend:

18 FIGURE S1: Example of electrode trace and tissue state in animals stimulated at 100 μA (A) 

19 or 225 μA (B), after Cresyl violet staining. Scale bar: 1 mm.

20

21 FIGURE S2: Comparison of the effects of STN-DBS (A) or PPX treatment (B) in control and 

22 lesioned animals on the mean sucrose deliveries over the last 3 days of sucrose self-

23 administration experiment. Data shown as means  SEM. (A) Control Sham: n = 22; Control 

24 STN-DBS: n = 13; Lesion Sham n = 6; Lesion STN-DBS: n = 5. Control Sham versus Control 

25 STN-DBS: ***p < .001; Control Sham versus Lesion sham: ###p < .001; Control STN-DBS 

26 versus Lesion STN-DBS: ##p < .01. (B) Control Veh: n = 22; Control PPX: n = 22; Lesion 
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6

1 Veh: n = 6; Lesion PPX: n = 5. Control Veh versus Lesion Veh: ###p < .001; Control PPX 

2 versus Lesion PPX: ##p < .01.

3

4
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FIGURE S1: Example of electrode trace and tissue state in animals stimulated at 100 μA (A) or 225 μA (B), 
after Cresyl violet staining. Scale bar: 1 mm. 
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FIGURE S2: Comparison of the effects of STN-DBS (A) or PPX treatment (B) in control and lesioned animals 
on the mean sucrose deliveries over the last 3 days of sucrose self-administration experiment. Data shown 
as means ± SEM. (A) Control Sham: n = 22; Control STN-DBS: n = 13; Lesion Sham n = 6; Lesion STN-

DBS: n = 5. Control Sham versus Control STN-DBS: ***p < .001; Control Sham versus Lesion sham: ###p 
< .001; Control STN-DBS versus Lesion STN-DBS: ##p < .01. (B) Control Veh: n = 22; Control PPX: n = 

22; Lesion Veh: n = 6; Lesion PPX: n = 5. Control Veh versus Lesion Veh: ###p < .001; Control PPX versus 
Lesion PPX: ##p < .01. 
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