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Abstract: We establish a sharp sufficient condition for groups acting on trees to be highly
transitive when the action on the tree is minimal of general type. This gives new examples
of highly transitive groups, including icc non-solvable Baumslag-Solitar groups, thus
answering a question of Hull and Osin.
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1 Introduction

Given a countably infinite group Γ, one is naturally led to the study of its transitive actions, or
equivalently of the homogeneous spaces Γ/Λ where Λ is a subgroup of Γ. A basic invariant for such an
action is the transitivity degree, namely the supremum of the n ∈ N such that for any two n-tuples of
distinct points, the first can be taken to the second by a group element. Note that the transitivity degree
of an action can be infinite, as is witnessed by the natural action of the group of finitely supported
permutations of a countably infinite set. One can then lift the transitivity degree to a group invariant
td(Γ) defined as the supremum of the transitivity degrees of the faithful Γ-actions. The most transitive
groups are the highly transitive groups, namely those which admit a faithful action whose transitivity
degree is infinite. Note that such groups automatically have infinite transitivity degree. As noted by
Hull and Osin in [HO16], it is actually unknown whether there is a countable group Γ with infinite
transitivity degree, but which fails to be highly transitive.
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1.1 Some highly transitive groups

Let us now give a brief overview of groups which are known to be highly transitive. First, the group
of finitely supported permutations of a countably infinite set is highly transitive. Other examples of
locally finite highly transitive groups are provided by the forward orbit stabilizers of minimal Z-actions
on the Cantor space, such as the group of dyadic permutations, and by the Hall group.

For finitely generated amenable groups, one can upgrade the group S f (Z) of finitely supported
permutations of Z to the 2-generated group S f (Z)⋊Z of permutations which are translations except
on a finite set. Other natural examples are provided by derived groups of topological full groups of
minimal Z-subshifts acting on an orbit (the fact that they are finitely generated is due to Matui [Mat06],
while their amenability is a celebrated result of Juschenko and Monod [JM13]).

In the non-amenable realm, the first explicit examples of highly transitive groups are free groups
Fn for 2 ≤ n ≤+∞, as was shown in 1976 by McDonough [McD77] (see also the work of Dixon in
[Dix90]). The case of a general free product has been studied Glass and McCleary in [GM91] and later
settled by Gunhouse [Gun92] and independently by Hickin [Hic92].

In the last few years, many new examples of highly transitive groups have been discovered such as
surface groups [Kit12], Out(Fn) for n ≥ 4 [GG13], and non-elementary hyperbolic groups with trivial
finite radical [Cha12]. A vast generalization of these results was then found by Hull and Osin.

Theorem ([HO16, Theorem 1.2]). Every countable acylindrically hyperbolic group admits a highly
transitive action with finite kernel. In particular, every countable acylindrically hyperbolic group with
trivial finite radical is highly transitive.

Let us recall that a group is called acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic space. For equivalent definitions, and for more background on
acylindrically hyperbolic groups, we refer the reader to [Osi16] or [Osi19].

On the other hand, examples which are not entirely covered by Hull and Osin’s result come from
groups acting on trees as in the work of the first, third and fourth authors [FMS15]. Other examples are
provided by a recent result of Gelander, Glasner and Soı̆fer, which states that any center free unbounded
and non-virtually solvable countable subgroups of SL2(k) is highly transitive, where k is a local field
[GGS20].

Our main result is an optimal generalization of the aforementioned result of the first, third and
fourth authors.

Theorem A. Let Γ ↷ T be a minimal action of general type of a countable group Γ on a tree T. If
the action on the boundary Γ ↷ ∂T is topologically free, then Γ admits a highly transitive and highly
faithful action; in particular, Γ is highly transitive.

The above minimality assumption means that there are no nontrivial invariant subtrees, while the
topological freeness assumption means that no half-tree can be pointwise fixed by a non-trivial group
element (in particular, the action is faithful). An action on a tree is of general type when there are two
transverse hyperbolic elements (see Section 2.3). All these hypotheses are necessary in Theorem A:
for topological freeness this is discussed in the next section, while for the type of the action and the
minimality this is discussed in section 9.

Finally, high faithfulness is a natural strengthening of faithfulness introduced in [FMS15], which
states that the intersection of the supports of finitely many nontrivial group elements is always infi-
nite (see Section 2.1 for equivalent definitions). Let us remark that the group of finitely supported
permutations does not admit highly transitive highly faithful actions [FLMM22, Remark 8.23], and
that the natural highly transitive action of a topological full group is never highly faithful. It would be
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interesting to understand whether the highly transitive actions of acylindrically hyperbolic groups with
trivial finite radical built by Hull and Osin are highly faithful.

1.2 Obstructions to high transitivity

Let us now move on to obstructions to high transitivity, which will lead us to a reformulation of our
main theorem as a series of equivalences thanks to the work of Hull and Osin [HO16] and of Le Boudec
and Matte Bon [LBMB22].

First, one can use the fact that the group of permutations of a countably infinite set is topologically
simple for the product of the discrete topology, and that high transitivity can be reformulated as arising
as a dense subgroup of this group. This yields the well-known fact that in a highly transitive group, the
centralizer of every non-trivial group element is core-free (see Corollary 9.4). In particular, highly
transitive groups cannot be solvable or contain nontrivial commuting normal subgroups, and they must
be icc (all their non-trivial conjugacy classes are infinite).

In another direction, Hull and Osin have shown that given a highly transitive faithful action of a
group Γ, the following are equivalent:

(1) There is a non-trivial group element with finite support;

(2) The alternating group over an infinite countable set embeds into Γ;

(3) The group Γ satisfies a mixed identity .

In particular, any simple highly transitive group which is not the alternating group over an infinite
countable set must be MIF (mixed identity free). Moreover, the fact that the highly transitive actions of
the groups we consider in Theorem A are highly faithful yields that those groups are MIF. We refer the
reader to [HO16, Sec. 5] for the definition of mixed identities, and the proof of the above-mentioned
result.

Finally, there are some groups for which one can actually classify sufficiently transitive actions,
and show that none of them are highly transitive. The first and only examples have been uncovered by
Le Boudec and Matte Bon , who proved the following remarkable result.

Theorem ([LBMB22]). Suppose a group Γ admits a faithful minimal action of general type on a tree
T which is not topologically free on the boundary. Then every faithful Γ-action of transitivity degree
at least 3 is conjugate to the restriction to one orbit of the Γ-action on the boundary of T (whose
transitivity degree is at most 3), and the group is not MIF.

They also proved a similar statement for groups acting on the circle, and provided examples of
groups, coming from [LB16, LB17], satisfying the above assumptions. Combining their result with
ours, we obtain a large class of groups for which high transitivity is completely understood:

Theorem B. Let Γ ↷ T be a faithful minimal action of general type on a tree T. The following are
equivalent

(1) td(Γ)≥ 4;

(2) Γ is highly transitive;

(3) Γ is MIF;

(4) Γ ↷ ∂T is topologically free.
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Note that the topological freeness of the action on the boundary ∂T (item ((4))) is a strengthening
of the global assumption that the Γ action on the tree T is faithful.

In relation to the above quoted question by Hull and Osin, let us note that Theorem B yields the
equivalence between high transitivity and infinite transitivity degree for countable groups admitting a
faithful and minimal action of general type on a tree.

1.3 The cases of amalgams and HNN extensions

In order to prove Theorem A, we use Bass-Serre theory and reduce the proof to the case of an HNN
extension or an amalgamated free product.

Let us first describe the case of an HNN extension Γ = HNN(H,Σ,ϑ). Let T be the Bass-Serre
tree of Γ (see section 2.5). Then it is easy to check that the action Γ ↷ T is minimal of general type if
and only if Σ ̸= H ̸= ϑ(Σ).

The HNN extension case of Theorem A that we show in the present paper is the following.

Theorem C. Let Γ by an HNN extension Γ = HNN(H,Σ,ϑ) with Σ ̸= H ̸= ϑ(Σ). If the action of Γ on
the boundary of its Bass-Serre tree is topologically free, then Γ admits a highly transitive and highly
faithful action; in particular, Γ is highly transitive.

Examples of HNN extensions which are not acylindrically hyperbolic and which do not satisfy the
hypothesis of [FMS15] are Baumslag-Solitar groups. A direct application of Theorem C allows us to
answer a question raised by Hull and Osin in [HO16, Question 6.3]: what is the transitivity degree of
the non-solvable icc Baumslag-Solitar groups? Given m,n ∈ Z∗, recall that the Baumslag-Solitar group
with parameter m,n is:

BS(m,n) := ⟨a,b : abma−1 = bn⟩.

It is not solvable if and only if |n| ̸= 1 and |m| ̸= 1, and icc if and only if |n| ̸= |m|. As noted by Hull
and Osin, if a Baumslag-Solitar group is either solvable or not icc, then its transitivity degree is equal
to 1. We prove the following in Section 8.1.1, and provide more new examples to which Theorem C
applies in Sections 8.2.1 and 8.2.2.

Corollary D. All the non-solvable icc Baumslag-Solitar groups are highly transitive. In particular, the
group BS(2,3) is highly transitive.

Then, let us describe the case of an amalgamated free product (or amalgam for short) Γ = Γ1 ∗Σ Γ2,
where Σ is a common subgroup of Γ1 and Γ2. Such an amalgam is said to be non-trivial if Γ1 ̸= Σ ̸= Γ2,
and non-degenerate if moreover [Γ1 : Σ]≥ 3 or [Γ2 : Σ]≥ 3.

Let T be the Bass-Serre tree of the amalgam Γ (see Section 2.6). It easy to see that the action
Γ ↷ T always minimal, is of general type if and only if the amalgam is non-degenerate, and is faithful
if and only if Σ is core-free in Γ. Let us now state our result in the case of an amalgam.

Theorem E. Consider a non-degenerate amalgam Γ = Γ1 ∗Σ Γ2 and its Bass-Serre tree T. If the
induced Γ-action on ∂T is topologically free, then Γ admits a highly transitive and highly faithful
action; in particular, Γ is highly transitive.

Notice that, in the context of the theorem, if the induced Γ-action on ∂T is topologically free, then
obviously the action on T is faithful, hence Σ is core-free in Γ. Sections 8.1.2 and 8.2.3 provides new
highly transitive examples obtained via Theorem E.
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1.4 Comparison with former results

Here is a corollary of our result which does not mention the action on the boundary, where given a
subtree T′ of T, we denote by ΓT′ the pointwise stabilizer of T′ in Γ.

Corollary F. Let Γ ↷ T be an action of a countable group Γ on a tree T, which is faithful, minimal,
and of general type. If there exist a bounded subtree B and a vertex u in B such that ΓB is core-free in
Γu, then, Γ admits an action on a countable set which is both highly transitive and highly faithful. In
particular, Γ is highly transitive.

This corollary encompasses all the previously known results of high transitivity for groups with
a minimal action of general type on a tree, which fall in two categories. The first examples are the
acylindrically hyperbolic ones, for which one can use the following result by Minasyan and Osin,
combined with the high transitivity for acylindrically hyperbolic groups result of Hull and Osin. In its
statement, we denote by [u,v] the geodesic between u and v.

Theorem. [MO15, Theorem 2.1] Let Γ be a group acting minimally on a tree T. Suppose that Γ is not
virtually cyclic, Γ does not fix any point in ∂T, and there exist vertices u,v of T such that Γ[u,v] is finite.
Then Γ is acylindrically hyperbolic.

We will check in Proposition 7.4, that all groups satisfying the hypotheses of the above theorem,
and having a trivial finite radical, also satisfy the hypotheses of Corollary F.

Furthermore, as Hull and Osin noticed [HO16, Corollary 5.12], there are groups acting on trees
which are non-acylindrically hyperbolic, but highly transitive thanks to the following result by the first,
third, and fourth authors. In the terminology of the present article, the assertion “Γe is highly core-free
in Γv” means that the action Γv ↷ Γv/Γe is highly faithful.

Theorem. [FMS15, Theorem 4.1] Let a countable group Γ act without inversion on a tree T, and let
R ⊂ E(T) be a set of representatives of the edges of the quotient graph Γ\T. Then Γ is highly transitive,
provided Γv is infinite and Γe is highly core-free in Γv, for every couple (e,v) where e ∈ R and v is one
of its endpoints.

The fact that the groups satisfying the hypotheses of the above theorem also satisfy those of
Corollary F is checked in Proposition 7.5.

There are examples of groups acting on trees which are highly transitive thanks to Corollary F,
but to which the previously known results do not apply. We also check that the icc non-solvable
Baumslag-Solitar groups provide examples of HNN extensions for which Theorem A applies while
Corollary F does not. All these examples can be found in Section 8.

1.5 About the proofs

In order to prove high transitivity for a general class of groups without constructing an explicit highly
transitive action, two approaches can be tried. The first is by working in the space of subgroups of Γ,
and proceeds by inductively building a subgroup Λ ≤ Γ such that the associated homogeneous space
Γ/Λ is highly transitive. To our knowledge, this approach made its first appearance in a paper of Hickin
[Hic88], and was then made more explicit in [Hic92]. It was notably used by Chaynikov when proving
that hyperbolic groups with trivial finite radical are highly transitive, and also by Hull and Osin in their
aforementioned result.

The second approach, pioneered by Dixon, goes by fixing an infinite countable set X , considering a
well-chosen Polish space of group actions on X , and showing that in there, the space of faithful highly
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transitive actions is a countable intersection of dense open sets, hence not empty by the Baire category
theorem. In this work, we follow this second approach, using the same space of actions as the one
considered in [FMS15], but with a much finer construction in order to show density.

As explained before, the proof of the general result goes through the HNN and the amalgam cases.
The two proofs are actually very similar, so for this introduction we only explain in more details what
goes on for HNN extensions.

Given a non-degenerate HNN extension Γ = HNN(H,Σ,ϑ), the idea is to start with a free H-action
on a set X with infinitely many orbits, and then to turn it into a highly transitive faithful Γ-action
via a generic permutation. To be more precise, the Polish space under consideration is the set of all
permutations which intertwine the Σ and the ϑ(Σ)-actions, thus yielding a natural Γ-action. The result
is then that there is a dense Gδ of such permutations which induce a highly transitive faithful Γ-action.

For this to work, the notion of high core freeness was handy in [FMS15]: it allows one to “push”
the situation by a group element in H so as to get to a place where both Σ and ϑ(Σ) act in a more
controllable way. Let us note that this approach was generalized in [FLMM22] to show that all
the groups considered in [FMS15] actually have a faithful homogeneous action onto any bounded
S-Urysohn space.

Here, we use a different approach, similar to the one due to the third and fourth named authors when
they re-discovered the characterization of free products of finite groups which are highly transitive
[MS13]. The main difficulty is that the group element that we use to “push” things out does not belong
to H, in particular it can contain a number of powers of the permutation at hand.

In order to solve this, we first modify the permutation so as to make sure such a push is possible.
The modification is actually very natural. Informally speaking, there are two steps:

1. “erasing the permutation” outside a suitable finite set of Σ-orbits and ϑ(Σ)-orbits, which leaves
us with a partial bijection;

2. make a “free globalization” of this partial bijection, which is obtained by gluing partial bijections
inducing portions of the Γ-action by right translations on itself.

This results in a new Γ-action satisfying a very natural universal property, which we state by introducing
the notion of pre-action of an HNN extension, see Theorem 3.18 (and Theorem 5.17 for its amalgam
counterpart). The construction in step (2) allows us to use the topological freeness of the left action on
the boundary in order to find the further modification of the permutation which yields high transitivity,
following an approach close to the proof of [MS13, Theorem 3.3]. We do not know if our approach
can be generalized so as to obtain faithful homogeneous action onto bounded S-Urysohn space.

1.6 Organization of the paper

Section 2 is a preliminary section in which we introduce our notations and definitions concerning
group actions, graphs, amalgams and HNN extensions. Section 3 contains the main technical tools to
prove Theorem C: the notion of a pre-action of an HNN extension, its Bass-Serre graph and its free
globalization. In Section 4 we prove Theorem C. Section 5 contains the main technical tools to prove
Theorem E: the notion of a pre-action of an amalgam, its Bass-Serre graph and its free globalization.
In Section 6 we prove Theorem E while in Section 7 we prove Theorem A, Theorem B and Corollary
F. Section 8 is dedicated to concrete examples where our results apply. Finally, in Section 9 we show
that the minimality assumption in Theorem A is needed, and we discuss other types of actions on trees.
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2 Preliminaries

The notation A ⋐ B means that B is a set and A is a finite subset of B.

2.1 Group actions

Throughout the article, we will use the symbol X to denote an infinite countable set. Then, S(X)
denotes the Polish group of bijections of X . Unless specified otherwise, groups will act on X on the
right. One of our motivations for doing so is that we will associate paths to words in our groups, so it
will be much easier to read both in the same order (see for instance Section 3.3).

So given two permutations σ ,τ ∈ S(X) and x ∈ X , the image of x by σ is denoted xσ , and the
product στ is the permutation obtained by applying σ first and then τ . This way, S(X) acts on X on the
right and any right G-action X ↶α G is equivalent to a morphism of groups α : G → S(X). The image
of an element g ∈ G by α will be denoted by α(g) or gα , or just g if there is no possible confusion.
Similarly, the image of a subgroup H of G by α will be denoted by α(H) or Hα , or just H.

Notice however that actions on other kinds of spaces, especially on Bass-Serre trees, will be on the
left.

Definition 2.1. An action X ↶ G is highly transitive if, for any k ∈ N∗ and any k-tuples (x1, . . . ,xk),
(y1, . . . ,yk) ∈ Xk, each with pairwise distinct coordinates, there exists γ ∈ G such that xiγ = yi for all
i = 1 . . . ,k.

Lemma 2.2. An action X ↶ G is highly transitive if and only if, for every k ∈ N∗, and every
x1, ...,xk,y1, ...,yk all pairwise distinct, we can find g ∈ G such that xig = yi for i = 1, ...,k.

Proof. Take x1, ...,xk pairwise distinct, and z1, ...,zk pairwise distinct, we need to find γ such that
xiγ = zi for i = 1, ...,k. Since X is infinite, we find y1, ...,yk pairwise distinct and distinct from all the
xi’s and zi’s, then by our assumption there are both g and h such that for all i = 1, ...,k we have xig = yi

and yih = zi, so the element γ = gh is the element we seek.

Given a bijection σ ∈ S(X), its support is the set suppσ = {x ∈ X : xσ ̸= x}. Recall that an action
X ↶ G is faithful if for every g ∈ G\{1} the support of g is not empty.

Definition 2.3. An action X ↶ G is called strongly faithful if, for any finite subset F ⊆ G\{1}, the
intersection of the supports of the elements of F is not empty. It is called highly faithful if for every
finite subset F ⊆ G\{1}, the intersection of the supports of the elements of F is infinite.

Given a strongly faithful action X ↶ G, and a finite subset F ⊆ G, it is easy to see that there
exists x ∈ X such that the translates xg, for g ∈ F , are pairwise distinct. Indeed, any element x ∈⋂

g,h∈F supp(gh−1) will do.
Let us check that our definition of high faithfulness coincides with the one given in [FMS15].
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Lemma 2.4. An action X ↶ G is highly faithful if and only if for every n ∈ N, if F is a finite subset of
X and X1, ...,Xn are subsets of X such that X = F ∪X1 ∪·· ·∪Xn, then there is some k ∈ {1, ...,n} such
that for every g ∈ G\{1}, there is x ∈ Xk such that x ·g ̸= x.

Proof. We prove the lemma by the contrapositive in both directions.
Suppose that for a fixed n ∈ N, we can find a decomposition X = F ∪X1 ∪·· ·∪Xn such that for all

k ∈ {1, ...,n}, there is gk ∈ G whose support is disjoint from Xk. Then in particular, the intersection of
the supports of the gk’s is contained in F , hence finite, contradicting high faithfulness.

Conversely, suppose that we found g1, ...,gn ∈ G whose supports have finite intersection. Then
the sets F =

⋂n
k=1 suppgk and Xk = X \ suppgk satisfy that for all k ∈ {1, ...,n}, there is some g ∈ G

(namely gk) such that for all x ∈ Xk, x ·g = x.

Of course, we have the implications:

free ⇒ highly faithful ⇒ strongly faithful ⇒ faithful

Let us now see that strong faithfulness and high faithfulness coincide in many cases.

Proposition 2.5. Given an action X ↶ G of a nontrivial group G, the following assertions are
equivalent:

(1) the action is strongly faithful, but not highly faithful;

(2) there are finite orbits in X on which G acts freely (in particular, G has to be finite), but only
finitely many of them.

Proof. Define the free part X f of our action as the union of the orbits in X on which G acts freely. Note
that we can write X f as

X f =
⋂

g∈G\{1}
supp(g).

Assume first that (2) holds. In this case, X f is a non-empty finite union of finite orbits, hence a
non-empty finite set. Therefore, the action is strongly faithful, since X f is non-empty, and it is not
highly faithful, since G and X f are finite.

Assume now that (1) holds. Since the action is not highly faithful, there exists F0 ⋐ G\{1} such
that

⋂
g∈F0

supp(g) is finite. Thus, the family (YF)F0⊆F⋐G\{1} given by

YF =
⋂
g∈F

supp(g)

is a decreasing family of finite sets, which are all non-empty since the action is strongly faithful. Now,
we have

X f =
⋂

g∈G\{1}
supp(g) =

⋂
F0⊆F⋐G\{1}

YF ,

hence X f is finite and non-empty. Consequently, there are finite orbits in X on which G acts freely, and
their number is finite.

Corollary 2.6. In case G is infinite, an action X ↶ G is highly faithful if and only if it is strongly
faithful.

Let us end this section by remarking a reformulation of strong faithfulness which we won’t use.

Remark 2.7. A transitive action is strongly faithful if and only if the stabilizer of every (or equivalently,
some) point is not a confined subgroup of the acting group (see Section 1.5 from [Mat18] for a
discussion of the notion of confined subgroup).
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PIERRE FIMA, FRANÇOIS LE MAÎTRE, SOYOUNG MOON, AND YVES STALDER

2.2 Graphs

First, let us recall the definition of a non-simple graph.

Definition 2.8. A graph G is given by a vertex set V (G), an edge set E(G), a fixed-point-free
involution ·̄ : E(G)→ E(G) called the antipode map, a source map s : E(G)→ V (G) and a range
map r : E(G)→V (G) subject to the condition:

for all e ∈ E(G), s(ē) = r(e).

The graph G is oriented if a partition E(G) = E(G)+⊔E(G)− such that E(G)− = E(G)+ is given.
In this case, the edges in E(G)+ are called positive edges and the edges in E(G)− are called negative
edges.

Recall that a path ω in a graph G is a finite sequence of edges ω = (e1, . . . ,en), such that, for
all 1 ≤ k ≤ n− 1, r(ek) = s(ek + 1). We call s(e1) the source of ω and r(en) the range of ω . We
also say that ω is a path from s(ω) := s(e1) to r(ω) := r(en). The inverse path of ω is defined by
ω := (en, . . . ,e1). The integer n is called the length of ω and denoted by ℓ(ω). Similarly, an infinite
path, also called a ray, is a sequence of edges ω = (ek)k≥1 such that r(ek) = s(ek+1) for all k ≥ 1 and
the vertex s(ω) := s(e1) is called the source of ω .

Given a path ω = (ek)1≤k≤n, respectively an infinite path ω = (ek)k≥1, in G, we use the notation
ω(n) := r(en), for n ≥ 1 and ω(0) = s(e1) = s(ω). A couple (ek,ek+1) such that ek+1 = ek, if there is
one, is called a backtracking in ω . If ω has no backtracking, we also say that it is a reduced path.
One says that ω is geodesic in G if, for all i, j, the distance in G between ω(i) and ω( j) is exactly
| j− i|. Obviously, all geodesic paths are reduced.

A cycle in G is a reduced path c of length at least 1 such that s(c) = r(c), that is, a reduced path
c = (e1, . . . ,en) such that n ≥ 1 and c(n) = c(0). Such a cycle is elementary if moreover the vertices
c(k), for 0 ≤ k ≤ n−1, are pairwise distinct. Every cycle contains an elementary cycle.

When G is oriented, a path ω = (ek)1≤k≤n, respectively an infinite path ω = (ek)k≥1, in G is called
positively oriented if ek ∈ E(G)+ for all k and negatively oriented if ek ∈ E(G)− for all k; it is called
oriented if it is either positively oriented or negatively oriented.

Definition 2.9. A morphism of graphs f : G→ G′ is a couple of maps V (G)→V (G′) and E(G)→
E(G′), which will both be denoted by f for sake of simplicity, such that f (ē) = f (e), f (s(e)) = s( f (e)),
and f (r(e)) = r( f (e)) for all edges e in G.

The star at a vertex v is the set st(v) of edges whose source is v, and its cardinality is called the
degree of v. A morphism of graphs f : G→ G′ is locally injective if, for all v ∈V (G), the restriction of
f to the star of v is injective. Note that a locally injective morphism from a connected graph to a tree is
injective.

Definition 2.10. Given a graph G, and a set of edges E ⊆ E(G), we associate to this subset the induced
subgraph as the graph H such that V (H) = s(E)∪ r(E), E(H) = E ∪ Ē, and the structure maps of H
are the restrictions of those of G.

Definition 2.11. Given an edge e, its associated half-graph is the subgraph induced by the set of edges
f such that there is a reduced path starting by e, not using ē, and whose last edge is equal to f .

Remark 2.12. Suppose G is connected and e is an edge, let He and Hē be the half-graphs associated
to e and ē. Then, one has V (G) =V (He)∪V (Hē) and E(G) = E(He)∪E(Hē). Moreover, denoting
by G0 the graph obtained by deleting the edges e, ē in G:
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1. if G0 remains connected, then one has He = G=Hē;

2. if not, then He and Hē are obtained by adding the edges e, ē to the respective connected
components of r(e) and s(e) in G0.

2.3 Trees and their automorphisms

For a more detailed account of what follows, we refer the reader to [HP11]. A forest is a graph with no
cycle and a tree is a connected forest. In a forest, we recall that any reduced (finite or infinite) path is
geodesic. Moreover, any two vertices in a tree are connected by a unique reduced path.

There is a well-known classification (see e.g. [Ser80]) of the automorphisms of a tree T: if g is
such an automorphism, then:

• either g is elliptic, which means that g fixes some vertex of T,

• or g is an inversion, which means that g sends some edge e onto its antipode ē,

• or g is hyperbolic, which means that g acts by a (non-trivial) translation on a bi-infinite geodesic
path, called its axis.

Definition 2.13. The boundary ∂T (or set of ends) of a tree T is the set of geodesic rays quotiented
by the equivalence relation which identifies two geodesic rays whose ranges differ by a finite set.

Note that since we are working in a tree, if we fix a vertex o then the set of geodesic rays starting at
o is in bijection with the boundary of the tree through the quotient map.

The boundary is equipped with the topology whose basic open sets UH are given by fixing a
half-tree H, and letting UH be the set of equivalence classes of geodesic rays whose range is contained
in H (so given a geodesic ray ω , its class belongs to UH if and only if some terminal subpath of ω is
contained in H).

Any g ∈ Aut(T) induces a homeomorphism of ∂T, which yields a group homomorphism

Aut(T)−→ Homeo(∂T) .

In case g is hyperbolic, g fixes exactly two points in ∂T, which are the endpoints of its axis. Let us also
recall that every action on a tree Γ ↷ T satisfies exactly one of the following:

• it is elliptic, which means that (the image of) Γ stabilizes some vertex, or some pair of antipodal
edges;

• it is parabolic, or horocyclic, that is, Γ contains no hyperbolic elements, without being elliptic
itself;

• it is lineal, that is Γ contains hyperbolic elements, all of them sharing the same axis;

• it is quasi-parabolic, or focal, that is Γ contains hyperbolic elements with different axes, but all
hyperbolic elements of Γ share a common fixed point in ∂T;

• it is of general type, which means that Γ contains two hyperbolic elements with no common
fixed point in ∂T (such hyperbolic elements are called transverse).
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In the parabolic case, it can be shown that every element of Γ is elliptic, and that Γ stabilizes a unique
point in ∂T. In the quasi-parabolic case, it can be shown that the common fixed point in ∂T of the
hyperbolic elements is unique and fixed by Γ. If Γ ↷ T is of general type, it is easy to produce infinitely
many pairwise transverse hyperbolic elements. An action on a tree is called minimal if there is no
invariant subtree. Since we will be interested in faithful minimal actions of infinite countable groups on
trees, elliptic actions won’t occur. Moreover every vertex will have degree at least 2, since otherwise
we could trim off all vertices of degree 1 and get a proper invariant subtree.

Let us recall that the action Γ ↷ ∂T by homeomorphisms is topologically free if the trivial element
is the only element in Γ which fixes a non-empty open subset of ∂T pointwise. We will rather use the
following concrete characterization.

Proposition 2.14. Let T be a tree with at least three ends. Given a faithful minimal action of an infinite
group Γ on T, the following are equivalent:

(i) the induced action Γ ↷ ∂T is topologically free;

(ii) no element of Γ\{1} can fix pointwise a half-tree in T.

Proof. The implication from (i) to (ii) is clear since half-trees do define open subsets for the topology
of ∂T. Conversely, assume (ii). To prove (i), let us fix γ ∈ Γ\{1} and show that γ does not fix any
basic open set UH pointwise.

Notice that an inversion does not fix any point in ∂T. Moreover a hyperbolic automorphism h has
exactly two fixed points ξ± and, taking a third end η ∈ ∂T, one has ηh±n → ξ± as n →+∞, so that
{ξ ∈ ∂T : ξ h = ξ} has empty interior. Hence, the only case to check is when γ is elliptic. Notice
also that, by minimality of the action, every vertex has degree at least 2 in T, so that every half-tree is
covered by the geodesic rays in it.

Consider any basic open set UH, given by a half-tree H. We claim that H contains a geodesic ray
which does not meet the subtree Fix(γ) of γ-fixed points. Indeed, take any geodesic ray r in H. If r
meets Fix(γ) at some vertex v, then consider the edge e in r whose source is v, and the half-tree He

it defines. By (ii), there is a vertex w in He which γ does not fix. Extend the geodesic from v to w to
a geodesic ray in He. The tail of this ray from w does not meet Fix(γ), since the latter is a subtree
containig v. The claim is proved.

Now, since γ is elliptic, our ray which does not meet Fix(γ) is moved by γ onto a disjoint geodesic
ray in T. This corresponds to a point ξ ∈UH such that ξ γ ̸= ξ .

Note that topological freeness of the action on the boundary is called slenderness by de la Harpe
and Préaux [HP11]. Although we won’t use it, let us mention that for a minimal action of general type,
the topological freeness of the action on the boundary is also equivalent to the action on the tree itself
being strongly faithful (see [BIO20, Prop. 3.8] for this and other characterizations).

2.4 Treeing edges

Let us now turn to the link between half-graphs, seen in Section 2.2, and trees.

Definition 2.15. An edge in a graph G is a treeing edge when its associated half-graph is a tree, in
which case we also call the latter its half-tree.

Here is an easy characterization of treeing edges that will prove useful.

Lemma 2.16. Let G be a graph, let e be an edge. Then the following are equivalent:
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(i) the edge e is a treeing edge;

(ii) the map which takes a reduced path starting by e to its range is injective;

(iii) there is no reduced path from s(e) to s(e) starting by the edge e.

Proof. First note that (i) implies (ii) since when e is a treeing edge, all the reduced paths starting by e
must belong to its half-tree, and hence have distinct ranges.

We then show that (ii) implies (iii) by the contrapositive. If (iii) does not hold, let c be a reduced
path starting by the edge e from s(e) to s(e). Then c and the reduction of cc have the same range, so
(ii) does not hold.

Finally we show that (iii) implies (i) by the contrapositive. If e is not a treeing edge, consider the
following two cases:

• In the half-graph of e, the vertex s(e) has degree at least two. We then fix some e′ ̸= e such that
s(e′) = s(e). If r(e′) = r(e) then the reduced path ee′ witnesses that (iii) does not hold.

Otherwise by the definition of the half-graph we find a reduced path ω starting by e whose last
edge is either e′ or e′. If the last edge is e′, then ω witnesses that (iii) does not hold. If the last
edge of ω is e′, then write ω = ω ′e′ and note that ω ′ witnesses that (iii) does not hold. So in any
case, (iii) does not hold.

• In the half-graph of e, the vertex s(e) has degree 1. Then since e is not a treeing edge, we find
a non-empty reduced path ω starting and ending at r(e), and using neither e nor ē. Then eω ē
witnesses that (iii) does not hold.

This finishes the proof of the equivalences.

Note that if a reduced path uses a treeing edge at some point, then from that point on it only uses
treeing edges. Moreover, we have the following result.

Lemma 2.17. Let G be a connected graph admitting a treeing edge, and let ω be a reduced path in G.
Then ω can be extended to a reduced path ω ′ whose last edge is a treeing edge.

Proof. Let e be the last edge of ω . If e is a treeing edge, we can take ω ′ = ω . If not, by the previous
lemma there is a reduced path of the form ec from s(e) to s(e). Let e′ be a treeing edge, and denote by
C the set of vertices visited by the reduced path c.

We then claim that s(e′) is strictly closer to C than r(e′). Indeed, otherwise, if we fix a geodesic η

from r(e′) to C, the geodesic η cannot start by ē′, and there exists a cycle κ based at r(η) and whose
vertices belong to C. Then the reduced path e′ηκη̄ ē′ witnesses that e′ does not satisfy condition (iii)
from the previous lemma, so e′ is not a treeing edge, a contradiction.

Now let ξ be a geodesic from C to s(e′), by the previous claim we know that ξ e′ is still a reduced
path. Let c′ be the initial segment of c which connects r(e) to the source of ξ , then ω ′ = ωc′ξ e′ is the
desired extension of ω .

2.5 HNN extensions

Let H be a group, and let ϑ : Σ → ϑ(Σ) be an isomorphism between subgroups of H. The HNN
extension associated to these data is the group defined by the following presentation

HNN(H,Σ,ϑ) :=
〈
H, t | t−1

σt = ϑ(σ) for all σ ∈ Σ
〉
, 1

1This notation means that HNN(H,Σ,ϑ) is the quotient of the free product H ∗ ⟨t⟩ by its smallest normal subgroup
containing all elements t−1σtϑ(σ)−1 where σ ∈ Σ.
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where t is an extra generator, called the stable letter, not belonging to H. We refer the reader to
[Ser80, Chap. 1, Prop. 5] for the fact that the HNN extension defined above does contain H as a
natural subgroup. Note that the defining relation t−1σt = ϑ(σ) is different from the one chosen in
[FMS15, FLMM22]. This change is coherent with our choice to let groups act on the right on sets.

We will denote this HNN extension by Γ. Recall that it is called ascending if one of the subgroups
Σ,ϑ(Σ) is equal to H.

Let us fix a set of representatives C+ of left Σ-cosets in H, and a set of representatives C− of left
ϑ(Σ)-cosets in H, which both contain 1, so that we have

H =
⊔

c∈C+

cΣ = Σ⊔
⊔

c∈C+\{1}
cΣ and H =

⊔
c∈C−

cϑ(Σ) = ϑ(Σ)⊔
⊔

c∈C−\{1}
cϑ(Σ) .

It is well-known, see e.g. [LS01], that every element γ ∈ Γ admits a unique normal form

γ = c1tε1 · · ·cntεnhn+1,

where n ≥ 0, εi =±1 for 1 ≤ i ≤ n, εi =+1 implies ci ∈C+, εi =−1 implies ci ∈C−, hn+1 ∈ H, and
there is no subword of the form tε1t−ε . Note that the case n = 0 corresponds to elements in H.

The Bass-Serre tree of the HNN extension Γ is the oriented graph T defined by

V (T) = Γ/H ; E(T)+ = Γ/Σ ; E(T)− = Γ/ϑ(Σ) ;

where the structural maps are given by the following formulas

γΣ = γtϑ(Σ) ; s(γΣ) = γH ; r(γΣ) = γtH ;

γϑ(Σ) = γt−1
Σ ; s(γϑ(Σ)) = γH ; r(γϑ(Σ)) = γt−1H .

This graph is naturally endowed with a left Γ-action by graph automorphisms (respecting the orienta-
tion), and classical Bass-Serre theory [Ser80] ensures it is a tree. The action is always minimal since it
is transitive on the vertices. Let us now recall what kind of action Γ ↷ T is, depending on the inclusions
Σ ⊆ H and ϑ(Σ)⊆ H. Note that the stable letter t always induces a hyperbolic automorphism.

• If Σ = H = ϑ(Σ), then the Bass-Serre tree is a bi-infinite line (each vertex has degree 2), hence,
the action is lineal.

• If Σ = H and ϑ(Σ) ̸= H, then there is exactly one positive edge and several negative edges in the
star at each vertex. Hence, to each vertex v, one can associate a reduced infinite path ω+

v starting
at v by taking the unique positive edge at each vertex. Given two vertices u and v, the paths ω+

u
and ω+

v share a common terminal subpath. Indeed, this is obvious if u,v are linked by an edge,
and then, denoting v0, . . . ,vn the vertices on the geodesic between u and v, all the paths ω+

vi
share

a common terminal subpath.

Now, let ξ ∈ ∂T be the common endpoint of all paths ω+
v . Given any hyperbolic element g ∈ Γ,

and any vertex v in T, we have g ·ω+
v = ω+

gv since Γ preserves the orientation, whence gξ = ξ .
Therfore, all hyperbolic elements of Γ fix ξ .

On the other hand, it is easy to see that t and c−1tc don’t have the same axis. Hence, the action is
quasi-parabolic.

• Similarly, if Σ ̸= H and ϑ(Σ) = H, then the action is quasi-parabolic.

• If the HNN extension is non-ascending, then taking h in C+ \{1} and g ∈C− \{1}, it is fairly
easy to see that gt and th are transverse hyperbolic elements. Hence, the action is of general
type.
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2.6 Group amalgams

Let ι1 : Σ → Γ1 and ι2 : Σ → Γ2 be injective morphisms of countable groups. We will denote by Σ j

the image of ι j, and by ϑ : Σ1 → Σ2 the isomorphism sending ι1(σ) to ι2(σ) for all σ ∈ Σ. The free
product with amalgamation (or amalgam for short) associated to these data is

Γ1 ∗Σ Γ2 := ⟨Γ1,Γ2 | ι1(σ) = ι2(σ) for all σ ∈ Σ⟩= ⟨Γ1,Γ2 |σ = ϑ(σ) for all σ ∈ Σ1⟩ . 2

We will denote the amalgam Γ1 ∗Σ Γ2 by Γ. We will still denote by Σ,Γ1,Γ2 the images of these groups
in the amalgam Γ when there is no risk of confusion. In Γ, one has Γ1 ∩Γ2 = Σ. Recall that such an
amalgam is said to be non-trivial if Γ j ̸= Σ j for j = 1,2, and non-degenerate if moreover [Γ1 : Σ1]≥ 3
or [Γ2 : Σ2]≥ 3.

Let us fix sets of representatives C j of left Σ j-cosets in Γ j, for j = 1,2, which both contain 1, so
that we have

Γ1 =
⊔

c∈C1

cΣ1 = Σ1 ⊔
⊔

c∈C1\{1}
cΣ1 and Γ2 =

⊔
c∈C2

cΣ2 = Σ2 ⊔
⊔

c∈C2\{1}
cΣ2 .

Notice that the intersection of the images of C1 and C2 in Γ is just {1}. It is well-known, see e.g.
[Ser80], that any element γ ∈ Γ\Σ admits a unique normal form

γ = c1 · · ·cnσ

where n ∈ N, c1, . . . ,cn lie alternatively in C1 \{1} and C2 \{1}, and σ ∈ Σ.
The Bass-Serre tree of the amalgam Γ = Γ1 ∗Σ Γ2 is the oriented graph T defined by

V (T) = Γ/Γ1 ⊔ Γ/Γ2 ; E(T)+ = Γ/Σ ; s(γΣ) = γΓ1 ; r(γΣ) = γΓ2

(the set of negative edges E(T)− just being Γ/Σ := {ē : e ∈ Γ/Σ}, which is another copy of Γ/Σ).
Again, this graph is naturally endowed with a left Γ-action by graph automorphisms (respecting the
orientation), and classical Bass-Serre theory [Ser80] ensures it is a tree. The action is always minimal
since Γ acts transitively on the set of positive edges. Let us now recall what kind of action Γ ↷ T is,
depending on the inclusions Σ j ⊆ Γ j.

• If Σ1 = Γ1, then Γ = Γ2, and the vertex Γ2 of T is fixed. Hence the action is elliptic. Similarly, if
Σ2 = Γ2, then the action is elliptic.

• If the amalgam is non-trivial, and [Γ1 : Σ1] = 2 = [Γ2 : Σ2], then the Bass-Serre tree is a bi-infinite
line (each vertex has degree 2) and for any γ j ∈ Γ j −Σ j, j = 1,2, the element γ1γ2 is hyperbolic.
Hence, the action is lineal.

• If the amalgam is non-degenerate, then the action is of general type. Indeed, assuming [Γ1 : Σ]≥ 3,
and taking g1 ̸= g2 in C1 \ {1} and h ∈ C2 \ {1}, it is fairly easy to see that g1h and g2h are
transverse hyperbolic elements. The case [Γ2,Σ]≥ 3 is similar.

2More precisely, Γ1 ∗Σ Γ2 is the quotient of the free product Γ1 ∗Γ2 by its smallest normal subgroup containing all
elements ι1(σ)ι2(σ)−1 where σ ∈ Σ.
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2.7 Partial actions

The pre-actions that we will define below are tightly linked with the notion of partial action. Although
the latter do not play an essential role in our construction, we will see that every pre-action yields a
natural partial action, so we feel these are worth mentioning. For more details on partial actions, we
refer the reader to [KL04].

Given a set X , we denote by I(X) the set of all partial bijections of X , which we think of as
subsets of X ×X whose vertical and horizontal fibers all have cardinality at most 1. We have a natural
composition law on subsets of X ×X given by: for all A,B ⊆ X ×X ,

AB = {(x,z) : ∃y ∈ X ,(x,y) ∈ A and (y,z) ∈ B},

and this restricts to a composition law on I(X). The inclusion provides us with a natural partial
order on I(X). The projection on the first coordinate of a partial bijection τ is its domain domτ , and
the projection on the second coordinate is its range rngτ . Finally, we define the inversion map by
σ−1 = {(y,x) : (x,y) ∈ σ}.

Definition 2.18. A (right) partial action of a group Γ on a set X is a map π : Γ → I(X) such that for
all g,h ∈ Γ

(1) π(1Γ) = idX ;

(2) π(g)π(h)⊆ π(gh);

(3) π(g)−1 = π(g−1).

The main example of a partial action is provided by the restriction of an action to a subset.
Conversely, every partial action is the restriction of a global action, and there is a universal such global
action provided by the following result.

Theorem 2.19 (see [KL04, Theorem 3.4]). Given a partial action of a countable group Γ on a set X,
there is a Γ-action on a larger set X̃ such that whenever Y ↶ Γ is a Γ-action on a set Y which contains
X, there is a unique Γ-equivariant map f : X̃ → Y which restricts to the identity on X.

The action X̃ ↶ Γ from the previous theorem is called the universal globalization of the partial
Γ-action on X . It is tacit in the theorem that the Γ-actions on sets containing X extend the initial partial
Γ-action on X .

Definition 2.20. A partial action X ↶π Γ is called strongly faithful if for every F ⋐ Γ\{1}, there is
x ∈ X such that for all g ∈ F , we have xπ(g) ̸= x (in particular x ∈

⋂
g∈F domπ(g)).

Example 2.21. The partial action of the free group on two generator F2 on the set of reduced words
which begin by a is strongly faithful.

3 Free globalizations for pre-actions of HNN extensions

For this section, as in Section 2.5, let us fix an HNN extension Γ = HNN(H,Σ,ϑ). Let us also fix a
set of representatives C+ of left Σ-cosets in H, and a set of representatives C− of left ϑ(Σ)-cosets in
H, which both contain 1, so that normal forms of elements of Γ are well-defined. Let us also denote
by Γ+, respectively Γ−, the set of elements whose normal form leftmost’s letter is t, respectively t−1.
Note that Γ+ is invariant by left Σ-multiplication, while Γ− is invariant by left ϑ(Σ)-multiplication.
We then have Γ = H ⊔C+Γ+⊔C−Γ−.
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3.1 Pre-actions of HNN extensions and their Bass-Serre graph

Given an action on an infinite countable set X ↶π H, and a bijection τ : X →X such that σπτ = τϑ(σ)π

for all σ ∈ Σ, there exists a unique action X ↶πτ Γ such that hπτ = hπ for all h ∈ H, and tπτ = τ . If the
action π is free, we obtain an example of the following situation.

Definition 3.1. A pre-action of the HNN extension Γ is a couple (X ,τ) where X is an infinite countable
set endowed with a free action X ↶π H, and

τ : dom(τ)→ rng(τ)

is a partial bijection where dom(τ), rng(τ)⊆ X , and σπτ = τϑ(σ)π for all σ ∈ Σ.

The relations σπτ = τϑ(σ)π in Definition 3.1 are equalities between partial bijections. In particular
σπτ and τϑ(σ)π must have the same domain and the same range. As a consequence, for any pre-action
(X ,τ), the domain of τ is necessarily Σ-invariant, its range is necessarily ϑ(Σ)-invariant, and τ sends
Σ-orbits onto ϑ(Σ)-orbits.

A pre-action (X ,τ) is called global if τ is a genuine permutation of X . In this case there is an
associated action X ↶πτ Γ as above. We will often identify global pre-actions and Γ-actions.

Example 3.2. If X ↶π Γ is an action, where H is acting freely, then denoting by X ↶πH H its restriction,
one obtains a global pre-action (X , tπ), where X is endowed with πH . The action X ↶πτ Γ coincides
with X ↶π Γ in this case. In particular, the right translation action Γ ↶ Γ gives rise to a pre-action
(Γ, tρ), where tρ : γ 7→ γt, called the translation pre-action.

The above notion of pre-action is close to the notion of a partial action developed in [KL04] as we
will see. As seen before, actions of Γ (such that H acts freely) correspond to pre-actions with a global
bijection. Another source of examples of pre-actions is the following.

Definition 3.3. Given a pre-action (X ,τ), and an infinite H-invariant subset Y ⊆ X , the restriction
of (X ,τ) to Y is the pre-action (Y,τ ′), where Y is endowed with the restriction of π , and the partial
bijection is τ ′ = τ↾Y∩Y τ−1 . An extension of (X ,τ) is a pre-action (X̃ , τ̃) whose restriction to X is (X ,τ).

Example 3.4. The sets Γ+ and Γ− are H-invariant (by right multiplications), thus so are T+ := Γ+⊔H
and T− := Γ−⊔H. The translation pre-action (Γ, tρ) admits the restrictions (T+,τ+), and (T−,τ−),
which we call the positive translation pre-action and the negative translation pre-action respectively.

Let us compute the domain and range of the partial bijection τ+ corresponding to the positive
translation pre-action. Let x ∈ T+. If x belongs to Γ+, then so does xt, and so τ+(x) is defined. But if x
belongs to H instead, then xt ̸∈ H, and xt ∈ Γ+ if and only if its lefttmost letter is t, which happens if
and only if x ∈ Σ. Reciprocally, one has yt−1 ∈ T+ for every y ∈ Γ+, and yt−1 /∈ T+ for every y ∈ H.
We conclude that the domain of τ+ is Σ⊔Γ+, while its range is Γ+.

The same computation can be made for the partial bijection τ− associated to the negative translation
pre-action on T−: the domain of τ− is equal to Γ−, and its range is equal to Γ−⊔ϑ(Σ).

Let us now associate a graph to any Γ-pre-action (X ,τ) as follows. Informally speaking, we start
with a graph whose vertices are of two kinds: the Σ-orbits in X , and the ϑ(Σ)-orbits in X . Then we
put an edge from xΣ to yϑ(Σ) when (xΣ)τ = yϑ(Σ), and finally we identify all the Σ-orbits and all
ϑ(Σ)-orbits that are in a same H-orbit. We may, and will, identify H with its image in S(X) by the
action X ↶π H, since the action π is free, hence faithful. Consequently, we don’t write superscripts π

from now, as soon as there is no risk of confusion.
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Definition 3.5. The Bass-Serre graph of (X ,τ) is the oriented graph Gτ defined by

V (Gτ) = X/H , E(Gτ)
+ = dom(τ)/Σ , E(Gτ)

− = rng(τ)/ϑ(Σ) ,

where the structural maps are given by the following formulas

xΣ = xτϑ(Σ) ; s(xΣ) = xH ; r(xΣ) = xτH ;

yϑ(Σ) = yτ
−1

Σ ; s(yϑ(Σ)) = yH ; r(yϑ(Σ)) = yτ
−1H .

The Bass-Serre graph will also be denoted by BS(X ,τ).

Example 3.6. (1) The Bass-Serre graph of the translation pre-action (Γ, tρ) is the classical Bass-
Serre tree T of Γ.

(2) The Bass-Serre graph of the positive translation pre-action (T+,τ+) is the half-tree of the edge Σ

in T.

(3) The Bass-Serre graph of the negative translation pre-action (T−,τ−) is the half-tree of the edge
ϑ(Σ) in T.

(4) The Bass-Serre graph of a global Γ-pre-action is actually a forest if and only if the associated
Γ-action is free.

Example (1) is obvious. Examples (2) and (3), if not obvious yet, will become clear after Remark
3.12. Example (4) will be seen in Remark 3.17.

Now, let us link the star at a vertex in a Bass-Serre graph BS(X ,τ) to small normal forms in Γ.
Given a vertex in an oriented graph, let us denote by st+(v), respectively st−(v), the set of positive,
respectively negative, edges whose source is v, so that we have a partition st(v) = st+(v)⊔ st−(v) of
the star at v. Given a point x ∈ X , there are natural (maybe sometimes empty) maps

e+x : {ct : c ∈C+, xc ∈ dom(τ)} → st+(xH)
ct 7→ xcΣ

e−x : {ct−1 : c ∈C−, xc ∈ rng(τ)} → st−(xH)
ct−1 7→ xcϑ(Σ)

and we notice that e+x (ct) goes from xH to xcτH, while e−x (ct−1) goes from xH to xcτ−1H.
These maps are surjective, since the orbits xcΣ for c ∈ C+, respectively the orbits xcϑ(Σ) for

c ∈C−, cover xH. Since the action X ↶π H is free, we have xH =
⊔

c∈C+ xcΣ and xH =
⊔

c∈C− xcϑ(Σ),
so that e+x ,e

−
x are in fact bijective. Then, by merging e+x and e−x , we get a bijection

ex : {ct : c ∈C+, xc ∈ dom(τ)}⊔{ct−1 : c ∈C−, xc ∈ rng(τ)}→ st(xH) .

3.2 Morphisms and functoriality of Bass-Serre graphs

We shall now see that there is a functor, that we will call the Bass-Serre functor, from the category
of Γ-pre-actions to the category of graphs, which extends Definition 3.5. Let us start by turning
Γ-pre-actions into a category.

Definition 3.7. A morphism of pre-actions from (X ,τ) to (X ′,τ ′) is a H-equivariant map ϕ : X → X ′,
such that for all x ∈ domτ , ϕ(xτ) = ϕ(x)τ ′.
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Note that in particular, ϕ maps dom(τ) into dom(τ ′), and rng(τ) into rng(τ ′). Now, given a
morphism of pre-actions ϕ : (X ,τ)→ (X ′,τ ′), and denoting by Gτ and Gτ ′ the corresponding Bass-
Serre graphs, let us define a map V (Gτ)→V (Gτ ′) by

xH 7→ ϕ(x)H , for x ∈ X ,

and a map E(Gτ)→ E(Gτ ′) by

xΣ 7→ ϕ(x)Σ , for x ∈ dom(τ) and yϑ(Σ) 7→ ϕ(y)ϑ(Σ) , for y ∈ rng(τ) .

It is routine to check that these maps define a morphism of graphs, that we denote by Gϕ . For
instance, the image of xΣ is ϕ(x)Σ, the image of xΣ = xτϑ(Σ) is ϕ(xτ)ϑ(Σ) = ϕ(x)τ ′ϑ(Σ), and one
has ϕ(x)Σ = ϕ(x)τ ′ϑ(Σ) in Gτ ′ as expected.

Lemma 3.8. The assignments (X ,τ) 7→ Gτ and ϕ 7→ Gϕ define a functor from the category of Γ-pre-
actions to the category of graphs.

We will denote this functor by BS and call it the Bass-Serre functor of Γ. The morphism Gϕ will
also be denoted by BS(ϕ).

Proof. First, given the identity morphism on a pre-action (X ,τ) it is obvious that the associated
morphism of graphs is the identity on Gτ .

Now, take two morphisms of pre-actions ϕ : (X ,τ)→ (X ′,τ ′) and ψ : (X ′,τ ′)→ (X ′′,τ ′′). It is also
clear that the composition of Gϕ followed by Gψ , and the morphism Gψ◦ϕ are both given by the map
V (Gτ)→V (Gτ ′′) by

xH 7→ ψ ◦ϕ(x)H , for x ∈ X ,

and the map E(Gτ)→ E(Gτ ′′) by

xΣ 7→ ψ ◦ϕ(x)Σ , for x ∈ dom(τ) and yϑ(Σ) 7→ ψ ◦ϕ(y)ϑ(Σ) , for y ∈ rng(τ) .

This completes the proof.

To conclude this section, let us notice a consequence of freeness of the H-actions in the definition
of Γ-pre-actions.

Lemma 3.9. Every morphism of the form BS(ϕ) is locally injective. More precisely, its restriction to
the star at a vertex xH, is the composition e

ϕ(x) ◦ e−1
x , which is an injection into the star at ϕ(x)H.

Proof. Consider a morphism of pre-actions ϕ : (X ,τ)→ (X ′,τ ′), and give names to the actions involved:
X ↶π H, and X ′ ↶π ′

H. Let us also recall from Section 3.1 that the maps ex and eϕ(x) are bijective,
since these actions are free. Now, given x ∈ X and e ∈ st(xH) in Gτ , one must have e = ex(ctε), that is:

• either e = xcπΣ for a unique c ∈C+ satisfying xcπ ∈ dom(τ),

• or e = xcπϑ(Σ) for a unique c ∈C− satisfying xcπ ∈ rng(τ).

Then, in the graph Gτ ′ , one has:

• in the first case, ϕ(x)cπ ′
= ϕ(xcπ) ∈ dom(τ ′), so that

Gϕ(e) = ϕ(xcπ)Σ = ϕ(x)cπ ′
Σ = eϕ(x)(ct) = e

ϕ(x) ◦ e−1
x (e) .

• in the second case, ϕ(x)cπ ′
= ϕ(xcπ) ∈ rng(τ ′), so that

Gϕ(e) = ϕ(xcπ)ϑ(Σ) = ϕ(x)cπ ′
ϑ(Σ) = eϕ(x)(ct−1) = e

ϕ(x) ◦ e−1
x (e) .

In other words, the restriction of Gϕ to the star at a vertex xH is the composition e
ϕ(x)◦e−1

x . Furthermore,
the latter map is an injection into the star at ϕ(x)H.
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3.3 Paths in Bass-Serre graphs of global pre-actions

Let us turn to the case of a global pre-action (X ,τ). In this case, the bijections ex defined at the end of
Section 3.1 become just:

ex : {ct : c ∈C+}⊔{ct−1 : c ∈C−} −→ st+(xH)⊔ st−(xH) = st(xH) .

Given a point x ∈ X , and an element γ ∈ Γ\H with normal form c1tε1 · · ·cntεnhn+1, where n ≥ 1, we
associate a sequence (x0,x1, . . . ,xn) in X by setting x0 = x and xi = xi−1ciτ

εi for 1 ≤ i ≤ n, and notice
that xnhn+1 = xγπτ . Then we associate a sequence (e1, ...,en) of edges in the Bass-Serre graph using
the bijections ex: for i = 1, . . . ,n, we set

ei = exi−1(citεi) .

Notice that, for any i = 1, . . . ,n−1, one has r(ei) = xi−1ciτ
εiH = xiH = s(ei+1). Hence (e1, . . . ,en) is

a path, that we denote by pathx(γ).

Remark 3.10. The vertices (vi)
n
i=0 visited by pathx(γ) are given by vi = xiH, where:

xi = xc1τ
ε1 · · ·ciτ

εi .

Moreover, defining Σ1 = Σ and Σ−1 = ϑ(Σ) one has e1 = xc1Σε1 and, for all 2 ≤ k ≤ n,

ek = xc1tε1 . . .ck−1tεk−1ckΣεk .

Now, for 1 ≤ i ≤ n, let us remark the equivalence

ei+1 = ēi ⇔ (εi+1 =−εi and ci+1 = 1) .

Indeed, in case εi = 1, one has ei = xi−1ciΣ, therefore

ei+1 = ēi ⇔ exi(ci+1tεi+1) = xi−1ciτ ·ϑ(Σ) = xiϑ(Σ) ⇔ (εi+1 =−1 and ci+1 = 1)

and the case εi =−1 is similar. As we started with a normal form of γ , we obtain that pathx(γ) is a
reduced path. Moreover, given a reduced path (e′1, . . . ,e

′
n) starting at xH, one has pathx(γ)= (e′1, . . . ,e

′
n)

if and only if
for all i = 1, . . . ,n, exi−1(citεi) = e′i .

Since the maps ex are bijective, there is exactly one element γ ∈Γ\H, with normal form c1tε1c2tε2 · · ·cntεn

such that pathx(γ) = (e′1, . . . ,e
′
n).

Remark 3.11. For any x ∈ X , the map pathx, from Γ \H to the set of reduced paths starting at the
vertex xH, is surjective. Its restriction to the set of elements with normal form c1tε1c2tε2 · · ·cntεn is
bijective.

Let us say that γ ∈ Γ\H is a path-type element if its normal form has the form tε1c2tε2 · · ·cntεn

where n ≥ 1, that is, if c1 = 1 and hn+1 = 1. It is said to be positive if ε1 = 1, and negative if
ε1 =−1. When γ is a positive, respectively negative, path-type element, the first edge of pathx(γ) is
xΣ, respectively xϑ(Σ). If n ≤ k, we also say that an element γ̃ with normal form tε1c2tε2 · · ·cktεk is a
path-type extension of γ = tε1c2tε2 · · ·cntεn . In this case, pathx(γ̃) extends pathx(γ).

Remark 3.12. The map pathx induces bijections:
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• between the subset of positive path-type elements in Γ, and the set of reduced paths in BS(X ,τ)
whose first edge is xΣ;

• between the subset of negative path-type elements in Γ, and the set of reduced paths in BS(X ,τ)
whose first edge is xϑ(Σ).

Hence, if xΣ (respectively xϑ(Σ)) is a treeing edge then, the images of the first (respectively the second)
bijection cover exactly the half-tree of Σ (respectively the half-graph of ϑ(Σ)) in BS(X ,τ).

Let us end this section by linking paths in Bass-Serre trees and Bass-Serre graphs so as to understand
which edges are treeing edges in the Bass-Serre graph.

Remark 3.13. Consider a global pre-action (X ,τ), and a basepoint x ∈ X . There exists a unique
morphism of pre-actions

ϕ : (Γ, tρ)→ (X ,τ)

from the translation pre-action, such that ϕ(1) = x. In fact, ϕ is the orbital map γ 7→ xγπτ of the
associated Γ-action. By restriction, one obtains morphisms

ϕ+ : (T+,τ+)→ (X ,τ)

ϕ− : (T−,τ−)→ (X ,τ)

from the positive and negative translation pre-actions.

Lemma 3.14. In the context of the above remark, the Bass-Serre morphism BS(ϕ), from the Bass-Serre
tree T to the Bass-Serre graph Gτ , sends pathT1Γ

(γ) onto pathGτ

x (γ).

Proof. Let us consider γ ∈ Γ\H, and write its normal form: γ = c1tε1 · · ·cntεnhn+1. Let us denote by
(e1, . . . ,en) the edges of pathT1Γ

(γ), and by (e′1, . . . ,e
′
n) the edges of pathGτ

x (γ). The auxiliary sequences
in Γ and X used in the construction of the paths will be denoted by (γ0, . . . ,γn) and (x0, . . . ,xn)
respectively.

An easy induction shows that xi = ϕ(γi) for all i = 0, . . . ,n. Then, we notice that the source of
eγi−1(citεi) is γi−1H for all i = 1, . . . ,n. Thus, using Lemma 3.9, we get

Gϕ(ei) = e
ϕ(γi−1)

◦ e−1
γi−1

(
eγi−1(citεi)

)
= exi−1(citεi) = e′i

for all i = 1, . . . ,n.

Therefore, if xΣ is a treeing edge then, the image of BS(ϕ+) is the half-tree of xΣ, while if xϑ(Σ)
is a treeing edge then, the image of BS(ϕ−) is the half-tree of xϑ(Σ).

Proposition 3.15. Consider a global pre-action (X ,τ), and a basepoint x ∈ X. The following are
equivalent:

(i) the morphism of pre-actions ϕ+ : (T+,τ+)→ (X ,τ) of Remark 3.13 is injective;

(ii) the morphism of graphs BS(ϕ+) is injective;

(iii) the edge xΣ in the Bass-Serre graph BS(X ,τ) is a treeing edge.
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Proof. For all γ ∈ T+, recall that ϕ+(γ) = xγπτ , so that BS(ϕ+) sends vertices γH to xγπτ H. At the
level of positive edges, it sends γΣ to xγπτ Σ. Fixing γ , we get ϕ+(γh) = xγπτ hπ for h ∈ H; since
X ↶π H is free, ϕ+ realizes a bijection between γH and xγπτ H, and also a bijection between γΣ and
xγπτ Σ. Consequently, ϕ+ is injective if an only if γH 7→ xγπτ H and γΣ 7→ xγπτ Σ are both injective.
This proves that (i) and (ii) are equivalent. Note that (iii) implies (ii) is obvious since, when xΣ is a
treeing edge BS(ϕ+) is locally injective from the half-tree of Σ to the half-tree of xΣ, hence BS(ϕ+) is
injective. Finally assume (ii) and let ω be a reduced path starting by the edge xΣ. By Remark 3.12 there
exists a positive path type element γ ∈ Γ+ such that ω = pathx(γ). By Lemma 3.14, ω is the image by
BS(ϕ+) of pathT1 (γ). Since BS(ϕ+) is supposed to by injective and since the last vertex of pathT1 (γ) is
not H, we deduce that the last vertex of ω is not xH. Hence, xΣ is a treeing edge by Lemma 2.16.

By a very similar argument, wet get also the following result.

Proposition 3.16. Consider a global pre-action (X ,τ), and a basepoint x ∈ X. The following are
equivalent:

(i) the morphism of pre-actions ϕ− : (T−,τ−)→ (X ,τ) of Remark 3.13 is injective;

(ii) the morphism of graphs BS(ϕ−) is injective;

(iii) the edge xϑ(Σ) in the Bass-Serre graph BS(X ,τ) is a treeing edge.

Remark 3.17. Putting the two previous propositions together, one can show that given a Γ-action
where H is acting freely, the Bass-Serre graph of the associated pre-action is a forest if and only if the
Γ-action is free.

3.4 The free globalization of a pre-action of an HNN extension

Say that a pre-action is transitive when its Bass-Serre graph is connected. Note that a global pre-action
(X ,τ) is transitive if and only if the associated Γ-action is transitive. We will show that every transitive
pre-action has a canonical extension to a transitive action, which is as free as possible. The construction
is better described in terms of Bass-Serre graph: we are going to attach as many treeing edges as
possible to it.

Theorem 3.18. Every transitive Γ-pre-action (X ,τ) on a non-empty set X admits a transitive and
global extension (X̃ , τ̃) which satisfies the following universal property: given any transitive and global
extension (Y,τ ′) of (X ,τ), there is a unique morphism of pre-actions ϕ : (X̃ , τ̃)→ (Y,τ ′) such that

ϕ↾X = idX .

Moreover, all the edges from the Bass-Serre graph BS(X ,τ) to its complement in BS(X̃ , τ̃) are treeing
edges.

In terms of Γ-actions, the extension (X̃ , τ̃) of the theorem corresponds to an action X̃ ↶ Γ such
that, given any action Y ↶α Γ satisfying X ⊆ Y as H-sets and ytα = yτ for all y ∈ dom(τ), there exists
a unique Γ-equivariant map ϕ : X̃ → Y extending idX .

Proof. We will obtain the Bass-Serre graph of the pre-action (X̃ , τ̃) by adding only treeing edges to
the Bass-Serre graph of the pre-action.

First we enumerate the Σ-orbits which do not belong to the domain of τ as (xiΣ)i∈I . Then, we take
disjoint copies of (T+,τ+), for i ∈ I, also disjoint from X , which we denote as (T+

i ,τi). Similarly, we
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enumerate the ϑ(Σ)-orbits which do not belong to the range of τ as (y jϑ(Σ)) j∈J . We then take disjoint
copies of (T−,τ−), for j ∈ J, also disjoint from X , which we denote as (T−

j ,τ j). Now, our extension
(X̃ , τ̃) is obtained as follows. We set

X̃ =

(
X ⊔

⊔
i∈I

T+
i ⊔

⊔
j∈J

T−
j

)/
∼

where ∼ identifies the element xih ∈ X with h ∈ H ⊂ T+
i , for each i ∈ I and h ∈ H, and the element

x jh ∈ X with h ∈ H ⊂ T−
j , for each j ∈ J and h ∈ H. Since the identifications just glue some orbits

pointwise and respect the H-actions, X̃ is endowed with a free H-action. Then, we set

τ̃ = τ ⊔
⊔
i∈I

τi ⊔
⊔
j∈J

τ j ,

which is possible since the domain of τi, for i ∈ I, intersects other components in X̃ only in the orbit
xiΣ, the range of τi, for i ∈ I, does not intersect other components in X̃ , and the situation is analogue
for τ j with j ∈ J. We have got a pre-action (X̃ , τ̃).

This pre-action is transitive. Indeed, all pre-actions (X ,τ), (T+
i ,τi) and (T−

j ,τ j) are, and the
identifications make connections between all these components in the Bass-Serre graph BS(X̃ , τ̃).

The pre-action is also global. Indeed, every Σ-orbit, respectively ϑ(Σ)-orbit, in T+
i , which is not in

the domain, respectively the range, of τi, has been identified with an orbit in X , and the situation is
similar for T−

j . We conclude by noting that all Σ-orbits and ϑ(Σ)-orbits in X are now in the domain
and in the range of τ̃ .

Moreover, the (oriented) edges from the Bass-Serre graph BS(X ,τ) to its complement in BS(X̃ , τ̃)
are exactly the edges xiΣ for i ∈ I, and the edges x jϑ(Σ) for j ∈ J. For each i ∈ I, the morphism of
pre-actions ϕ+ : (T+,τ+)→ (X̃ , τ̃) of Remark 3.13, with basepoint xi ∈ X̃ , is injective since it realizes
an isomorphism onto (T+

i ,τi), hence xiΣ is a treeing edge by Proposition 3.15. One proves similarly
that the edges x jϑ(Σ) are treeing edges using Proposition 3.16.

It now remains to prove the universal property. To do so, take any transitive and global extension
(Y,τ ′) of (X ,τ). The unique morphism of pre-actions ϕ from (X̃ , τ̃) to (Y,τ ′) such that ϕ↾X = idX

is obtained by taking the union of the morphisms ϕi : (T+
i ,τi)→ (Y,τ ′) and ϕ j : (T−

j ,τ j)→ (Y,τ ′),
coming from Remark 3.13 with respect to basepoints xi or x j, with idX (all these morphisms are
unique).

It is straightforward to deduce from the universal property above that the global pre-action we just
built is unique up to isomorphism. We thus call it the free globalization of the pre-action (X ,τ).

Example 3.19. The free globalizations of the positive and negative translation pre-action are equal to
the right Γ-action on itself by translation. Indeed, this is true of any transitive pre-action obtained as a
restriction of the (global) Γ-pre-action on itself by right translation, since the latter is universal among
transitive Γ-actions.

Let us furthermore observe that we can always build this pre-action on a fixed set X̄ containing X ,
provided it contains infinitely many free H-orbits.

Theorem 3.20. Let X̄ be a countable set equipped with a free H-action, suppose X ⊆ X̄ is H-invariant
and X̄ \X contains infinitely many H-orbits. Suppose further that τ is a partial bijection on X such that
(X ,τ) is a transitive pre-action of Γ. Then there is a permutation τ̄ of X̄ such that (X̄ , τ̄) is (isomorphic
to) the free globalization of (X ,τ).
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Proof. Let (X̃ , τ̃) be the free globalization of (X ,τ). The fact that X̃ \X contains infinitely many
H-orbits and is countable implies that there exist a H-equivariant bijection ϕ : X̃ → X̄ whose restriction
to X is the identity. Then, one can push forward the permutation τ̃ , to obtain a permutation τ̄ : X̄ → X̄
defined by

ϕ(x)τ̄ := ϕ(xτ̃) for all x ∈ X̃ ,

which extends τ . Now, ϕ is an isomorphism of pre-actions between (X̃ , τ̃) and (X̄ , τ̄).

3.5 Connection with partial actions and strong faithfulness

Definition 3.21. Given a transitive pre-action of the HNN extension Γ on (X ,τ), let us denote by
(X̃ , τ̃) its free globalization. The partial action associated to (X ,τ) is the restriction to X of the action
X̃ ↶πτ̃ Γ. We denote it by ατ .

In order to have shorter statements in what follows, we will also call the action X̃ ↶πτ̃ Γ “free
globalization” of (X ,τ).

Remark 3.22. One could also construct the partial action directly as follows. Let us denote by π the
H-action on X . Given γ ∈ Γ with normal form c1tε1 · · ·cntεnhn+1, define the partial bijection γατ by

γ
ατ := cπ

1 τ
ε1 · · ·cπ

n τ
εnhπ

n+1,

where we compose partial bijections as described in Section 2.7. The relation γ
ατ

1 γ
ατ

2 ⊆ (γ1γ2)
ατ follows

from the fact that in order to obtain the normal form of γ1γ2 from the concatenation of the normal forms
of γ1 and γ2, one only needs to iterate the following three types of operations:

(1) replacing a subword h1σth2 by h1tϑ(σ)h2;

(2) replacing a subword h1ϑ(σ)t−1h2 by t−1σh2;

(3) deleting the occurrences of tt−1 or t−1t.

By the definition of a pre-action, types (1) and (2) do not affect the partial bijection that we get in
the end, while type (3) can only produce extensions (note that ττ−1 and τ−1τ are restrictions of the
identity on X).

We can now connect the free globalization that we constructed to the universal globalization of
Kellendonk-Lawson that was presented in Theorem 2.19.

Proposition 3.23. The free globalization of a transitive pre-action (X ,τ) is equal to the universal
globalization of the partial action ατ .

Proof. There is a unique Γ-equivariant map g from the universal globalization Z constructed by
Kellendonk-Lawson to the free globalization X̃ because of its universal property. Moreover, in the
free globalization, we have that H acts freely, so it follows that H is also acting freely on the universal
globalization.

It is then straightforward to check that since the pre-action τ is transitive, the associated partial
action ατ is transitive, i.e. for every x,y ∈ X there is γ ∈ Γ such that y = xγατ . Since the Γ-closure of
X inside Z satisfies the same universal property as Z, we conclude that the universal globalization is
transitive.

We can thus apply the universal property of the free globalization from Theorem 3.18 so as to obtain
a unique Γ-equivariant map f : X̃ → Z which restricts to the identity on X . Recalling that g : Z → X̃
is the unique Γ-equivariant map provided by Kellendonk and Lawson’s theorem, we conclude by
uniqueness that both g◦ f and f ◦g are identity maps, which concludes the proof.
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An important property of the partial action associated to a pre-action (X ,τ) is that it is contained
in the partial action associated to any of the globalizations of (X ,τ), in the following sense.

Definition 3.24. Let X ↶α Γ and X ↶β Γ be two partial actions. We say that α is contained in β

when for every γ ∈ Γ, we have α(γ)⊆ β (γ).

Proposition 3.25. Let (X ,τ) be a transitive Γ-pre-action, let X ↶ατ Γ be the associated partial action.
Then for every global extension (Y,σ) of the pre-action, we have that the restriction to X of the action
Y ↶πσ Γ contains ατ .

Proof. Suppose (Y,σ) is a global extension of the pre-action (X ,τ). Since (X ,τ) is transitive, up
to shrinking (Y,σ) we may assume it it transitive. We can now apply Theorem 3.18: the universal
property gives a Γ-equivariant map ρ : X̃ → Y with respect to the actions π̃ := πτ̃ and πσ . Then, for
every x ∈ X̃ , and every γ ∈ Γ, we have ρ(xγ π̃) = ρ(x)γπσ . In particular, for every x ∈ X such that
xγπσ ∈ X , we obtain xγατ = xγ π̃ = xγπσ , which yields directly the desired result.

Let us now show that the free globalization of any non-global transitive pre-action is highly faithful.
We start with a lemma.

Lemma 3.26. The partial actions associated to the positive and negative translation pre-action are
strongly faithful.

Proof. By Example 3.19, the partial action associated to the positive translation pre-action is the
restriction to T+ = Γ+⊔H of the action Γ ↶ Γ by right translations. Thus, it suffices to show that for
every F ⋐ Γ\{1}, there exists x ∈ Γ+⊔H such that for all γ ∈ F , we have xγ ∈ Γ+⊔H and xγ ̸= x.
The latter assertion is always true, and the former holds if we take x ∈ Γ+ whose normal form is longer
than the normal form of all the elements of F . We conclude that the partial action associated to the
positive translation pre-action is strongly faithful.

A similar argument shows that the partial action associated to the negative translation pre-action is
strongly faithful.

Proposition 3.27. The free globalization of any non-global transitive pre-action is highly faithful.

Proof. Let π be the action associated to the free globalization of a non-global transitive pre-action
(X ,τ). By Corollary 2.6, it suffices to prove that π is strongly faithful. But since the pre-action (X ,τ)
is not global, its free globalization contains a copy of either the positive or the negative translation
pre-action. The partial actions of the latter being strongly faithful by the previous lemma, we conclude
using Proposition 3.25 that π itself is strongly faithful because it contains a strongly faithful partial
action.

Remark 3.28. More generally, it follows from Propositions 3.15 and 3.16 that every Γ-action whose
Bass-Serre graph contains a treeing edge must be highly faithful.

4 High transitivity for HNN extensions

As in Section 3, we fix an HNN extension Γ = HNN(H,Σ,ϑ), a set of representatives C+ of left
Σ-cosets in H, and a set of representatives C− of left ϑ(Σ)-cosets in H, which both contain 1, so that
normal forms of elements of Γ are well-defined. From now on, we assume that the HNN extension
Γ is non-ascending and that the Γ-action on the boundary of its Bass-Serre tree is topologically
free, since these assumptions will become essential. We still denote by Γ+, respectively Γ−, the set of
elements whose normal form first letter is t, respectively t−1, so that we have Γ = H ⊔C+Γ+⊔C−Γ−.
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4.1 Using the free globalization towards high transitivity

This section is devoted to a key result which we will use towards proving high transitivity for HNN
extensions. It will allow us to extend any given transitive pre-action which is not an action to one which
sends one fixed tuple to another fixed tuple.

Proposition 4.1. Let X̄ be a countable set, let X̄ ↶π H be a free action, with infinitely many H-orbits,
let X be a finite union of H-orbits in X̄ , and suppose that (X ,τ) is a transitive non-global pre-action.
For any pairwise distinct points x1, ...,xk,y1, ...,yk ∈ X̄ , there exists a transitive and global extension
(X̄ , τ̃) of (X ,τ) such that:

(1) the action X̄ ↶πτ̃ Γ is (transitive and) highly faithful;

(2) there is an element γ ∈ Γ satisfying xiγ
πτ̃ = yi for all i.

Proof. The set {x1, ...,xk,y1, ...,yk} will be denoted by F . First, by Theorem 3.20, we find a permutation
τ̄ ∈ S(X̄) such that (X̄ , τ̄) is the free globalization of (X ,τ). Given x ∈ X̄ , and a path-type element γ ,
we will denote by Hx(γ) the half-graph of the last edge of pathx(γ) in the Bass-Serre graph of (X̄ , τ̄).

Claim. There exists a path-type element γ in Γ\H such that for every x ∈ F, the last edge of pathx(γ)
is a treeing edge (that is, Hx(γ) is a tree).

Proof of the claim. Using the correspondence between path-type elements and reduced paths estab-
lished in Section 3.3, it follows from Lemma 2.17 that for every x ∈ X̄ , and every path-type element
γ , there is a path-type extension γ ′ of γ such that the last edge of pathx(γ

′) is a treeing edge. Now,
it suffices to start with any path-type element γ0, to extend it to a path-type element γ1 such that the
last edge of pathx1

(γ1) is a treeing edge, then to extend γ1 to a path-type element γ2 such that the last
edge of pathy1

(γ2) is a treeing edge (note that pathx1
(γ2) also ends with a treeing edge since it extends

pathx1
(γ1)), . . . , and to iterate this extension procedure until we reach an element γ2k such that all last

edges of pathx(γ2k), for x ∈ F , are treeing edges. □claim

Let us fix some element c ∈C+ \{1} (here we use that Σ ̸= H). Then, any path-type element γ

admits γct as a path-type extension.

Claim. There exists a path-type element γ in Γ\H such that for every x ∈ F, the last edge of pathx(γ)
is a treeing edge, and the half-trees Hx(γ), for x ∈ F, are pairwise disjoint subgraphs, and disjoint
from BS(X ,τ).

Proof of the claim. We start with a path-type element γ such that for every x ∈ F , the last edge of
pathx(γ) is a treeing edge. Since X is a finite union of H-orbits, BS(X ,τ) has finitely many vertices.
Hence, by extending further the path-type element γ , we may and will assume that, for every x ∈ F , the
half-tree Hx(γ) does not intersect BS(X ,τ).

We now notice that, given x,y ∈ F , if the half-trees Hx(γ) and Hy(γ) are disjoint, then so are the
half-trees Hx(γ

′) and Hy(γ
′) for every path-type extension γ ′ of γ . Hence, it suffices to prove that, for

any x,y ∈ F , with x ̸= y and such that Hx(γ) and Hy(γ) intersect, there exists a path-type extension γ ′

of γ such that Hx(γ
′) and Hy(γ

′) are disjoint. Indeed, an easy induction gives then an extension γ(n)

such that the half-trees Hx(γ
(n)), for x ∈ F , are pairwise disjoint.

Take now x,y ∈ F with x ̸= y and such that Hx(γ) and Hy(γ) intersect. These half-trees have to
be nested. Indeed, if they aren’t, Hx(γ) contains the antipode of the last edge of pathy(γ), hence
contains BS(X ,τ), which is impossible. Without loss of generality, we assume Hx(γ)⊆Hy(γ). We
now distinguish two cases.
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• If Hx(γ) ⊊Hy(γ), there is a path-type extension γ ′′ of γ , with γ ′′ ̸= γ , such that pathx(γ) and
pathy(γ

′′) have the same last edge. Since the HNN extension Γ is non-ascending, there is another
path-type extension γ ′ of γ with the same length as γ ′′. Now, pathy(γ

′) and pathy(γ
′′) are distinct

reduced paths extending pathy(γ), hence Hy(γ
′) and Hy(γ

′′) =Hx(γ) have to be disjoint. Since
Hx(γ

′)⊂Hx(γ), the half-trees Hy(γ
′) and Hx(γ

′) are disjoint.

• If Hx(γ) = Hy(γ), then pathx(γ) and pathy(γ) have the same terminal edge. Let us assume
that pathx(γct) and pathy(γct) have the same terminal edge, since otherwise we are done with
γ ′ = γct. This edge is e := x′cΣ = y′cΣ, where x′ = xγπτ̄ and y′ = yγπτ̄ . Consequently, one has
y′c = x′cσ for some σ ∈ Σ\{1}. Consider now the morphism from the translation pre-action

ϕ : (Γ, tρ)→ (X̄ , τ̄) , with basepoint x′c

coming from Remark 3.13, and note that the left translation ψσ : γ∗ 7→ σγ∗ defines an automor-
phism of (Γ, tρ). Using Lemma 3.14, one sees that, for any γ∗ ∈ Γ+:

– BS(ψσ ) maps pathT1 (γ
∗) onto pathTσ (γ

∗) in the Bass-Serre tree T, and these paths both
start by the edge Σ hence, they are both in the half-tree of Σ.

– BS(ϕ) maps pathT1 (γ
∗) onto pathx′c(γ

∗); and pathTσ (γ
∗) onto pathy′c(γ

∗).

Since the left Γ-action on the boundary ∂T of its Bass-Serre tree is topologically free, the identity
is the only element of Γ fixing the half-tree of Σ in T pointwise. Hence, there exists a path ω

in this half-tree whose first edge is Σ, and such that ω and σ ·ω have distinct ranges. Then,
by Remark 3.12, there exists a path-type element γ+ ∈ Γ+ such that pathT1 (γ

+) = ω . We have
pathTσ (γ

+) = BS(ψσ )(ω) = σ ·ω , so that pathT1 (γ
+) and pathTσ (γ

+) have distinct ranges.

Since the edge e is a treeing edge, the restriction ϕ+ of ϕ to the positive translation pre-action
(T+,τ+) is injective by Proposition 3.15, and so is BS(ϕ+). Consequently, pathx′c(γ

+) and
pathy′c(γ

+) diverge at some point in the half-tree of e in BS(X̄ , τ̄).

Finally, for any path-type element γ∗ in Γ+, by construction, pathx(γcγ∗) is the concatenation
of pathx(γ) and pathx′c(γ

∗), and pathy(γcγ∗) is the concatenation of pathy(γ) and pathy′c(γ
∗).

Hence pathx(γcγ+) and pathy(γcγ+) diverge at some point in the half-tree of e. Setting γ ′ =
γcγ+, we obtain that Hx(γ

′) and Hy(γ
′) are disjoint.

We are done in both cases. □claim

We then modify the bijection τ̄ to get the pre-action (X̄ , τ̃) we are looking for. First, given an
element γ as in the previous claim, we consider, for each z ∈ F , the morphism of pre-actions from the
negative translation pre-action coming from Remark 3.13:

ψz : (T−,τ−)→ (X̄ , τ̄) with basepoint z′c ,

where z′ := zγπτ̄ . Note that the image of this morphism corresponds to the half-graph opposite to the
half-tree Hz(γct). Then, we define X ′ =

⋂
z∈F rng(ψz)⊂ X̄ , and take the restriction (X ′,τ ′) of (X̄ , τ̄).

Informally speaking, we erase τ̄ on the Σ-orbits corresponding to edges in the half-trees Hz(γct) for z ∈
F . Note that this leaves infinitely many H-orbits in X̄ outside dom(τ ′) and rng(τ ′), and the pre-action
(X ′,τ ′) is transitive. Now, we extend τ ′. Pick some orbits z1H, . . . ,zkH in X̄ \ (dom(τ ′)∪ rng(τ ′)), add
them to X ′, take some c− ∈C− \{1} (here we use that ϑ(Σ) ̸= H), and set

x′icστ
′ := ziϑ(σ) and y′icστ

′ := zic−ϑ(σ)
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for i = 1, . . . ,k and σ ∈ Σ. This is possible since the ϑ(Σ)-orbits at points zi and zic− are pairwise
disjoint (we use again the freeness of the H-action), and since the Σ-orbits at x′ic and y′ic were not
initially in the domain of τ ′. Note that, after this extension, the pre-action (X ′,τ ′) is still transitive. Then
we apply Theorem 3.20 to get an extension τ̃ : X̄ → X̄ of τ ′ such that (X̄ , τ̃) is the free globalization of
(X ′,τ ′). A computation shows then that xi(γctc−(γct)−1)πτ̃ = yi for all i = 1, . . . ,k. Finally, the action
πτ̃ is highly faithful by Proposition 3.27.

4.2 High transitivity for HNN extensions

From now on, we fix a free action X ↶π H with infinitely many orbits. We then consider the space A
of Γ-actions on X which extend π , which can be written as

A = {τ ∈ S(X) : σ
π

τ = τϑ(σ)π for all σ ∈ Σ} .

In other words, A is the set of permutations τ of X such that (X ,τ) is a global pre-action of Γ. The set
A is clearly a closed subset of S(X) for the topology of pointwise convergence, hence a Polish space.
Recall that the action associated to a permutation τ ∈ A is denoted by πτ .

Definition 4.2. Let us set

TA = {τ ∈ A : πτ is transitive};

HFA = {τ ∈ A : πτ is highly faithful};

HTA = {τ ∈ A : πτ is highly transitive}.

The subset TA is not closed for the topology of pointwise convergence. However, we have the
following result.

Lemma 4.3. The set TA is Gδ in A, hence it is a Polish space. Moreover, it is non-empty.

Proof. Since X ↶π H has infinitely many orbits, there is an H-equivariant bijection ϕ : Γ → X . It then
suffices to push-forward the translation pre-action by ϕ to get an element of TA (its Bass-Serre graph
will be isomorphic to the classical Bass-Serre tree and πτ will be conjugated to the translation action
Γ ↶ Γ).

To show that TA is a Gδ subset, we write TA =
⋂

x,y∈X Ox,y, where for x,y ∈ X ,

Ox,y = {τ ∈ A : there exists γ ∈ Γ such that xγ
πτ = y}.

The latter sets are clearly open in A for all x,y ∈ X , thus finishing the proof.

We now show that our HNN extension Γ has a highly transitive highly faithful action, thus proving
Theorem C.

Theorem 4.4. The set HTA∩HFA is dense Gδ in TA. In particular, Γ admits actions which are both
highly transitive and highly faithful.

Proof. For k ≥ 1 and x1, . . .xk,y1, . . . ,yk ∈ X pairwise distinct, consider the open subsets

Vx1,...,xk,y1,...,yk = {τ ∈ TA : ∃γ ∈ Γ , xiγ
πτ = yi for all 1 ≤ i ≤ k}

Their intersection is the set HTA by Lemma 2.2, so HTA is Gδ in TA. Similarly, we can write the set
of strongly faithful actions as the intersection over all finite subsets F ⋐ Γ\{1} of the open sets

WF = {τ ∈ TA : ∃x ∈ X , x f πτ ̸= x for all f ∈ F}
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Now, since strong faithfulness is equivalent to high faithfulness by Corollary 2.6, the set HFA is Gδ in
TA.

To conclude, it suffices to show that each set (Vx1,...,xk,y1,...,yk)∩HFA is dense in TA, since this
immediately implies that each open set (Vx1,...,xk,y1,...,yk)∩WF is dense in TA. To do this, let τ ∈ TA and
let F ′ be a finite subset of X . Consider a finite connected subgraph G of BS(X ,τ) containing the edges
zΣ for z ∈ F ′, and denote by τ0 the restriction of τ to the union of the Σ-orbits in X corresponding to
the edges of G.

Then, apply Proposition 4.1 to the transitive pre-action (dom(τ0) ·H ∪ rng(τ0) ·H,τ0), whose
Bass-Serre graph is G, to get an extension τ ′ such that τ ′ ∈ Vx1,...,xk,y1,...,yk ∩HFA. Moreover, since
F ′ ⊂ dom(τ0), it follows that τ and τ ′ coincide on F ′.

Remark 4.5. We give below a direct proof that HFA∩HTA is dense in TA, without relying on Baire’s
Theorem.

Proof. Start with an element τ0 ∈ TA, consider the transitive and global pre-action (X ,τ0), and fix
a finite subset F0 ⋐ X . What we have to prove is that there exists τ ′ ∈ HFA∩HTA such that the
restrictions of τ0 and τ ′ on F0 coincide.

Let us now take an enumeration (gn)n≥0 of Γ\{1}, and an enumeration (kn, x̄n, ȳn)n≥0 of the set
of triples (k, x̄, ȳ), where k is a positive integer and x̄ = (x1, . . . ,xk), ȳ = (y1, . . . ,yk) are k-tuples of
elements of X such that x1, . . . ,xk,y1, . . . ,yk are pairwise distinct. Starting with τ0 and F0, we construct
inductively a sequence (τn)n≥0 in TA, and an increasing sequence (Fn)n≥0 of finite subsets of X , as
follows.

1. Starting with Fn ⋐ X and τn ∈ TA, we set F to be the union of Fn and the coordinates of x̄n and
ȳn, and consider the smallest connected subgraph G of BS(X ,τn) which contains all edges zΣ

and zϑ(Σ) for z ∈ F . (Notice that BS(X ,τn) is connected, since τn ∈ TA).

2. We take the restriction τ of τn on the union of the Σ-orbits in X corresponding to edges in G, and
get a transitive pre-action (dom(τ) ·H ∪ rng(τ) ·H,τ), whose Bass-Serre graph is G, and such
that τ±1 coincides with τ±1

n on F .

3. By Proposition 4.1, we get an extension τn+1 of τ , which lies in TA∩HFA, and an element
γn ∈ Γ such that x̄nγ

πτn+1
n = ȳn. Moreover, τ

±1
n+1 coincides with τ±1

n on Fn by construction. Let
also vn be an element of X such that vng

πτn+1
k ̸= vn for all k = 0, . . . ,n (which exists since πτn+1 is

highly faithful).

4. We take a finite subset Fn+1 ⋐ X which contains F , and all elements z ∈ X such that zΣ, or its
antipode, is in pathvn

(gk) for some k ≤ n, or in pathu(γn) for some coordinate u of x̄n. Now, for
any τ∗ coinciding with τn+1 on Fn+1, one has x̄nγ

πτ∗
n = ȳn and vngπτ∗

k ̸= vn for all k = 0, . . . ,n.

Theses sequences satisfy x̄mγ
πτn
m = ȳm and vmgπτn

k ̸= vm for all 0 ≤ k ≤ m < n. Moreover, the subsets Fn

exhaust X , and τ±1
n coincides with τ±1

m on Fm for all n > m. Consequently the sequence (τn) converges
to a bijection τ ′ and the action πτ ′ is highly transitive by Lemma 2.2. Notice finally that πτ ′ is also
strongly faithful, since it satisfies vmgπ

τ ′
k ̸= vm for all k ≤ m. Thus, πτ ′ is highly faithful by Corollary

2.6.
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5 Free globalization for pre-actions of amalgams

We now turn to the case of amalgams, where the notion of pre-action is a bit less intuitive than for HNN
extensions since it will involve two sets, reflecting the fact that the corresponding graph of groups has
two vertices. The results and proofs are very similar to those we have proved for HNN extensions in
Sections 3 and 4, but for the convenience of the reader we will give full proofs.

For this section, as in Section 2.6, let us fix an amalgam Γ = Γ1 ∗Σ Γ2, and sets of representatives
C j of left Σ j-cosets in Γ j such that 1 ∈ C j, for j = 1,2, so that normal forms of elements of Γ are
well-defined. Let us also denote by NC j the set of elements of Γ whose normal form begins (from the
left) with an element of C j \{1}, for j = 1,2, so that we have Γ = Σ⊔NC1 ⊔NC2 .

5.1 Actions and pre-actions of amalgams, and Bass-Serre graphs

Given two actions on infinite countable sets X1 ↶π1 Γ1 and X2 ↶π2 Γ2, and a bijection τ : X1 → X2
such that σπ1τ = τϑ(σ)π2 for all σ ∈ Σ1, there exists a unique action X1 ↶π1,τ Γ such that gπ1,τ = gπ1

for all g ∈ Γ1, and hπ1,τ = τhπ2τ−1 for all h ∈ Γ2. Similarly, there exists a unique action X2 ↶π2,τ Γ

such that hπ2,τ = hπ2 for all h ∈ Γ2, and gπ2,τ = τ−1gπ1τ for all g ∈ Γ1. Of course, these actions are
conjugate: one has γπ2,τ = τγπ1,τ τ−1 for every γ ∈ Γ. Turning back to the general case, if the actions
π1,π2 are free, we obtain an example of the following situation.

Definition 5.1. A pre-action of the amalgam Γ is a triple (X1,X2,τ) where X1,X2 are infinite countable
sets endowed with free actions X1 ↶π1 Γ1 and X2 ↶π2 Γ2, and

τ : dom(τ)→ rng(τ)

is a partial bijection such that dom(τ)⊆ X1, rng(τ)⊆ X2, and σπ1τ = τϑ(σ)π2 for all σ ∈ Σ1.

The relations σπ1τ = τϑ(σ)π2 are equalities between partial bijections. In particular σπ1τ and
τϑ(σ)π2 must have the same domain and the same range. As a consequence, for any pre-action
(X1,X2,τ), the domain of τ is necessarily Σ1-invariant, its range is necessarily Σ2-invariant, and τ sends
Σ1-orbits onto Σ2-orbits.

A pre-action (X1,X2,τ) is called global if τ is a global bijection between X1 and X2. In this case
there are associated actions X1 ↶π1,τ Γ and X2 ↶π2,τ Γ as above.

Example 5.2. If X ↶π Γ is an action, where Γ1 and Γ2 are acting freely, then denoting by X ↶π1 Γ1
and X ↶π2 Γ2 its restrictions, one obtains a global pre-action (X ,X , idX), where the first copy of X is
endowed with π1 and the second with π2. The actions X1 ↶π1,τ Γ and X2 ↶π2,τ Γ both coincide with
X ↶π Γ in this case. In particular, the right translation action Γ ↶ Γ gives rise to a pre-action (Γ,Γ, id),
called the (right) translation pre-action.

As seen before, actions of Γ (such that the factors act freely) correspond to pre-actions with a
global bijection. Another source of examples of pre-actions is the following.

Definition 5.3. Given a pre-action (X1,X2,τ), and infinite Γ j-invariant subsets Yj ⊆ X j, the restriction
of (X1,X2,τ) to (Y1,Y2) is the pre-action (Y1,Y2,τ

′), where Yj is endowed with the restrictions of π j,
and the partial bijection is τ ′ = τ↾Y1∩Y2τ−1 . An extension of (X1,X2,τ) is a pre-action (X̃1, X̃2, τ̃) whose
restriction to (X1,X2) is (X1,X2,τ).

In the following important example of restrictions, for j ∈ {1,2} we denote by NC j the set of
elements of Γ whose normal form begins with an element of C j, so that we have Γ = Σ⊔NC1 ⊔NC2 .
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Example 5.4. The set NC2 is Γ1-invariant by right multiplication, and NC1 is Γ2-invariant by right multi-
plication. Thus, by taking complements, Σ⊔NC1 is Γ1-invariant, and Σ⊔NC2 is Γ2-invariant. The trans-
lation pre-action (Γ,Γ, id) admits the restrictions (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+), and (Γ1 ∪NC1 ,Γ2 ⊔NC1 ,τ−),
which we call the positive translation pre-action and the negative translation pre-action respectively.
Notice that τ+ = id↾Σ⊔NC2

and τ− = id↾Σ⊔NC1
.

Let us now associate a graph to any Γ-pre-action (X1,X2,τ) as follows. Informally speaking, we
start with a graph whose vertices are of two kinds: the Σ1-orbits in X1, and the Σ2-orbits in X2. Then
we put an edge from xΣ1 to yΣ2 when (xΣ1)τ = yΣ2, and finally we identify all the Σ j-orbits that are
in a same Γ j-orbit, for j = 1,2. We may, and will, identify the groups Γ j,Σ j with their images by π j,
since the actions π1,π2 are free, hence faithful. Consequently, we don’t write superscripts π1,π2 from
now, as soon as there is no risk of confusion.

Definition 5.5. The Bass-Serre graph of (X1,X2,τ) is the oriented graph Gτ defined by

V (Gτ) = X1/Γ1 ⊔X2/Γ2 , E(Gτ)
+ = dom(τ)/Σ1 , E(Gτ)

− = rng(τ)/Σ2 ,

where the structural maps are given by the following formulas, for x ∈ dom(τ) and y ∈ rng(τ),

xΣ1 = xτΣ2 ; s(xΣ1) = xΓ1 ; r(xΣ1) = xτΓ2 ;

yΣ2 = yτ
−1

Σ1 ; s(yΣ2) = yΓ2 ; r(yΣ2) = yτ
−1

Γ1 .

The Bass-Serre graph will also be denoted by BS(X1,X2,τ).

Example 5.6. (1) The Bass-Serre graph of the translation pre-action (Γ,Γ, id) is the classical Bass-
Serre tree T of Γ.

(2) The Bass-Serre graph of the positive translation pre-action (Γ1⊔NC2 ,Γ2∪NC2 ,τ+) is the half-tree
of the edge Σ1 in T.

(3) The Bass-Serre graph of the negative translation pre-action (Γ1∪NC1 ,Γ2⊔NC1 ,τ−) is the half-tree
of the edge Σ2 in T.

Given points x ∈ X1,y ∈ X2, there are natural (maybe sometimes empty) maps from some coset
representatives to the stars at xΓ1 and yΓ2:

e1,x : {c ∈C1 : xc ∈ dom(τ)} −→ st(xΓ1)
c 7−→ xcΣ1

e2,y : {c ∈C2 : yc ∈ rng(τ)} −→ st(yΓ2)
c 7−→ ycΣ2

These maps are are surjective, since, for j = 1,2, the orbits xcΣ j, for c ∈ C j, cover xΓ j. Moreover,
since the actions X j ↶π j Γ j are free, we have xΓ j =

⊔
c∈C j

xcΣ j, so that these maps are in fact bijective.
If x ∈ X1 ∩X2, then by merging e1,x and e2,x, we get a bijection

ex : {c ∈C1 : xc ∈ dom(τ)}⊔{c ∈C2 : xc ∈ rng(τ)}→ st(xΓ1)⊔ st(xΓ2) .

We also set ex = e1,x when x ∈ X1 \X2, and ex = e2,x when x ∈ X2 \X1.
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5.2 Morphisms and functoriality of Bass-Serre graphs

We shall now see that there is a functor, that we will call the Bass-Serre functor, from the category
of Γ-pre-actions to the category of graphs, which extends Definition 5.5. Let us start by turning
Γ-pre-actions into a category.

Definition 5.7. A morphism of pre-actions from (X1,X2,τ) to (X ′
1,X

′
2,τ

′) is a couple (ϕ1,ϕ2), where
ϕ j : X j → X ′

j is a Γ j-equivariant map for j = 1,2, and for all x ∈ domτ , ϕ2(xτ) = ϕ1(x)τ ′.

Again, we have in particular that ϕ1 maps dom(τ) into dom(τ ′) and ϕ2 maps rng(τ) into rng(τ ′).
Now, given a morphism of pre-actions (ϕ1,ϕ2) : (X1,X2,τ)→ (X ′

1,X
′
2,τ

′), and denoting by Gτ and
Gτ ′ the corresponding Bass-Serre graphs, let us define a map V (Gτ)→V (Gτ ′) by

xΓ1 7→ ϕ1(x)Γ1 , for x ∈ X1 and yΓ2 7→ ϕ2(y)Γ2 , for y ∈ X2 ,

and a map E(Gτ)→ E(Gτ ′) by

xΣ1 7→ ϕ1(x)Σ1 , for x ∈ dom(τ) and yΣ2 7→ ϕ2(y)Σ2 , for y ∈ rng(τ) .

It is routine to check that these maps define a morphism of graphs, that we denote by G(ϕ1,ϕ2). For
instance, the image of xΣ1 is ϕ1(x)Σ1, the image of xΣ1 = xτΣ2 is ϕ2(xτ)Σ2 = ϕ1(x)τ ′Σ2, and one has
ϕ1(x)Σ1 = ϕ1(x)τ ′Σ2 in Gτ ′ .

Lemma 5.8. The assignments (X1,X2,τ) 7→ Gτ and (ϕ1,ϕ2) 7→ G(ϕ1,ϕ2) define a functor from the
category of Γ-pre-actions to the category of graphs.

We will denote this functor by BS and call it the Bass-Serre functor of Γ. The morphism G(ϕ1,ϕ2)

will also be denoted by BS(ϕ1,ϕ2).

Proof. First, given the identity morphism on a pre-action (X1,X2,τ) it is obvious that the associated
morphism of graphs id the identity on Gτ .

Now, let us consider two morphisms of pre-actions (ϕ1,ϕ2) : (X1,X2,τ)→ (X ′
1,X

′
2,τ

′) and (ψ1,ψ2) :
(X ′

1,X
′
2,τ

′)→ (X ′′
1 ,X

′′
2 ,τ

′′). It is also clear that the composition of G(ϕ1,ϕ2) followed by G(ψ1,ψ2), and
the morphism G(ψ1◦ϕ1,ψ2◦ϕ2) are both given by the map V (Gτ)→V (Gτ ′) by

xΓ1 7→ ψ1 ◦ϕ1(x)Γ1 , for x ∈ X1 and yΓ2 7→ ψ2 ◦ϕ2(y)Γ2 , for y ∈ X2 ,

and the map E(Gτ)→ E(Gτ ′) by

xΣ1 7→ ψ1 ◦ϕ1(x)Σ1 , for x ∈ dom(τ) and yΣ2 7→ ψ2 ◦ϕ2(y)Σ2 , for y ∈ rng(τ) .

This completes the proof.

Let us notice a consequence of freeness of the Γ j-actions in the definition of Γ-pre-actions,
analogous to Lemma 3.9.

Lemma 5.9. Every morphism of the form BS(ϕ1,ϕ2) = G(ϕ1,ϕ2) is locally injective. More precisely, the
restriction of BS(ϕ1,ϕ2) to the star at a vertex xΓ1, respectively yΓ2, is the composition e1,ϕ1(x)

◦ e−1
1,x ,

respectively e2,ϕ2(y)
◦ e−1

2,y , which is an injection into the star at ϕ1(x)Γ1, respectively ϕ2(y)Γ2.
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Proof. Consider a morphism of pre-actions (ϕ1,ϕ2) : (X1,X2,τ)→ (X ′
1,X

′
2,τ

′), and give names to the
Γ1-actions involved: X1 ↶π1 Γ1, and X ′

1 ↶π ′
1 Γ1. Let us also recall from Section 5.1 that maps of

the form e1,x and e2,y are bijective, since the Γ j-actions are free. Now, given x ∈ X1 and e ∈ st(xΓ1)
in Gτ , one has e = e1,x(c) = xcπ1Σ1 for a unique c ∈ C1 satisfying xcπ1 ∈ dom(τ). Then, one has
ϕ(x)cπ ′

1 = ϕ(xcπ1) ∈ dom(τ ′), so that in Gτ ′ :

G(ϕ1,ϕ2)(e) = ϕ1(xcπ1)Σ1 = ϕ1(x)cπ ′
1Σ1 = e1,xϕ1(c) .

In other words, the restriction of G(ϕ1,ϕ2) to the star at xΓ1 is the composition e1,ϕ1(x)
◦e−1

1,x . Furthermore,
this map is an injection into the star at ϕ1(x)Γ1.

Similarly, one can prove that the restriction of G(ϕ1,ϕ2) to the star at a vertex yΓ2 is the composition
e2,ϕ2(y)

◦ e−1
2,y , which is an injection into the star at ϕ2(y)Γ2.

5.3 Paths in Bass-Serre graphs of global pre-actions

Let us turn to the case of a global pre-action (X1,X2,τ). In this case, the bijections e1,x and e2,y, defined
at the end of Section 5.1, become just

e1,x : C1 −→ st(xΓ1) and e2,y : C2 −→ st(yΓ2) .

Given a point x ∈ X1 and an element γ ∈ NC2 with normal form γ = c1 · · ·cnσ where n ≥ 1 and
c1 ∈ C2 \ {1}, we associate a sequence (x0,x1, . . . ,xn+1) in X1 ∪X2 and a sequence (e0,e1, ...,en) of
edges in the Bass-Serre graph as follows. We set x0 = x, c0 = 1 ∈ C1, and then inductively for
i = 0, . . . ,n:

• for i such that ci ∈C1, set ei = e1,xi(ci), and xi+1 = xiciτ;

• for i such that ci ∈C2, set ei = e2,xi(ci), and xi+1 = xiciτ
−1.

Notice that, for any i = 0, . . . ,n−1, if ci ∈C1 (or equivalently if i is even), one has r(ei) = xiciτΓ2 =
xi+1Γ2 = s(ei+1) , and similarly if ci ∈C2 we have r(ei) = s(ei+1). Hence (e0, . . . ,en) is a path, that
we denote by path1,x(γ). Note that this path begins by the edge e0 = xΣ1.

Let us check that path1,x(γ) is a reduced path. For 0 ≤ i ≤ n−1 and ci ∈C1, we have

ei+1 = ēi ⇔ xi+1ci+1Σ2 = xiciΣ1 ⇔ xiciτci+1Σ2 = xiciτΣ2 ⇔ ci+1 = 1

since X2 ↶π2 Γ2 is free. Since c1 · · ·cnσ is the normal form of γ , we cannot have ci+1 = 1, so path1,x(γ)
is reduced.

Finally, since the maps e1,x and e2,x are bijective, given a reduced path (e0, . . . ,en) beginning by xΣ1,
there is exactly one normal form c1 · · ·cn with c1 ∈C2 \{1} such that path1,x(c1 · · ·cn) = (e0, . . . ,en).
The following remark is now clear.

Remark 5.10. For any x ∈ X1, the map path1,x is a surjection from NC2 to the set of reduced paths
starting by the edge xΣ1. It becomes a bijection if we restrict it to the subset of elements γ ∈ NC2 whose
normal form is c1 · · ·cn with c1 ∈C2 \{1}. So if xΣ1 is a treeing edge, then the images path1,x(γ), for
γ ∈ NC2 , cover exactly the half-tree of xΣ1 in Gτ .

We now give a definition of path-type elements which is analogous to the one for HNN extensions,
except that we only want to consider paths which end in X1. An element γ ∈ NC2 with normal form
γ = c1 · · ·cn such that c1 ∈C2 \{1} and n ≥ 1 is odd will be called a path type element of NC2 . Note
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that the corresponding path then has even length. If γ ′ = c1 · · ·ck, for some k ≤ n, is a path type element
in NC2 , then γ is called a path type extension of γ ′.

Similarly, given a point x ∈ X2, we can associate to every element γ ∈ NC1 with normal form
γ = c1 · · ·cnσ , where n ≥ 1 and c1 ∈C1 \{1}, a reduced path path2,x(γ) := (e0,e1, ...,en), as follows.
We set x0 = x, c0 = 1 ∈C2, and then inductively for i = 0, . . . ,n:

• for i such that ci ∈C1, set ei = e1,xi(ci), and xi+1 = xiciτ;

• for i such that ci ∈C2, set ei = e2,xi(ci), and xi+1 = xiciτ
−1.

This defines a surjective map path2,x from NC1 to the set of reduced paths starting by the edge xΣ2.
Hence, if xΣ2 is a treeing edge then, the images path2,x(γ), for γ ∈ NC1 , cover exactly the half-tree of
xΣ2 in Gτ . Moreover, the map path2,x becomes a bijection if we restrict it to the set of elements of with
normal form γ = c1 · · ·cn where n ≥ 1 and c1 ∈C1 \{1}, and such elements will be called path type
elements of NC1 when moreover n is odd. As before, there is a notion of path type extension for path
type elements in NC1 .

Remark 5.11. Let i, j ∈ {1,2} with i ̸= j and x ∈ X j, γ ∈ NCi with normal form c1 · · ·cnσ .

1. By construction, path j,x(γ)= path j,x(c1 · · ·cn) and, for every 1≤ k≤ n, the path path j,x(c1 · · ·cn)
is an extension of path j,x(c1 · · ·ck).

2. The source of path j,x(γ) is s(xΣ j) = xΓ j.

3. If γ = c1 · · ·cn is a path type element, then the range of path j,x(γ) is xγπ j,τ Γ j.

4. If for some 1 ≤ k ≤ n the last edge of path j,x(c1 · · ·ck) is a treeing edge, then for all k ≤ l ≤ n
the last edge of path j,x(c1 · · ·cl) is also a treeing edge.

Let us end this section by establishing a link between paths in Bass-Serre trees and Bass-Serre
graphs.

Remark 5.12. Consider a global pre-action (X1,X2,τ), and basepoints x1 ∈ X1 and x2 ∈ X2 such that
x2 = x1τ . There exists a unique morphism of pre-actions

(ϕ1,ϕ2) : (Γ,Γ, id)→ (X1,X2,τ)

from the translation pre-action, such that ϕ j(1) = x j for j = 1,2. It satisfies ϕ j(γ) = x jγ
π j,τ for all

j = 1,2 and γ ∈ Γ. By restriction, one obtains morphisms

(ϕ1,+,ϕ2,+) : (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+)→ (X1,X2,τ)

(ϕ1,−,ϕ2,−) : (Γ1 ∪NC1 ,Γ2 ⊔NC1 ,τ−)→ (X1,X2,τ)

from the positive and negative translation pre-actions.

Lemma 5.13. In the context of the above remark, the Bass-Serre morphism BS(ϕ1,ϕ2), from the
Bass-Serre tree T to the Bass-Serre graph Gτ , sends pathTj,1Γ

(γ) onto pathGτ

j,x j
(γ) for all j ∈ {1,2} and

all γ ∈ NCi with i ∈ {1,2}\{ j}.
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Proof. We make the proof in the case j = 1 only; the case j = 2 is similar.
Let us consider γ ∈ NC2 , and write its normal form: γ = c1 · · ·cnσ . Let us denote by (e0,e1, . . . ,en)

the edges of pathT1,1Γ
(γ), and by (e′0,e

′
1, . . . ,e

′
n) the edges of pathGτ

1,x1
(γ). The auxiliary sequences

in Γ and X used in the construction of the paths will be denoted by (γ0, . . . ,γn+1) and (x0, . . . ,xn+1)
respectively.

An easy induction shows that xi = ϕ1(γi) when i even, and xi = ϕ2(γi) when i is odd. Then, we
notice that the source of ei = e1,γi(ci) is γiΓ1 when i even, and the source of ei = e2,γi(ci) is γiΓ2 when i
odd. Thus, using Lemma 5.9, we get

BS(ϕ1,ϕ2)(ei) = e1,ϕ1(γi)
◦ e−1

1,γi

(
e1,γi(ci)

)
= e1,xi(ci) = e′i

when i is even, and

BS(ϕ1,ϕ2)(ei) = e2,ϕ2(γi)
◦ e−1

2,γi

(
e2,γi(ci)

)
= e2,xi(ci) = e′i

when i is odd.

Therefore, if x1Σ1 is a treeing edge then, the image of BS(ϕ1,+,ϕ2,+) is the half-tree of x1Σ1 while,
if x2Σ2 is a treeing edge, the image of BS(ϕ1,−,ϕ2,−) is the half-tree of x2Σ2.

5.4 The free globalization of a pre-action of an amalgam

First, let us notice that, for any σ ∈ Σ, there is an automorphism of pre-actions induced by left
translation by σ

(γ 7→ σγ,γ 7→ σγ)

for each of the following pre-actions:

• the translation pre-action (Γ,Γ, id);

• the positive translation pre-action (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+);

• the negative translation pre-action (Γ1 ∪NC1 ,Γ2 ⊔NC1 ,τ−).

Indeed, all sets Γ,Γ1,Γ2,Σ,NC1 ,NC2 are invariant by left translation by σ , hence the domains and range
of τ+ and τ− are invariant by left translation by σ . Then checking we have morphisms of pre-actions is
a straightforward computation, and invertibility is obvious.

Proposition 5.14. Consider a global pre-action (X1,X2,τ), and basepoints x1 ∈ X1 and x2 = x1τ ∈ X2.
The following are equivalent:

(i) the morphism of pre-actions (ϕ1,+,ϕ2,+) : (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+)→ (X1,X2,τ) of Remark 5.12
is injective;

(ii) the morphism of graphs BS(ϕ1,+,ϕ2,+) is injective;

(iii) the edge x1Σ1 in the Bass-Serre graph BS(X1,X2,τ) is a treeing edge.

Proof. For all γ ∈ Γ j ∪NC2 , recall that ϕ j,+(γ) = x jγ
π j,τ , so that BS(ϕ1,+,ϕ2,+) sends vertices γΓ j

to x jγ
π j,τ Γ j, and edges γΣ j to x jγ

π j,τ Σ j. Fixing γ , we get ϕ j,+(γg) = x jγ
π j,τ gπ j for g ∈ Γ j; since

X j ↶π j Γ j is free, ϕ j,+ realizes a bijection between γΓ j and x jγ
π j,τ Γ j, and also a bijection between

γΣ j and x jγ
π j,τ Σ j. Consequently, ϕ j,+ is injective if an only if γΓ j 7→ x jγ

π j,τ Γ j and γΣ j 7→ x jγ
π j,τ Σ j

are both injective. This proves that (i) and (ii) are equivalent.
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PIERRE FIMA, FRANÇOIS LE MAÎTRE, SOYOUNG MOON, AND YVES STALDER

The implication (iii) =⇒ (ii) follows from the fact that when x1Σ1 is a treeing edge BS(ϕ1,+,ϕ2,+)
is locally injective from the half-tree of Σ1 to the half-tree of x1Σ1, hence BS(ϕ1,+,ϕ2,+) is injective.

Finally assume (ii) and let ω be a reduced path starting by the edge x1Σ1. By Remark 5.10 there
exists γ ∈ NC2 such that ω = path1,x1

(γ). By Lemma 5.13, ω is the image by BS(ϕ1,+,ϕ2,+) of
pathT1,1Γ

(γ). Since BS(ϕ1,+,ϕ2,+) is supposed to be injective and since the last vertex of pathT1,1Γ
(γ)

is not Γ1, we deduce that the last vertex of ω is not x1Γ1. Hence, x1Σ1 is a treeing edge by Lemma
2.16.

By a very similar argument, we get also the following result.

Proposition 5.15. Consider a global pre-action (X1,X2,τ), and basepoints x1 ∈ X1 and x2 = x1τ ∈ X2.
The following are equivalent:

(i) the morphism of pre-actions (ϕ1,−,ϕ2,−) : (Γ1 ∪NC1 ,Γ2 ⊔NC1 ,τ−)→ (X1,X2,τ) of Remark 5.12
is injective;

(ii) the morphism of graphs BS(ϕ1,−,ϕ2,−) is injective;

(iii) the edge x2Σ2 in the Bass-Serre graph BS(X1,X2,τ) is a treeing edge.

Remark 5.16. Putting the two previous propositions together, one can show that, given a global
pre-action of Γ, its Bass-Serre graph is a forest if and only if the action X1 ↶π1,τ Γ (or equivalently
X2 ↶π2,τ Γ) is free.

Say that a pre-action is transitive when its Bass-Serre graph is connected. Note that a global
pre-action (X1,X2,τ) is transitive if and only if the action X1 ↶π1,τ Γ, or equivalently X2 ↶π2,τ Γ,
is a transitive action. We will show that every transitive pre-action has a canonical extension to a
transitive action, which is as free as possible. The construction is again better described in terms of
the Bass-Serre graph: we are going to attach as many treeing edges as possible to it.

Theorem 5.17. Every transitive Γ-pre-action (X1,X2,τ) admits a transitive and global extension
(X̃1, X̃2, τ̃) which satisfies the following universal property: given any transitive and global exten-
sion (Y1,Y2,τ

′) of (X1,X2,τ), there exists a unique morphism of pre-actions (ϕ1,ϕ2) : (X̃1, X̃2, τ̃)→
(Y1,Y2,τ

′) such that
(ϕ1↾X1 ,ϕ2↾X2) = (idX1 , idX2).

Moreover, all the (oriented) edges from the Bass-Serre graph BS(X1,X2,τ) to its complement in
BS(X̃1, X̃2, τ̃) are treeing edges.

Proof. We will obtain the Bass-Serre graph of this action by adding only treeing edges to the Bass-Serre
graph of the pre-action. First enumerate the Σ1-orbits which do not belong to the domain of τ as
(xiΣ1)i∈I+ , and the Σ2-orbits which do not belong to the range of τ as (xiΣ2)i∈I− , with disjoint index sets
I+, I−. Then, we take copies (Y1,i,Y2,i,τi), of the positive translation pre-action (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+),
for i ∈ I+, and copies (Y1,i,Y2,i,τi) , of the negative translation pre-action (Γ1 ∪NC1 ,Γ2 ⊔NC1 ,τ−), for
i ∈ I−, which are pairwise disjoint (by this, we mean Y1,i ∪Y2,i is disjoint from Y1,i′ ∪Y2,i′ whenever
i ̸= i′), and disjoint from the original pre-action (X1,X2,τ). We set then

X̃1 =

(
X1 ⊔

⊔
i∈I+

Y1,i ⊔
⊔

i∈I−

Y1,i

)/
∼1

and X̃2 =

(
X2 ⊔

⊔
i∈I+

Y2,i ⊔
⊔

i∈I−

Y2,i

)/
∼2
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where ∼1 identifies the element xig∈ X1 with g∈ Γ1 ⊂Y1,i, for each i∈ I+ and g∈ Γ1, and ∼2 identifies
the element xih ∈ X2 with h ∈ Γ2 ⊂ Y2,i, for each i ∈ I− and h ∈ Γ2. Since the identifications just glue
some orbits pointwise and respect the Γ j-actions, X̃1 is endowed with a free Γ1-action, and X̃2 is
endowed with a free Γ2-action. Now, we set

τ̃ = τ ⊔
⊔

i∈I+

τi ⊔
⊔

i∈I−

τi ,

which is possible since the domain of τi, for i ∈ I+, intersects other components in X̃1 only in the orbit
xiΣ1, the range of τi, for i ∈ I+, does not intersect other components in X̃2, and the situation is analogue
for τi with i ∈ I−. We have got a pre-action (X̃1, X̃2, τ̃).

This pre-action is transitive, since all pre-actions (X1,X2,τ) and (Y1,i,Y2,i,τi) are, and the iden-
tifications make connections between each (Y1,i,Y2,i,τi) and (X1,X2,τ) in the Bass-Serre graph. It
is also global, since every Σ1-orbit in Y1,i, respectively Σ2-orbit in Y2,i, which is not in the domain,
respectively the range, of τi has been identified with an orbit in X1, respectively X2, and every Σ1-orbit
in X1, respectively Σ2-orbit in X2, is now in the domain, respectively the range, of τ̃ .

Moreover, the (oriented) edges from the Bass-Serre graph BS(X1,X2,τ) to its complement in
BS(X̃1, X̃2, τ̃) are exactly the edges xiΣ1 for i ∈ I+, and the edges xiΣ2 for i ∈ I−. For each i ∈ I+,
the morphism of pre-actions (ϕ1,+,ϕ2,+) : (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+)→ (X̃1, X̃2,τ) of Remark 5.12, with
basepoints xi ∈ X̃1 and xiτ̃ ∈ X̃2, is injective since it realizes an isomorphism onto (Y1,i,Y2,i,τi), hence
xiΣ1 is a treeing edge by Proposition 5.14. One proves similarly that the edges xiΣ2 are treeing edges
using Proposition 5.15.

It now remains to prove the universal property. To do so, take any transitive and global exten-
sion (Y1,Y2,τ

′) of (X1,X2,τ). Then, the unique morphism of pre-actions (ϕ1,ϕ2) from (X̃1, X̃2, τ̃) to
(Y1,Y2,τ

′) such that (ϕ1↾X1 ,ϕ2↾X2) = (idX1 , idX2) is obtained by taking the union of (idX1 , idX2) with
the morphisms (ϕ1,i,ϕ2,i) from (Y1,i,Y2,i,τi) to (Y1,Y2,τ

′) coming from Remark 5.12 with respect to
basepoints xi and xiτ̃

±1, which are unique.

It is straightforward to deduce from the universal property above that the action we just built is
unique up to isomorphism. We thus call it the free globalization of the pre-action (X1,X2,τ). The
interested reader can establish a connection with the notion of partial action, as we did in section
3.5 for HNN extensions. For the sake of brevity, we just observe the following useful analogue of
Proposition 3.27.

Remark 5.18. In the context of Theorem 5.17, if the pre-action (X1,X2,τ) is not global, then the
conjugate actions π1,τ̃ and π2,τ̃ induced by the free globalization (X̃1, X̃2, τ̃) are highly faithful. Indeed,
by Corollary 2.6, it suffices to prove that π1,τ̃ is strongly faithful. Notice that (X̃1, X̃2, τ̃) contains
a copy of the positive (or of the negative) translation pre-action, which correspond to a half-tree in
BS(X̃1, X̃2, τ̃). Now note that the positive translation pre-action is strongly faithful, meaning that given
F ⋐ Γ, we can find x ∈ Γ1 ∪NC1 such that for all f ∈ F , we have x f ̸= x and x f ∈ Γ1 ∪NC1 (indeed
it suffices to take x ∈ NC1 with a sufficiently long normal form). Similarly, the negative translation
is strongly faithful. It follows that the free globalization is strongly faithful, hence highly faithful as
wanted.

Let us furthermore observe that we can always build the free globalization on a fixed couple of sets
(X̄1, X̄2) with X̄ j containing Xi, provided X̄ j contains infinitely many free Γ j-orbits.

Theorem 5.19. Let X̄ j be a countable set equipped with a free Γ j-action for j = 1,2. Suppose X j ⊆ X̄ j is
Γ j-invariant, and X̄ j \X j contains infinitely many Γ j-orbits. Suppose further that we have a pre-action
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(X1,X2,τ). Then there is a bijection τ̄ : X̄1 → X̄2 which extends τ such that (X̄1, X̄2, τ̄) is (isomorphic
to) the free globalization of (X1,X2,τ).

Proof. Let (X̃1, X̃2, τ̃) be the free globalization of (X1,X2,τ). The fact that X̃ j \X j contains infinitely
many Γ j-orbits and is countable implies that there exist Γ j-equivariant bijections ϕ j : X̃ j → X̄ j whose
restrictions to X j are the identities. Then, one can push forward the bijection τ̃ , to obtain a bijection
τ̄ : X̄1 → X̄2 defined by

xϕ1τ̄ := xτ̃ϕ2 for all x ∈ X̃1 ,

which extends τ . Now, (ϕ1,ϕ2) is an isomorphism of pre-actions between (X̃1, X̃2, τ̃) and (X̄1, X̄2, τ̄).

6 High transitivity for amalgams

As in Section 5, we fix an amalgam Γ = Γ1 ∗Σ Γ2, and sets of representatives C j of left Σ j-cosets in Γ j

such that 1 ∈C j, for j = 1,2, so that normal forms of elements of Γ are well-defined. We still denote
by NC j the set of elements of Γ whose normal form begins with an element of C j \{1}, for j = 1,2, so
that we have Γ = Σ⊔NC1 ⊔NC2 .

Non-degeneracy and topological freeness become now essential. Hence, we assume from now on
that our amalgam Γ is non-degenerate and that the Γ-action on the boundary of its Bass-Serre
tree is topologically free.

6.1 Using the free globalization towards high transitivity

This section is devoted to a key proposition which will allow us to extend any given transitive pre-action
which is not global to a global one such that the associated Γ-action sends one fixed tuple to another
fixed tuple.

Proposition 6.1. Suppose (X1,X2,τ) is a transitive non-global pre-action, that X j is a finite union
of orbits of a free action X̄ j ↶ Γ j, where X̄ j is countable, and that the complement X̄ j \X j contains
infinitely many Γ j-orbits. Let x1, ...,xk,y1, ...,yk ∈ X̄1 be pairwise distinct points. Then (X1,X2,τ) can
be extended to a transitive and global pre-action (X̄1, X̄2, τ̃) so that there is an element γ ∈ Γ such that
xiγ

π1,τ̃ = yi, and the action π1,τ̃ is highly faithful.

Notice that the choice to work in X̄1 is arbitrary. We could prove a similar statement for the
Γ2-action on X̄2.

Proof. We will denote the set {x1, ...,xk,y1, ...,yk} by F . First, by Theorem 5.19, we find a bijection
τ̄ : X̄1 → X̄2 such that (X̄1, X̄2, τ̄) is the free globalization of (X1,X2,τ).

Claim. There exists a path-type element γ in NC2 such that for every x ∈ F, the last edge of path1,x(γ)
is a treeing edge.

Proof of the claim. Recall the correspondence established in Section 5.3 between path-type elements
and reduced paths of even length. Since BS(X̄1, X̄2, τ̄) is connected and has treeing edges, it follows
from Lemma 2.17 that for every x ∈ X̄1, and every path-type element γ ∈ NC2 , there is a path-type
extension γ ′ of γ such that the last edge of path1,x(γ

′) is a treeing edge. Now, it suffices to start with any
path-type element γ0 ∈ NC2 , to extend it to a path-type element γ1 such that the last edge of path1,x1

(γ1)
is a treeing edge, then to extend γ1 to a path-type element γ2 such that the last edge of path1,y1

(γ2) is a
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treeing edge, . . . , and iterate this extension procedure until we reach an element γ2k ∈ NC2 such that all
last edges of path1,x(γ2k), for all x ∈ F , are treeing edges (by Remark 5.11 (4)). □claim

Given x ∈ X̄1, and a path-type element γ in NC2 , we will denote by Hx(γ) the half-graph of the last
edge of path1,x(γ).

Claim. There exists a path-type element γ in NC2 such that for every x ∈ F, the last edge of path1,x(γ)
is a treeing edge, and the half-trees Hx(γ), for x ∈ F, are pairwise disjoint subgraphs, and all disjoint
from BS(X1,X2,τ).

Proof of the claim. We start with a path-type element γ in NC2 such that for every x ∈ F , the last edge
of path1,x(γ) is a treeing edge. Since X j is a finite union of Γ j-orbits for j = 1,2, the Bass-Serre graph
BS(X1,X2,τ) has finitely many vertices. Hence, by extending further the path-type element γ , we can
assume that for every x ∈ F , the half-tree Hx(γ) does not intersect BS(X1,X2,τ).

Notice that, given x,y ∈ F , if the half-trees Hx(γ) and Hy(γ) are disjoint, then so are the half-trees
Hx(γ

′) and Hy(γ
′) for every path-type extension γ ′ of γ , since Hx(γ

′)⊆Hx(γ) and Hy(γ
′)⊆Hy(γ).

Hence, it suffices to prove that, for any x,y ∈ F with x ̸= y and such that Hx(γ) and Hy(γ) intersect,
there exists a path-type extension γ ′ of γ such that Hx(γ

′) and Hy(γ
′) are disjoint. Indeed, an easy

induction gives then an extension γ(n) such that the half-trees Hx(γ
(n)), for x ∈ F , are pairwise disjoint.

Take now x,y ∈ F with x ̸= y and such that Hx(γ) and Hy(γ) intersect. These half-trees have to be
nested. Indeed, if they are not, Hx(γ) contains the antipode of the last edge of pathy(γ), hence contains
BS(X1,X2,τ), which is impossible. Without loss of generality, we assume Hx(γ)⊆Hy(γ). We now
distinguish two cases.

• If Hx(γ) ⊊Hy(γ), there is a path type extension γ ′′ of γ such that path1,x(γ) and path1,y(γ
′′)

have the same last edge. We have the product of normal forms

γ
′′ = γ · (c1 · · ·cn) ,

where n ≥ 2 is even. Since the amalgam Γ is non-degenerate, we can obtain another normal form
γ ′ = γ · (c′1 · · ·c′n) by replacing a letter ci in the factor Γ j such that [Γ j : Σ j]≥ 3 by another letter
c′i in C j \{1}. This change has the effect that path1,y(γ

′) and path1,y(γ
′′) are distinct reduced

paths (which are both extensions of the path1,y(γ)). Hence, since Hy(γ) is a tree, the sub-trees
Hy(γ

′′) and Hy(γ
′) must be disjoint. Since Hx(γ) =Hy(γ

′′) we are done.

• If Hx(γ) =Hy(γ), then path1,x(γ) and path1,y(γ) have the same terminal edge, which is

e := x′Σ1 = y′Σ1 , where x′ = xγ
π1,τ̄ and y′ = yγ

π1,τ̄ .

Consequently, one has y′ = x′σπ1,τ̄ for some σ ∈ Σ. Note that, since x ̸= y, one has σ ̸= 1
and consider the morphism of pre-actions from the negative translation pre-action (ϕ1,−,ϕ2,−) :
(Γ1 ∪NC1 ,Γ2 ⊔NC1 ,τ−)→ (X̄1, X̄2, τ̄) coming from Remark 5.12, with basepoints x1 = x′ and
x2 = x′τ̄ . Since e is a treeing edge, this morphism is injective by Proposition 5.15. The half-tree
Hx(γ) =Hy(γ) is thus isomorphic, via BS(ϕ1,−,ϕ2,−), to the half-tree H of Σ2 in the Bass-Serre
tree T.

Note that the left translation by σ (i.e. γ∗ 7→ σγ∗) defines an automorphism of the negative
translation pre-action, which we write as (σ1,σ2). The morphism of graphs BS(σ1,σ2) maps
pathT2,1Γ

(γ∗) to pathT2,σ (γ
∗) in H by Lemma 5.13 (note that these paths both have Σ2 as first

edge). Since the left Γ-action on the boundary ∂T of its Bass-Serre tree is topologically free, the
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left σ action does not fix the half-tree H pointwise. Hence there exists an element γ∗ ∈ Σ⊔NC1

such that pathT2,1(γ
∗) and pathT2,σ (γ

∗) have distinct ranges. Moreover, up to extending γ∗, we can
further assume that γ∗ is a path type element of NC1 so that the element γ ′ := γγ∗ is a path-type
element of NC2 .

Now, the images of pathT2,1(γ
∗) and pathT2,σ (γ

∗) by BS(ϕ1,−,ϕ2,−) are path2,x′τ̄(γ
∗) and path2,y′τ̄(γ

∗)
by Lemma 5.13, and these paths diverge in the half-tree Hx(γ) =Hy(γ). Note finally that the
starting edges of these paths are both equal to e; this implies that path1,x(γ

′) and path1,y(γ
′)

don’t have the same range. Hence Hx(γ
′) and Hy(γ

′) are disjoint.

We are done in both cases. □claim

We then modify the bijection τ̄ to get the pre-action (X̄1, X̄2, τ̃) we are looking for. First, given an
element γ as in the previous claim, we consider for each z ∈ F the morphism of pre-actions from the
positive translation pre-action

(ψ1,z,ψ2,z) : (Γ1 ⊔NC2 ,Γ2 ∪NC2 ,τ+)→ (X̄1, X̄2, τ̄)

coming from Remark 5.12, with basepoints z′ := zγπ1,τ̄ ∈ X̄1 and z′τ̄ ∈ X̄2. Note that the image
of this morphism corresponds to the half-graph opposite to the half-tree Hz(γ). Then, we define
X ′

j =
⋂

z∈F rng(ψ j,z)⊂ X̄ j, and consider the restriction (X ′
1,X

′
2,τ

′) of (X̄1, X̄2, τ̄). Informally speaking,
we erase τ̄ on the Σ1-orbits corresponding to edges in the half-trees Hz(γ) for z ∈ F . Note that this
leaves infinitely many Γ1-orbits in X̄1 outside dom(τ ′), respectively infinitely many Γ2-orbits in X̄2
outside rng(τ ′), and the pre-action (X ′

1,X
′
2,τ

′) is transitive. Notice also that, for any z ∈ F , we have
z′Γ1 ∩dom(τ ′) = z′Σ1 (in other words, the only edge in the star at z′ which belongs to BS(X ′

1,X
′
2,τ

′)
is z′Σ1). In particular, given any c1 ∈C1 \{1}, the orbits x′ic1Σ1 and y′ic1Σ1, for 1 ≤ i ≤ k, are not in
dom(τ ′).

We now extend τ ′. Pick some orbits z1Γ2, . . . ,zkΓ2 in X̄2 \ rng(τ ′), add them to X ′
2, take c j in

C j \{1} for j = 1,2, and set x′ic1στ ′ := ziϑ(σ) and y′ic1στ ′ := zic2ϑ(σ) for i = 1, . . . ,k and σ ∈ Σ1.
This is possible since the Σ2-orbits of the points zi and zic2 are pairwise disjoint (we use again the
freeness of the Γ2-action), and since the Σ1-orbits at x′ic1, y′ic1 for 1 ≤ i ≤ k are pairwise disjoint and
were not initially in the domain of τ ′. Note that, after this extension, (X ′

1,X
′
2,τ

′) is still transitive.
Then we apply Theorem 5.19 to get an extension τ̃ : X̄1 → X̄2 of τ ′ such that (X̄1, X̄2, τ̃) is the free
globalization of (X ′

1,X
′
2,τ

′). A computation shows then that xi(γc1c2c−1
1 γ−1)π1,τ̃ = yi for all i = 1, . . . ,k.

Finally, the action π1,τ̃ is highly faithful by Remark 5.18.

6.2 Highly transitive actions of amalgams

From now on, we fix free actions X1 ↶π1 Γ1 and X2 ↶π2 Γ2 with infinitely many orbits. We endow
the set of bijections from X1 onto X2 with the topology of pointwise convergence, which is a Polish
topology. We then set

PA = {τ : X1 → X2 bijective : xστ = xτϑ(σ) for all σ ∈ Σ1} .

In other words, PA is the set of bijections τ : X1 → X2 such that (X1,X2,τ) is a (global) pre-action of Γ.
This is clearly a closed subset for the topology of pointwise convergence, hence a Polish space. Recall
that every τ ∈ PA induces an action X j ↶π j,τ Γ for j = 1,2. We will focus on the action π1,τ , which we
will abbreviate by πτ .
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Definition 6.2. Let us set

TA = {τ ∈ PA : πτ is transitive} ;

HFA = {τ ∈ PA : πτ is highly faithful } ;

HTA = {τ ∈ PA : πτ is highly transitive } .

As in the HNN case, the subset TA isn’t closed for the topology of pointwise convergence, but we
have the following result.

Lemma 6.3. The set TA is Gδ in PA, hence a Polish space. Moreover, TA ̸= /0.

Proof. Since X1 ↶π1 Γ1 and X2 ↶π2 Γ2 have infinitely many orbits, there are Γ j-equivariant bijections
ϕ j : Γ → X j for j = 1,2. It then suffices to push-forward the translation pre-action by (ϕ1,ϕ2) to get
an element of TA (its Bass-Serre graph will be isomorphic to the classical Bass-Serre tree and πτ

will be conjugated to the translation action Γ ↶ Γ). Hence, TA is non-empty. To show that TA is Gδ

in PA, it suffices to write TA =
⋂

x,x′∈X1
Ox,y, where for x,y ∈ X1, Ox,y = {τ ∈ PA : there exists γ ∈

Γ such that xγπτ = y}. Since Ox,y is obviously open in PA for all x,y ∈ X1, this shows that TA is a Gδ

subset of PA.

Here comes the theorem proving that our amalgam Γ admits a highly transitive highly faithful
action, thus proving Theorem E.

Theorem 6.4. The set HTA∩HFA is dense Gδ in TA. In particular, Γ admits actions which are both
highly transitive and highly faithful.

Proof. For k ≥ 1 and x1, . . .xk,y1, . . . ,yk ∈ X1 pairwise distinct, the sets

Vx1,...,xk,y1,...,yk = {τ ∈ TA : ∃γ ∈ Γ , xiγ
πτ = yi for all 1 ≤ i ≤ k}

are obviously open in TA. Similarly, for finite subsets F of Γ\{1}, the sets

WF = {τ ∈ TA : ∃x ∈ X1 , x f πτ ̸= x for all f ∈ F}

are also obviously open in TA. Now, using Lemma 2.2, and since every strongly faithful action of Γ is
highly faithful by Corollary 2.6, we have

HTA∩HFA =
⋂

F⋐Γ\{1},k≥1,x1,...xk,y1,...,yk∈X1
pairwise distinct

(Vx1,...,xk,y1,...,yk ∩WF) .

To conclude, it suffices to show that each set (Vx1,...,xk,y1,...,yk)∩HFA is dense in TA, since this
immediately implies that each open set (Vx1,...,xk,y1,...,yk)∩WF is dense in TA. To do this, let τ ∈ TA and
let F be a finite subset of X1. Fix a finite connected subgraph G of BS(X1,X2,τ) containing the edges
zΣ1 for z ∈ F , and denote by τ0 the restriction of τ to the union of the Σ1-orbits in X1 corresponding to
the edges of G. Then apply Proposition 6.1 to the transitive pre-action (dom(τ0) ·Γ1, rng(τ0) ·Γ2,τ0),
whose Bass-Serre graph is G, to get an extension τ ′ such that τ ′ ∈ Vx1,...,xk,y1,...,yk ∩HFA. Moreover,
since F ⊂ dom(τ0), it follows that τ and τ ′ coincide on F .

Remark 6.5. As in Remark 4.5, one can give a direct proof of the previous theorem without relying on
Baire’s theorem.
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7 Highly transitive actions of groups acting on trees

7.1 Proofs of Theorem A and B

Let us begin with a few preliminaries.
Suppose we are given an action of a countable group G on a tree T, and a proper subtree T′ such

that T′ and gT′, where g ∈ G, are either equal or disjoint subtrees.
We can then can form a “quotient” tree T̄ by shrinking each subtree gT′ to a single vertex, that

we will denote by (gT′). The tree T̄ is naturally endowed with a G-action and the “quotient map”
q : T → T̄ is G-equivariant. The image by q of a path in T is a path which is obtained by shrinking
each subpath contained in a subtree gT′ to the vertex (gT′) in T̄. In case of a geodesic ray, its image
by q is either a geodesic ray in T̄, or a geodesic which ends at a vertex (gT′). Hence q induces a map
∂q : ∂T →V (T̄)∪∂ T̄.

Remark 7.1. The restriction of ∂q to (∂q)−1(∂ T̄) is injective.

Proof. Given ξ ,ξ ′ ∈ ∂T such that ∂q(ξ ) and ∂q(ξ ′) lie in ∂ T̄, consider geodesic rays ω,ω ′ in T

tending to ξ ,ξ ′. Each ray contains all edges of its image under q. Hence ∂q(ξ ) = ∂q(ξ ′) implies that
ω and ω ′ have infinitely many common edges, and therefore ξ = ξ ′.

One can also notice, although we do not need this fact below, that ∂q is continuous at each point
ξ ∈ (∂q)−1(∂ T̄). In case T′ is bounded, one has in fact ∂q : ∂T → ∂ T̄, and ∂q is continuous and
injective.

Lemma 7.2. In the context above, assume that G ↷ T is a minimal action. Then:

(1) if G ↷ T is of general type, then so is G ↷ T̄;

(2) if G ↷ ∂T is topologically free, then so is G ↷ ∂ T̄.

Proof. Assume first G ↷ T is of general type, in order to prove (1). The hypotheses on T′ guarantee
the existence of an edge e in T which lies outside all translates gT′. By minimality of G ↷ T,
there exists a hyperbolic element h ∈ G whose axis in T contains e. Pick g1,g2 ∈ G which induce
transverse hyperbolic automorphisms of T. For n sufficiently large, h1 = gn

1hg−n
1 and h2 = gn

2hg−n
2

induce transverse hyperbolic automorphisms of T. Moreover, their axes do contain edges in the orbit
of e, so that their images by q lie in ∂ T̄. Hence, by Remark 7.1, h1 and h2 induce transverse hyperbolic
automorphisms of T̄. This proves that G ↷ T̄ is of general type.

Assume now that G ↷ ∂T topologically free, in order to prove (2). Then assume that g ∈ G fixes a
half-tree H′ in T̄, corresponding to some edge e in T′, pointwise. Notice that e is an edge of T that q
does not shrink, and denote by H its half-tree in T. One has q(H) =H′. By minimality of G ↷ T, the
edges of the orbit G ·e which lie in H do generate H. Since they also lie in H′, they are fixed pointwise
by g, therefore the half-tree H itself is fixed pointwise by g. Since G ↷ ∂T is topologically free, g has
to be the trivial element, and this proves that G ↷ ∂ T̄ is topologically free.

We now recall the statement of Theorem A before proving it.

Theorem. Let Γ ↷ T be a minimal action of general type of a countable group Γ on a tree T. If the
action on the boundary Γ ↷ ∂T is topologically free, then Γ admits a highly transitive and highly
faithful action; in particular, Γ is highly transitive.
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Proof of Theorem A. Let us consider an edge e in T. The complement of the orbits Γ · e and Γ · ē in
E(T) is either empty, or generates a disjoint union of subtrees of T. Since each of these subtrees
contains some endpoint of some translate of e, there are at most two orbits of subtrees. Hence by
applying Lemma 7.2 zero, one, or two times, one gets a tree T̄ endowed with a Γ-action which is still
of general type, and such that Γ ↷ ∂ T̄ is topologically free. Moreover, the action on E(T̄) is transitive.
Now, the quotient Γ\T̄ is either a segment or a loop, the fundamental group of the corresponding graph
of groups, which is either an amalgam or an HNN extension, is isomorphic to Γ, and T̄ is the associated
Bass-Serre tree. Applying Theorem E or Theorem C, we finally get that Γ admits a highly transitive
and highly faithful action.

We can now also prove Theorem B, but let us first recall its statement.

Theorem. Let Γ ↷ T be a faithful minimal action of general type of a countable group Γ on a tree T.
The following are equivalent

(1) td(Γ)≥ 4;

(2) Γ is highly transitive;

(3) Γ is MIF;

(4) Γ ↷ ∂T is topologically free.

Proof of Theorem B. The implication (2) =⇒ (1) is clear. The implication (1) =⇒ (4) is Le Boudec
and Matte Bon’s main result [LBMB22, Thm 1.4]. The implication (4) =⇒ (2) is a consequence of
Theorem A. So (1), (2) and (4) are all equivalent.

To prove that these three statements are also equivalent to (3), note that Theorem A shows moreover
that, under the assumption (4), the group Γ admits a highly transitive highly faithful action. So for such
an action, all its elements have infinite support, which by [HO16, Corollary 5.8] implies that Γ is MIF.
The implication (4) =⇒ (3) thus holds. Finally, the implication (3) =⇒ (4) follows from [LBMB22,
Proposition 3.7]

7.2 Corollary F and its implication of former results

We now turn to the proof of a lemma which directly implies Corollary F via Theorem A, and then we
check that Corollary F applies to all groups acting on trees which can be proven to be highly transitive
by previous results quoted in the introduction.

Recall that, given a subtree U of T, we denote by GU the pointwise stabilizer of U in G. The
following lemma is a generalization of Prop. 19 (iv) and Prop. 20 (iv) from [HP11].

Lemma 7.3. Let G ↷ T be a faithful and minimal action such that G contains a hyperbolic element h.
If there exist a bounded subtree B and a vertex u in B such that GB is core-free in Gu, then the induced
action G ↷ ∂T is topologically free.

Proof. Let B′ be the union of the translates gB for g ∈ Gu. This is a subtree, since all gB contain
u, which is Gu-invariant and contained in the ball of radius diam(B) centered at u. Let g0 be an
element of G fixing a half-tree H pointwise. Up to conjugating by a suitable power of h, we may
and will assume that H contains B′, so that g0 is in GB′ . Now, as GB is core-free in Gu, we have
GB′ =

⋂
g∈Gu

GgB =
⋂

g∈Gu
gGBg−1 = {1}. Thus, we get g0 = 1, which proves that G ↷ ∂T is

topologically free by Corollary 2.14.
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We now prove that Corollary F applies to all groups acting on trees which are highly transitive via
the combination of the results of Minasyan-Osin [MO15] and Hull-Osin [HO16].

Proposition 7.4. Let Γ be a countable group acting minimally on a tree T. Suppose that

(i) Γ is not virtually cyclic,

(ii) Γ does not fix any point of ∂T,

(iii) there exist vertices u,v of T such that the stabilizer Γ[u,v] is finite;

(iv) the finite radical of Γ is trivial.

Then the action Γ ↷ T is faithful, of general type, and there exists a bounded subtree B such that ΓB is
trivial. In particular, ΓB is core-free in Γu for every vertex u in B.

Proof. Starting with a finite stabilizer Γ[u,v] given by (iii), one observes that
⋂

γ∈Γ γΓ[u,v]γ
−1 is contained

in the finite radical, hence trivial by (iv). In particular, Γ ↷ T is faithful.
The action Γ ↷ T cannot be elliptic. Indeed, if it were, then T would be a singleton, Γ would

be finite by (iii), and this contradicts (i). Furthermore, this action cannot be lineal, because of (i),
faithfulness and minimality, nor parabolic, nor quasi-parabolic, because of (ii). Hence, Γ ↷ T is of
general type.

Finally, there is a finite subset F ⋐ Γ, containing 1, such that
⋂

f∈F f Γ[u,v] f−1 is already trivial,
hence

⋂
f∈F Γ f ·[u,v] is trivial. Now, we are done by considering the smallest subtree B of T containing

the geodesics f · [u,v], for f ∈ F .

Second, we prove that Corollary F applies to all groups which are highly transitive thanks to
[FMS15]. This is a straightforward consequence of the following result.

Proposition 7.5. Let a countable group Γ act without inversion on a tree T, and consider a set
R ⊂ E(T) of representatives of the edges of the quotient graph Γ\T. Assume that Γv is infinite and Γe

is highly core-free in Γv, for every couple (e,v) where e ∈ R and v is one of its endpoints. Then, there
exists a subtree T′ of T such that:

(1) the action Γ ↷ T′ is faithful, of general type, and minimal;

(2) there exist a bounded subtree B of T′ and u ∈V (B) such that ΓB is core-free in Γu.

Proof. First, assume that γ ∈ Γ fixes T pointwise. Then, one has γ ∈ Γv for some endpoint v of an
edge e ∈ R. As Γe is highly core-free in Γv, the Γv-action on the orbit Γv · e, which is conjugate to
Γv ↷ Γv/Γe, is highly faithful. Hence, we get γ = 1, so that Γ ↷ T is faithful.

Second, let us consider any edge e ∈ R, and set v = s(e), w = r(e). By high core-freeness,
the indexes [Γv : Γe] and [Γw : Γe] are both infinite. Thus, there exist elements g1,g2 ∈ Γw and
h1,h2 ∈ Γv such that the edges e,g−1

1 e,g−1
2 e,h1e,h2e are pairwise distinct. Notice that (g−1

1 e, ē,h1e)
and (g−1

2 e, ē,h2e) are oriented paths. For j = 1,2, the element h jg j is hyperbolic and its axis contains
(g−1

j e, ē,h je). We have got transverse hyperbolic elements h1g1,h2g2, which proves that Γ ↷ T is of
general type.

In fact, Γv is infinite and Γe is highly core-free in Γv, for every couple (e,v) where e is any edge of
T and v is one of its endpoints. Notice this property passes to the smallest subtree T′ of T containing
the axes of all hyperbolic elements in Γ. This subtree is Γ-invariant, and the action Γ ↷ T′ is still
faithful and of general type. Of course, it is also minimal, and Assertion (2) is trivially satisfied when
B is any segment (that is, any subtree with exactly two vertices).
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Finally, we state two natural consequences of Corollary F when considering the natural actions of
HNN extensions (resp. amalgams) on their Bass-Serre tree.

Corollary 7.6. Consider a non-ascending HNN extension Γ = HNN(H,Σ,ϑ). If one of the subgroups
Σ,ϑ(Σ) is core-free in H, then Γ admits a highly transitive and highly faithful action; in particular, Γ

is highly transitive.

Proof. Apply Corollary F to the tree induced by the edge Σ and the vertex H, or to the tree induced by
the edge ϑ(Σ) and the vertex H.

Corollary 7.7. Consider a non-degenerate amalgam Γ = Γ1 ∗Σ Γ2. If Σ is core-free in one factor Γ j,
then then Γ admits a highly transitive and highly faithful action; in particular, Γ is highly transitive.

Proof. Apply Corollary F to the tree induced by the edge Σ and the vertex Γ j.

8 Examples and applications

As mentioned in the Introduction, it is worth giving examples of groups which are highly transitive
thanks to Theorem A, or to its consequences, but for which previous results from [MO15, HO16,
FMS15, GGS20] do not apply. In particular, we will prove that some groups are neither acylindrically
hyperbolic nor linear. To that end, we will use the following well-known results.

Proposition 8.1. [Osi16, Corollary 1.5] If a group Γ is acylindrically hyperbolic, then so is any
s-normal subgroup of Γ.

Let us recall that a subgroup Λ ≤ Γ is called s-normal if for every γ ∈ Γ, the subgroup γΛγ−1 ∩Λ

is infinite. Every infinite normal subgroup is clearly s-normal.

Proposition 8.2. Every acylindrically hyperbolic group contains a non-abelian free subgroup. In
particular, every acylindrically hyperbolic group is non-amenable.

The latter proposition can either be proved by a standard ping-pong argument, or deduced from
Theorem 6.8 and Theorem 8.1 in [DGO17], which imply that every acylindrically hyperbolic group is
SQ-universal (see also the discussion around Conjecture 9.6 in the same book).

Let us recall that a group is called linear over a field k if it is isomorphic to a subgroup of GL(V ),
where V is a finite dimensional k-vector space. Note that if k′ is an extension of k then any group linear
over k is linear over k′. Hence, if a group is linear over k then it is also linear over the algebraic closure
of k.

A group Γ is called linear if there exists a field k such that Γ is linear over k. It follows from the
preceding discussion that Γ is linear if and only if there exists an algebraically closed field k such that
Γ is linear over k.

8.1 Examples around Baumslag-Solitar groups

8.1.1 Baumslag-Solitar groups themselves

Let us recall the definition: for any m,n ∈ Z∗, the Baumslag-Solitar group with parameters m,n is

BS(m,n) := ⟨a,b |abma−1 = bn⟩.
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Hull and Osin asked what the transitivity degree of Baumslag-Solitar groups is [HO16, Question 6.3],
and noted that it was actually unknown whether BS(2,3) is highly transitive or not. We completely
answer this question in Proposition 8.8 and Corollary 8.12 below.

Notice that BS(m,n) is isomorphic to HNN(Z,nZ,ϑ), where ϑ(nq) = mq for all q ∈ Z, and the
isomorphism from HNN(Z,nZ,ϑ) to BS(m,n) is given by t 7→ a and q 7→ bq for q ∈ Z. We will freely
identify BS(m,n) to this HNN extension below without recalling it explicitly. Hence, BS(m,n) has a
natural action on the Bass-Serre tree of this HNN extension, which we denote by Tm,n.

Remark 8.3. The following facts are well-known:

• BS(m,n) is solvable if and only if |m|= 1 or |n|= 1;

• BS(m,n) is icc if and only if |m| ̸= |n|;

• BS(m,n) is residually finite if and only if |m|= 1, |n|= 1, or |m|= |n|; see [Mes72];

• BS(m,n) is non-linear whenever |m| ≠ 1, |n| ≠ 1, and |m| ≠ |n|; this is a consequence of the
former fact and Malcev’s theorem [Mal40].

Remark 8.4. Hull and Osin observed that BS(m,n) is never acylindrically hyperbolic (for m,n ∈ Z∗);
this is [Osi16, Example 7.4]. Let us recall the argument: since the cyclic subgroup ⟨b⟩ is s-normal, the
group BS(m,n) is not acylindrically hyperbolic by Proposition 8.1.

Let us note the following result for later use.

Lemma 8.5. For all m,n ∈ Z∗ and r ≥ 1, the subgroup ⟨br⟩ is s-normal in BS(m,n).

Proof. Let γ be any element of BS(m,n), with normal form bs0aε1bs1 · · ·aεk bsk . It is easy to check that
γbrmknk

γ−1 is still a non-trivial power of b, say bs. Then, ⟨br⟩∩ γ⟨br⟩γ−1 contains ⟨brmknks⟩, hence is
infinite.

Let us now turn to a crucial lemma before stating our result. It is due to de la Harpe and Préaux
[HP11, Lem. 21], but we include a proof for the reader’s convenience.

Lemma 8.6 (de la Harpe-Préaux). The action BS(m,n)↷ ∂Tm,n is topologically free if and only if
|n| ̸= |m|.

Proof. (⇐=) Since |n| ≠ |m|, either n ∤ m or m ∤ n. Assume that n ∤ m and let d = gcd(n,m) and
n = dn0, m = dm0. Since n ∤ m we have |n0| ≥ 2. In particular, we have Σ ̸= H, hence there are
several positive edges in the star at any vertex in Tm,n. Consequently every half-tree in Tm,n contains a
half-tree corresponding to a positive edge. Now, let γ ∈ BS(m,n), suppose γ fixes pointwise a half-tree.
Since the action of BS(m,n) is transitive on the positive edges of Tm,n, we may assume that the fixed
half-tree H contains the one given by the edge Σ. For all k ≥ 1, one has path1(tk) ⊂ H, hence γ

fixes path1(tk) pointwise. It follows that γ ∈ Σ∩ tkΣt−k = nk+1
0 dZ, for all k ≥ 1. Hence, γ = 1, since

|n0| ≥ 2. In the case m ∤ n the proof is similar (we could also deduce this case from the isomorphism
BS(m,n)≃ BS(n,m)).

(=⇒) Suppose that |n|= |m|, so that Σ = ϑ(Σ) and ϑ =±id. In this case, Σ is a non-trivial normal
subgroup of BS(m,n), and Tm,n itself is fixed pointwise by any element of Σ.

Remark 8.7. The lemma immediately implies that ⟨b⟩ is a core-free subgroup of BS(m,n) whenever
|n| ̸= |m|. Indeed, the action on BS(m,n)↷ ∂Tm,n being topologically free, the action BS(m,n)↷ Tm,n

is faithful. Hence ⟨b⟩ is core-free in BS(m,n), since the conjugates of ⟨b⟩ in BS(m,n) are exactly the
vertex stabilizers. See also Lemma 8.13.
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Our first new examples of highly transitive groups are given by the following result.

Proposition 8.8. Let m,n ∈ Z∗. The following are equivalent:

(i) |m| ̸= 1, |n| ̸= 1, and |m| ̸= |n|;

(ii) BS(m,n) admits a highly transitive and highly faithful action;

(iii) BS(m,n) is highly transitive;

(iv) BS(m,n) is non-solvable and icc.

Proof. The implication (i) =⇒ (ii) is a direct consequence of Theorem C and Lemma 8.6. Then,
(ii) =⇒ (iii) is trivial, (iii) =⇒ (iv) results from classical obstructions to high transitivity recalled in the
Introduction, and (iv) =⇒ (i) results from Remark 8.3.

Remark 8.9. As reminded in Remark 8.3 and Remark 8.4, the highly transitive groups arising in
Proposition 8.8 are non-acylindrically hyperbolic and non-linear. Moreover, edge-stabilizers are not
highly core-free in their endpoints stabilizers (they have finite index). Hence, results from [MO15,
HO16, FMS15, GGS20] do not apply.

Remark 8.10. The following lemma proves that Corollary F cannot apply to the action BS(m,n)↷
Tm,n. Consequently, Theorem A is stronger than Corollary F. Note that Baumslag-Solitar groups are
our only examples which testify to this fact.

Lemma 8.11. Set Γ := BS(m,n). If B is any bounded subtree of Tm,n and u is any vertex of B, then
the pointwise stabilizer ΓB is not core-free in Γu.

Proof. There exists a positive integer r such that B is contained in the ball B(r) of radius r at ⟨b⟩.
Then, every stabilizer Γv, where v ∈V (B(r)), is a conjugate subgroup γ⟨b⟩γ−1, where the normal form
of γ contains at most r occurrences of a±1. Consequently γ−1bmrnr

γ is still a power of b, so that bmrnr

lies in γ⟨b⟩γ−1 = Γv. This proves that bmrnr
lies in the pointwise stabilizer ΓB(r). Now, for every γ ∈ Γu,

one has γΓBγ−1 = ΓγB ⊇ ΓB(r), since γB⊆B(r). Thus all conjugates γΓBγ−1 where γ ∈ Γu contain
bmrnr

, so ΓB is not core-free in Γu.

Let us now complete the answer to Hull and Osin’s question. As they noticed in [HO16, Lemma 4.2
and Corollary 4.6], infinite non-icc groups and infinite residually finite solvable groups have transitivity
degree 1. Hence we can compute the transitivity degree of all Baumslag-Solitar groups.

Corollary 8.12. Let m,n ∈ Z∗. The following hold.

(1) If |n|= 1 or |m|= 1 or |n|= |m|, then td(BS(m,n)) = 1.

(2) In the other cases, BS(m,n) is highly transitive, so td(BS(m,n)) = +∞.

Proof. (1) If |n|= 1 or |m|= 1, the group BS(m,n) is infinite, residually finite, and solvable, hence
td(BS(m,n)) = 1. If |n|= |m|, the group BS(m,n) is infinite and non-icc, hence td(BS(m,n)) = 1.

(2) This follows from Proposition 8.8 directly.
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PIERRE FIMA, FRANÇOIS LE MAÎTRE, SOYOUNG MOON, AND YVES STALDER

8.1.2 Amalgams with Baumslag-Solitar groups

Let us now turn to examples of highly transitive groups given by amalgams. Let us begin by some
more preliminaries.

Lemma 8.13. Let m,n ∈ Z∗. If |n| ̸= |m|, the subgroup ⟨b⟩ is highly core-free in BS(m,n).

Notice this is essentially the same example as the one given in [HO16, Corollary 5.12]. As the
action on BS(m,n) ↷ ∂Tm,n is topologically free, it is a particular case of a general phenomenon
described in the following lemma.

Lemma 8.14. Let Γ ↷ T be a minimal action of a countable group Γ on a tree T. If the action on the
boundary Γ ↷ ∂T is topologically free, then for every vertex v in T, the stabilizer Γv is highly core-free
in Γ.

Proof. We have to prove that the action Γ ↷ Γ/Γv is highly faithful; by Corollary 2.6 it is sufficient to
prove it is strongly faithful. Notice the orbit Γv in T meets every half-tree in T by minimality of the
action Γ ↷ T, and that Γ ↷ Γv is conjugate to Γ ↷ Γ/Γv.

Take any non-trivial elements γ1, . . . ,γk ∈ Γ. Let us start with any half-tree H0. Then, since the
fixed points of γ1 form a subtree, and since Γ ↷ ∂T is topologically free, there exists a half-tree
H1 ⊆H0, all of whose vertices are moved by γ1. Then applying the same argument to γ2, we get a
half-tree H2 ⊆H1, all of whose vertices are moved by γ1 and γ2. And so on, and so forth, we finish
with a half-tree Hk, all of whose vertices are moved by all elements γ1, . . . ,γk. Finally Hk contains a
point of Γv, which is moved by all elements γ1, . . . ,γk. This proves that Γ ↷ Γv is strongly faithful.

We also need a general fact about s-normality in amalgams.

Lemma 8.15. Let us consider an amalgam Γ = Γ1 ∗Σ Γ2. If all infinite subgroups Σ′ < Σ are s-normal
in both Γ1 and Γ2, then they are also all s-normal in Γ.

Proof. Let Σ0 be any infinite subgroup of Σ, and let γ be any element of Γ, that we write as a product
γ = γ1 · · ·γn of elements of Γ1 or Γ2. Set Σk = Σk−1 ∩ γ

−1
k Σk−1γk for k = 1, . . . ,n. Let us prove by

induction that Σk is infinite, and contained in Σ0 ∩ (γ1 · · ·γk)
−1Σ0(γ1 · · ·γk) for k = 0, . . . ,n.

For k = 0, the group Σ0 has been supposed infinite, and it coincides with the intersection Σ0 ∩
(γ1 · · ·γk)

−1Σ0(γ1 · · ·γk) in this case. Then, for k ≥ 1, the subgroup Σk−1 is infinite by induction
hypothesis, therefore Σk−1 is s-normal in Γ1 and Γ2. Consequently, the subgroup Σk =Σk−1∩γ

−1
k Σk−1γk

is infinite. Moreover, one has

Σk = Σk−1 ∩ γ
−1
k Σk−1γk

⊆ Σ0 ∩ (γ1 · · ·γk−1)
−1

Σ0(γ1 · · ·γk−1)∩ γ
−1
k Σ0γk ∩ (γ1 · · ·γk)

−1
Σ0(γ1 · · ·γk)

by induction hypothesis, whence Σk ⊆ Σ0 ∩ (γ1 · · ·γk)
−1Σ0(γ1 · · ·γk).

Finally, applying the result with k = n, we get that Σn is infinite and Σn ⊆ Σ0 ∩ γ−1Σ0γ , which
proves that Σ0 is s-normal in Γ, as desired.

Let us finally turn to our examples of highly transitive amalgams.

Proposition 8.16. Let m,n,k ∈ Z∗, and let Λ be a countable group containing a proper infinite cyclic
subgroup ⟨c⟩. The amalgam Γ = BS(m,n)∗⟨bk=c⟩ Λ has the following properties:

(1) if |n| ̸= |m|, then Γ admits an action which is both highly transitive and highly faithful;
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(2) if |n| ̸= |m| and ⟨c⟩ is s-normal in Λ, then Γ is not acylindrically hyperbolic;

(3) if |m| ̸= 1, |n| ̸= 1, and |m| ̸= |n|, then Γ is not a linear group.

Proof. (1) The amalgam Γ is non-degenerate. By Lemma 8.13, or Remark 8.7, ⟨bk⟩ is a core-free
subgroup of BS(m,n). Then Corollary F, or in this case Corollary 7.7, implies that Γ admits an action
which is both highly transitive and highly faithful.

(2) By Lemma 8.5, every non-trivial subgroup of ⟨b⟩ is s-normal in BS(m,n). Furthermore, in
Λ, for any λ ∈ Λ, the intersection ⟨c⟩∩λ ⟨c⟩λ−1 is infinite cyclic, say generated by cλ , since ⟨c⟩ is
s-normal in Λ. Then, for every l ≥ 1, one has ⟨cl⟩∩λ ⟨cl⟩λ−1 = ⟨cl

λ
⟩, which is infinite. Hence, every

non-trivial subgroup of ⟨c⟩ is s-normal in Λ.
Then, Lemma 8.15 implies that every non-trivial subgroup of ⟨bk⟩= ⟨c⟩ is s-normal in the amalgam

Γ. Now, ⟨c⟩ is cyclic, so it is not acylindrically hyperbolic by Proposition 8.2, so Γ is not acylindrically
hyperbolic either by Proposition 8.1.

(3) The group Γ contains a copy of BS(m,n), which is non-linear (see Remark 8.3). Hence Γ

cannot be a linear group.

Remark 8.17. The previous proposition shows in particular that if |m| ≠ 1, |n| ≠ 1, |m| ≠ |n|, and
if one chooses Λ such that ⟨c⟩ is not highly core-free in Λ (e.g. Λ = Z and c ≥ 2), then results from
[MO15, HO16, FMS15, GGS20] do not apply to prove that Γ is highly transitive.

Remark 8.18. On the other hand, if |m| ≠ 1, |n| ̸= 1, |m| ̸= |n|, and if one chooses Λ such that ⟨c⟩ is
highly core-free in Λ (e.g. Λ = BS(m,n) and c = bk), then Corollary B of [FLMM22] shows that Γ

admits homogeneous actions on bounded Urysohn spaces.

8.2 Examples around finitely supported permutations

We now turn to examples constructed from the group of finitely supported permutations on an infinite
countable set.

8.2.1 Examples of HNN extensions over S f (X)

We denote by S f (X) the subgroup of S(X) consisting of finitely supported permutations.
The group S f (X) is known to be not linear but we could not find any elementary proof in the

literature and this is why we have chosen to include a complete proof below. We thank Julien Bichon
for explaining to us the following argument.

Lemma 8.19. Let Γ be a group. If, for any prime number q and any N ∈ N∗, Γ contains a subgroup G
with G ≃ (Z/qZ)N then Γ is not linear.

Proof. Let k be any algebraically closed field and denote by p its characteristic. Let us recall some
elementary facts. For n ∈ N∗, let us denote by Un(k)⊂ k∗ the multiplicative subgroup of n-th roots of
unity. Elements of Un(k) are exactly the roots of the polynomial P = Xn −1 ∈ k[X ]. Since P′ = nXn−1

all the roots of P are simple if p = 0 or if p is a prime number which does not divide n. Hence, if p = 0
or p is prime and does not divide n one has |Un(k)|= n. To deduce the Lemma, it suffices to prove the
following claim.

Claim. Let V be a finite dimensional vector space over an algebraically closed field k. If GL(V )
contains a subgroup G isomorphic to (Z/qZ)N , where N ∈ N∗ and q is any prime number with
q ̸= char(k) then N ≤ dim(V ).
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Note that any element g ∈ G satisfies gq = 1 hence, the minimal polynomial µg of g divides Xq −1.
Since q ̸= char(k), Xq −1 has only simple roots so µg has only simple roots and g is diagonalizable
with eigenvalues in Uq(k). Moreover, since G is finite abelian and all its elements are diagonalisable,
there exists a basis B = (e1, . . . ,en) of V which simultaneously diagonalises every element of G.
Let us denote by λ (g) ∈Uq(k)n the element λ (g) = (λ1(g), . . . ,λn(g)), where g(ek) = λk(g)ek. This
defines an injective map G → Uq(k)n, g 7→ λ (g). It follows that |G| = qN ≤ |Uq(k)n| = qn, hence
N ≤ n = dim(V ).

Proposition 8.20. The group S f (X) is not linear.

Proof. Let N ∈N∗ and q be a prime number. Since X is infinite, one can choose q-cycles σ1, . . . ,σN in
S f (X) with pairwise disjoint supports. It is then easy to check that there is an injective morphism of
groups defined by

(Z/qZ)N → S f (X) ; (x1, . . . ,xn) 7→ σ
x1
1 · · ·σ xN

N .

Hence, the proof follows from Lemma 8.19.

For any subset F ⊆ X , let us denote by Σ(F) the pointwise stabilizer of F in S f (X), and remark
that whenever F is finite, the subgroup Σ(F) is infinite, in fact isomorphic to S f (X) itself. We will
abbreviate Σ({x}) as Σ(x). For any k ≥ 1, let X (k) denote the set of k-tuples of pairwise distinct points
in X .

Lemma 8.21. Let F be a non-empty subset of X. The following hold:

(1) the stabilizer Σ(F) is a core-free subgroup of S f (X), with infinite index;

(2) if F is finite, then Σ(F) is not highly core-free in S f (X);

(3) if F is finite, then Σ(F) is s-normal in S f (X).

Proof. (1) Let x ∈ F . Since the action X ↶ S f (X) is transitive (even highly transitive) and faithful
we have

⋂
g∈S f (X) g−1Σ(x)g =

⋂
g∈S f (X) Σ(x ·g) =

⋂
y∈X Σ(y) = {1}, hence Σ(x) is core-free in S f (X).

A fortiori, Σ(F) is core-free in S f (X). Let us denote by τy ∈ S f (X) the transposition τy = (x y) for
y ̸= x. The subgroup Σ(x) has infinite index since, for all y,z ∈ X \{x}, one has τ−1

y τz ∈ Σ(x)⇔ y = z.
A fortiori, Σ(F) has infinite index in S f (X).

(2) Let us write F = {x1, . . . ,xk}, with x̄ = (x1, . . . ,xk)∈ X (k). The action X (k) ↶ S f (X) is transitive,
since the action X ↶ S f (X) is highly transitive, and the stabilizer of x̄ is Σ(F). Consequently, the action
Σ(F)\S f (X)↶ S f (X) is conjugate to X (k) ↶ S f (X). Now, X (k) ↶ S f (X) is not strongly faithful, since
taking k+1 permutations with pairwise disjoint and finite supports in X , every point in X (k) will be
fixed by at least one of them. Consequently, Σ(F)\S f (X)↶ S f (X) is not highly faithful.

(3) For any g ∈ S f (X), we have Σ(F)∩g−1Σ(F)g = Σ(F ∪F ·g), and F ∪F ·g is still finite, hence
Σ(F)∩g−1Σ(F)g is infinite.

Proposition 8.22. Let Y and Z be two distinct infinite proper subsets of X, let τ : Y → Z be a bijection,
and let ϑ = τ∗ : S f (Y ) → S f (Z) be the isomorphism defined by ϑ(σ) = τ−1στ . Then, the HNN
extension Γ = HNN(S f (X),S f (Y ),ϑ) has the following properties:

(1) it admits an action which is both highly transitive and highly faithful;

(2) it is not linear;

(3) if Y and Z are both cofinite, then it is not acylindrically hyperbolic;
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(4) if Y and Z are both cofinite, then for every bounded subtree B of its Bass-Serre tree, the pointwise
stabilizer ΓB is not highly core-free in a vertex stabilizer Γu.

Proof. (1) Note that S f (Y ) = Σ(X \Y ). Thus, S f (Y ) is a core-free subgroup of S f (X) by Lemma 8.21.
Hence, Corollary F, or in this case Corollary 7.6, applies.

(2) Follows from Proposition 8.20.
(3) As Y and Z are both cofinite and since the intersection of finitely many cofinite subsets is

cofinite, the powers τn, defined by composition of partial bijections in X (for n ∈ Z) all have a cofinite
domain and a cofinite range, that we will denote by Yn and Zn respectively. Let U be any cofinite subset
of X . For any g ∈ S f (X), one has S f (U)∩g−1S f (U)g = S f (U ∩U ·g), and U ∩U ·g is still cofinite.
Moreover, for any n ∈ Z, one has S f (U)∩ t−nS f (U)tn = S f (U ∩Uτn), where t ∈ Γ is the stable letter.
Note that Uτn is cofinite since the bijection τn realizes a bijection between U ∩Yn and Uτn, so that the
subset Uτn is cofinite in Zn, hence cofinite. Therefore, U ∩Uτn is cofinite.

Then, given γ ∈ Γ, one can write γ = γ1 · · ·γk, where each γ j is either a power of the stable letter t,
or an element of S f (X), and an easy induction based on previous facts shows that S f (Y )∩ γ−1S f (Y )γ
contains S f (V ) for some cofinite set V . This proves that S f (Y ) is an s-normal subgroup in Γ.

Furthermore, S f (Y ) is an amenable group, hence it is not acylindrically hyperbolic by Proposition
8.2. Finally, Proposition 8.1 implies that Γ is not acylindrically hyperbolic.

(4) Up to conjugating and to enlarging B, we may and will assume without loss of generality that
the stabilizer Γu is S f (X), and that Γe = S f (Y ) for some edge e in B. Since Γ acts transitively on the
positive edges, there exists γ1, . . . ,γk ∈ Γ such that

ΓB = S f (Y )∩
k⋂

j=1

γ
−1
j S f (Y )γ j .

As in the proof of (2), we see that there exist cofinite sets V1, . . . ,Vk such that the intersection S f (Y )∩
γ
−1
j S f (Y )γ j contains S f (Vj) for every j, hence ΓB contains S f (

⋂k
j=1Vj), where

⋂k
j=1Vj is cofinite.

Now, S f (
⋂k

j=1Vj) is not highly core-free in Γu = S f (X) by Lemma 8.21, hence ΓB is not either.

Remark 8.23. When both Y and Z are cofinite in X , this proposition provides more explicit new
examples of highly transitive groups, since items (1), (3) and (4) show that the results from [MO15,
HO16, FMS15, GGS20] do not apply.

Remark 8.24. In the context of Proposition 8.22, notice that Γ obviously admits a highly transitive
action when τ can be extended to a permutation τ̃ ∈ S(X). Indeed, the Γ-action defined by t 7→ τ̃ and
σ 7→ σ for σ ∈ S f (X) is highly transitive since its restriction to S f (X) already is (in the terminology
of Section 3, this action corresponds to the global pre-action (X , τ̃)). Nevertheless, the Γ-action we
obtain factors through the semi-direct product S f (X)⋊ ⟨τ̃⟩, which is amenable while Γ is not; hence
the Γ-action is not faithful. Furthermore, such an extension to a permutation τ̃ is not possible when
X −Y and X −Z have different cardinalities.

8.2.2 Examples of HNN extensions over S f (Z)⋊Z

Let us now move to a modification of former examples to get groups which are moreover finitely
generated. For these examples, we consider the permutation s ∈ S(Z) given by k · s = k+ 1. It is
straightforward to check that the subgroup ⟨S f (Z),s⟩< S(Z) is finitely generated, and isomorphic to a
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semi-direct product of the form S f (Z)⋊Z. As before, for any subset F ⊆ Z, let us denote by Σ(F) the
pointwise stabilizer of F in S f (Z). For some purposes, we will need the action

Z×Z↶ ⟨S f (Z),s⟩ , (k, l) · sng := (ksng, lsn) = ((k+n)g, l +n)

for g ∈ S f (Z) and n ∈ Z. Notice that this action is faithful, as is the action Z↶ ⟨S f (Z),s⟩. Moreover,
given a subset F ⊆ Z, we observe that the pointwise stabilizer in ⟨S f (Z),s⟩ of the subset F ×{0} ⊂
Z×Z is the subgroup Σ(F)< S f (Z).

Lemma 8.25. Let F be a non-empty subset of Z. The following hold:

(1) the stabilizer Σ(F) is a core-free subgroup of ⟨S f (Z),s⟩, with infinite index;

(2) if F is finite, then Σ(F) is not highly core-free in ⟨S f (Z),s⟩;

Proof. (1) The group Σ(F) is already core-free and has infinite index in S f (Z) by Lemma 8.21.
(2) Let us write F = {x1, . . . ,xk}, with x1, . . . ,xk pairwise distinct, and set

x̄ =
(
(x1,0), . . . ,(xk,0)

)
∈ (Z×Z)(k) .

Let us denote by Ω the orbit of x̄ under ⟨S f (Z),s⟩. As the action Z↶ S f (Z) is highly transitive, Ω is
the union

⋃
n∈Z(Z×{n})(k). Furthermore, the stabilizer of x̄ is the pointwise stabilizer of F ×{0}, that

is, Σ(F). Consequently, the action Σ(F)\⟨S f (Z),s⟩↶ ⟨S f (Z),s⟩ is conjugate to Ω ↶ ⟨S f (Z),s⟩. Now,
Ω ↶ ⟨S f (Z),s⟩ is not strongly faithful, since taking k+ 1 elements of S f (Z) with pairwise disjoint
supports, every point in Ω =

⋃
n∈Z(Z×{n})(k) will be fixed by at least one of them. Consequently,

Σ(F)\⟨S f (Z),s⟩↶ ⟨S f (Z),s⟩ is not highly faithful.

Using Lemma 8.25 we can prove the following Proposition exactly as we proved Proposition 8.22.

Proposition 8.26. Let Y and Z be two distinct infinite proper subsets of Z, let τ : Y → Z be a bijection,
and let ϑ = τ∗ : S f (Y ) → S f (Z) be the isomorphism defined by ϑ(σ) = τ−1στ . Then, the HNN
extension Γ = HNN(⟨S f (Z),s⟩,S f (Y ),ϑ) has the following properties:

(1) it admits an action which is both highly transitive and highly faithful;

(2) it is finitely generated and not linear;

(3) if Y and Z are both cofinite in Z, then it is not acylindrically hyperbolic;

(4) if Y and Z are both cofinite in Z, then for every bounded subtree B of its Bass-Serre tree, the
pointwise stabilizer ΓB is not highly core-free in a vertex stabilizer Γu.

Remark 8.27. Again, when both Y and Z are cofinite in Z, this proposition provides explicit new
examples of groups which are highly transitive.

Note that when the complements of Y and Z have the same cardinality, these groups admit a natural
highly transitive action, but it fails to be faithful. Indeed, the subgroup ⟨S f (Z), t⟩< Γ is isomorphic to
the HNN extension HNN(S f (Z),S f (Y ),ϑ), and the action of this subgroup is not faithful by Remark
8.24.
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8.2.3 Examples of amalgams

We now switch to the context of amalgams. We will need a refinement of Lemma 8.15.

Lemma 8.28. Let us consider an amalgam Γ = Γ1 ∗Σ Γ2. Assume there is a collection C of infinite
subgroups of Σ such that, for every Σ′ ∈ C and every γ ∈ Γ1 ∪Γ2, the intersection Σ′∩ γ−1Σ′γ contains
an element of C. Then, for every Σ′ ∈ C and every γ ∈ Γ, the intersection Σ′ ∩ γ−1Σ′γ contains an
element of C. In particular, all Σ′ ∈ C are s-normal subgroups of Γ.

Proof. Let Σ0 be any element of C, and let γ be any element of Γ, that we write as a product γ = γ1 · · ·γn

of elements of Γ1 or Γ2. Let us prove by induction that, for k = 0, . . . ,n, there exists Σk ∈ C which is
contained in Σ0 ∩ (γ1 · · ·γk)

−1Σ0(γ1 · · ·γk).
For k = 0, the group Σ0 has been chosen in C, and it coincides with Σ0 ∩ (γ1 · · ·γk)

−1Σ0(γ1 · · ·γk) in
this case. Then, for k ≥ 1, the subgroup Σk−1 ∩ γ

−1
k Σk−1γk contains some Σk ∈ C. Moreover, one has

Σk−1 ⊆ Σ0 ∩ (γ1 · · ·γk−1)
−1Σ0(γ1 · · ·γk−1) by induction hypothesis, hence

Σk ⊆ Σk−1 ∩ γ
−1
k Σk−1γk

⊆ Σ0 ∩ (γ1 · · ·γk−1)
−1

Σ0(γ1 · · ·γk−1)∩ γ
−1
k Σ0γk ∩ (γ1 · · ·γk)

−1
Σ0(γ1 · · ·γk)

whence Σk ⊆ Σ0 ∩ (γ1 · · ·γk)
−1Σ0(γ1 · · ·γk).

Finally, for k = n, we get Σn ⊆ Σ0 ∩ γ−1Σ0γ with Σn ∈ C, as desired.

Proposition 8.29. Let X ,Y,Z be infinite countable sets such that Z is proper subset of X ∩Y . Then, the
amalgam Γ = S f (X)∗S f (Z) S f (Y ) has the following properties:

(1) it admits an action which is both highly transitive and highly faithful;

(2) it is not a linear group;

(3) if Z is cofinite in both X and Y , then it is not acylindrically hyperbolic;

(4) if Z is cofinite in X (resp. Y ), then S f (Z) is not highly core-free in S f (X) (resp. S f (Y )).

Proof. Lemma 8.21 and Corollary 7.7 imply (1). Proposition 8.20 implies (2) while (4) follows from
Lemma 8.21. Let us prove (3). Let C be the collection of subgroups of the form S f (U) where U is
cofinite in Z (hence cofinite in both X and Y ). For every Σ′ = S f (U) ∈ C and every γ ∈ S f (X)∪S f (Y ),
one can check as in former proofs that the intersection Σ′∩ γ−1Σ′γ contains an element of C. Hence,
Lemma 8.28 implies that S f (Z) is s-normal in Γ. Since S f (Z) is amenable it is not acylindrically
hyperbolic hence Γ is not acylindrically hyperbolic.

Again, one can easily modify the previous examples to get groups which are moreover finitely
generated. The proof of the following Proposition is exactly the same as the proof of Proposition 8.29
(by using Lemma 8.25). We can now provide one last new class of highly transitive examples.

Proposition 8.30. Let Z be an infinite proper subset of Z and consider the amalgam
Γ := ⟨S f (Z),s⟩ ∗S f (Z) ⟨S f (Z),s⟩. The following holds.

(1) Γ admits an action which is both highly transitive and highly faithful;

(2) Γ is finitely generated and not linear;

(3) If Z is cofinite in Z, then Γ is not acylindrically hyperbolic and S f (Z) is not highly core-free in
⟨S f (Z),s⟩.

DISCRETE ANALYSIS, 2022:8, 63 pp. 53

http://dx.doi.org/10.19086/da
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8.3 Faithful actions which are non-topologically free on the boundary

Although our main result provides a complete characterization of high transitivity for groups admitting
a faithful minimal action of general type on a tree, one may wonder if Corollaries 7.6 and 7.7 can hold
in a wider context, namely, if the core-freeness assumption of the edge group in a vertex group can be
weakened to core-freeness in the whole group. We will see that it is not the case.

Thanks to the quoted result from [LBMB22], this amounts to finding examples of amalgams and
HNN extensions whose action on their Bass-Serre trees are minimal of general type and faithful, but
the action on the boundary is not topologically free. By Bass-Serre theory, we essentially need to
find faithful edge transitive actions on trees without inversions which are not topologically free on the
boundary, but which in the amalgam case have two vertex orbits, while in the HNN case they have only
one vertex orbit.

Our examples belong to a class which was explored in depth by Le Boudec [LB16, LB17],
generalizing a construction of Bader-Caprace-Gelander-Mozes [BCGM12] which takes its roots in the
work of Burger-Mozes [BM00]. Such examples already appeared in Le Boudec and Matte-Bon’s work
on high transitivity, so our only contribution here is to point out that some of those naturally decompose
as amalgams or HNN extensions. We will focus on specific easy examples instead of seeking large
generality. For more examples, we refer the reader to Ivanov’s recent work [Iva20].

8.3.1 An example of amalgam

Let Td be a d-regular tree of finite degree d ≥ 3. As in [BM00], let us fix a coloring on the set of edges
c : E(Td)→{1, . . . ,d} such that:

• every edge has the same color as its antipode;

• for any vertex v, the restriction of c to the star st(v) is a bijection onto {1, . . . ,d}.

For any vertex v, any automorphism g ∈ Aut(Td) induces a bijection gv : st(v)→ st(gv), which itself
induces a permutation σ(g,v) ∈ Sd , where Sd = Sym({1, . . . ,d}). Let Cd be a cyclic subgroup of Sd
generated by a d-cycle. Consider the group, coming from [LB16],

G = G(Cd) = {g ∈ Aut(Td) : σ(g,v) ∈Cd for all but finitely many vertices}.

Remark 8.31. The group G(Cd) is countable. Indeed, given an automorphism g ∈ G(Cd) and any edge
e such that σ(g,r(e)) has to be in Cd , the permutation σ(g,r(e)) is determined by the color of g(e). It
follows that g is completely determined by its restriction to any finite subtree containing at least one
edge and all stars at vertices v such that σ(g,v) ̸∈Cd .

In order to forbid inversions, recall there is a natural equivalence relation Reven on V (Td) which
relates any two vertices at even distance from each other, and that this equivalence relation is preserved
by any automorphism of Td . We then let

Γ = G+ = {g ∈ G : g does not exchange the two classes of Reven} .

It is fairly easy to see that the action Γ ↷ Td is transitive on undirected edges, hence minimal, of general
type, and without inversion. Let us now fix some edge e0 from v1 to v2, and consider the stabilizers Γ1,
Γ2 and Σ of v1, v2 and e0 respectively (in Γ). By Bass-Serre theory, we have the following.

Remark 8.32. The morphism Γ1 ∗Σ Γ2 → Γ given by inclusions is an isomorphism, and Td is the
Bass-Serre tree of Γ1 ∗Σ Γ2.
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The following result summarizes well-known properties of Γ showing that the hypothesis that Σ is
core-fre in Γ1 or Γ2 cannot be relaxed in Corollary 7.7. We provide a proof for the reader’s convenience.

Proposition 8.33. With the above notations:

(1) Σ is core-free in Γ, and the amalgam Γ1 ∗Σ Γ2 is non-degenerate;

(2) the Γ-action on ∂Td is not topologically free;

(3) Γ is not highly transitive;

(4) Γ is icc.

Proof. (1) The Γ-action on Td is faithful (by definition) and of general type, so that Σ is core-free in Γ,
and the amalgam Γ1 ∗Σ Γ2 is non-degenerate.

(2) Consider the half-tree H associated to e0. It suffices to prove that the pointwise stabilizer of H
is a non-trivial group.

To do so, we follow the proof of [LB17, Theorem C]. First, we take a non-trivial permutation
σ ∈ Sd which fixes the color of e0 (this exists since d ≥ 3; notice it lives in Sd \Cd). Then, we define a
non-trivial automorphism γ ∈ Γ fixing H pointwise as follows.

• The restriction of γ to H is the identity.

• Then, we let γ act on st(v1) so that σ(g,v1) = σ (this is possible since σ fixes the color of e0,
and will guarantee that γ is non-trivial since σ is non-trivial).

• Then, we extend the action inductively: given any vertex w outside H, we set w′ to be the unique
neigbour of w which is closer to H than w, and define the γ-action on st(w) in terms of the
(previously defined) γ-action on st(w′). Namely, denoting by ew the edge from w to w′, the
γ-action on st(w′) provides the edge γew. Then there is a unique element σw ∈Cd sending c(ew)
onto c(γew), and we let γ act on st(w) so that σ(g,w) = σw (note that σ(g,w) = σ(g,w′) as soon
as σ(g,w′) was already in Cd).

(3) The Γ-action on Td is minimal, by edge-transitivity, and of general type. Consequently,
[LBMB22, Corollary 1.5] applies, and the transitivity degree of Γ is at most 2.

(4) Let γ0 be a non-trivial element of Γ and ξ be a point in ∂Td which is not fixed by γ0. Given
edges e,e′ with sources in the same class of vertices, such that e is on the geodesic [ξ ,s(e′)], there
exists γ ∈ Γ such that γe = e′. This γ is a hyperbolic element whose axis contains e and e′. Moreover,
if we choose e close enough to ξ , then the repelling point ξ− of γ in ∂Td is close enough to ξ so
that γ0ξ− ̸= ξ−. Now, since ξ− is not fixed by γ0, the set of fixed points of γnγ0γ−n moves into
smaller and smaller neighborhoods (in Td ∪∂Td) of the attracting point of γ as n →+∞. Thus, the set
{γnγ0γ−n : n ≥ 1} is infinite.

8.3.2 An example of HNN extension

In the previous example, notice that even the subgroup

U(id) = {g ∈ Aut(Td) : σ(g,v) = id for every vertex v}

includes inversions, so that one cannot easily find a subgroup of G without inversion and acting
transitively on V (Td). Hence, we slightly modify the construction in order to get an example of HNN
extension.
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Let Td,d be a (d,d)-biregular tree, where d ≥ 2 (by this, we mean an oriented tree in which every star
st(v) contains exactly d positive edges and d negative edges). Let us denote st(v)+ = st(v)∩E(Td,d)

+

and st(v)− = st(v)∩E(Td,d)
−, and fix a coloring on the set of edges c : E(Td,d)→ {1, . . . ,2d} such

that:

• every edge has the same color as its antipode;

• for any vertex v, the restriction of c to the star st(v) is a bijection onto {1, . . . ,2d};

• for any vertex v, the image c(st(v)+) is either {1, . . . ,d} or {d +1, . . . ,2d}.

By Aut(Td,d), we mean the group of automorphisms of Td,d preserving the orientation. For any
vertex v, any automorphism g ∈ Aut(Td,d) induces bijections g±v : st(v)± → st(gv)±, which them-
selves induces a permutation σ(g,v) ∈ S2d , where S2d = Sym({1, . . . ,2d}), preserving the partition
{1, . . . ,d}⊔{d +1, . . . ,2d}. Let Fd be a the subgroup of S2d generated by the commuting elements

σ1 = (1 2 · · · d)(d +1 d +2 · · · 2d),

σ2 = (1 d +1)(2 d +2) · · ·(d 2d).

Then, the group,

Γ = G(Fd) = {g ∈ Aut(Td,d) : σ(g,v) ∈ Fd for all but finitely many vertices}

is countable (this is not hard to prove, using that Fd acts freely on {1, . . . ,2d}).
It is fairly easy to see that the action Γ ↷ Td,d is transitive on positive edges, hence minimal, of

general type. It is moreover without inversion since it preserves the orientation. Let us fix some vertex
v, some positive edges e1,e2 such that r(e1) = v = s(e2), and some automorphism τ ∈ Γ such that
τ(e1) = e2. Now, consider the stabilizers H = Γv and Σ = Γe2 , and the isomorphism ϑ : Σ → Γe1 given
by ϑ(σ)(x) = τ−1στ(x). By Bass-Serre theory, we have the following.

Remark 8.34. The morphism HNN(H,Σ,ϑ)→ Γ given by inclusions is an isomorphism, and Td,d is
the Bass-Serre tree of HNN(H,Σ,ϑ).

The following result summarizes well-known properties of Γ showing that the hypothesis that one
of the subgroups Σ,ϑ(Σ) is core-free in H cannot be relaxed in Corollary 7.6. We omit the proof,
which is similar to the one of Proposition 8.33.

Proposition 8.35. With the above notations:

(1) Σ is core-free in Γ, and the HNN extension HNN(H,Σ,ϑ) is non-ascending;

(2) the Γ-action on ∂Td,d is not topologically free;

(3) Γ is not highly transitive;

(4) Γ is icc.
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9 Other types of actions and necessity of the minimality assumption

We now discuss various natural extensions of Theorem A by considering other types of actions (recall
that group actions on trees are classified in five different types, see Section 2.3). As we will see,
non-general type actions which are topologically free on the boundary seem to play no role regarding
high transitivity. We will also see that the minimality hypothesis in Theorem A cannot be avoided.

Let us recall that a group action by homeomorphisms on a topological space is called minimal
when every orbit is dense. Note that given a group action on a tree, the minimality of the action on the
boundary implies the minimality of the action on the tree but the converse does not hold: for instance
the standard Z-action on itself is minimal but the action on the boundary is not since it has two distinct
fixed points.

Proposition 9.1. Every residually finite group admits an elliptic faithful action on a tree with non-empty
boundary such that the action on the boundary is both free and minimal.

Proof. Let Γ be a residually finite group, let (Γn)n≥0 be a decreasing chain of finite index normal
subgroups with trivial intersection, where Γ0 = Γ. Then the disjoint union of the coset spaces Γ/Γn has
a natural tree structure where we connect each γΓn+1 to γΓn, and the boudary is non-empty. Since the
action is transitive on each level of the tree, this action is minimal on the boundary. It is free because
the subgroups Γn are normal and intersect trivially. Finally it is elliptic because the vertex Γ is fixed
(moreover, the only non-trivial invariant subtrees are balls around Γ).

Since there are both highly transitive residually finite groups (such as F2) and non-highly transitive
residually finite groups (such as Z), we see that there is no hope for a classification of the transitivity
degree of groups admitting an elliptic faithful action on a tree such that the induced action on the
boundary is free and minimal. We can use also this construction in order to show that the minimality
assumption for the action on the tree is needed in Theorem A.

Proposition 9.2. Let Γ be a non-abelian free group. Then for every residually finite group Λ, the group
Γ×Λ admits an action of general type on a tree which is topologically free on the boundary.

Proof. Since Γ is free, we have a free Γ-action on a tree T1 which is of general type because Γ is not
abelian. Let Λ ↷ T2 be an action provided by the previous proposition, let o be its unique fixed point.
Our new tree T is obtained by gluing over each vertex of T1 a copy of T2 at its origin o. To be more
precise, the vertex set is V (T) =V (T1)×V (T2), and on the vertex set T1 ×{o} we put a copy of the
edges of T1, while for each v ∈V (T1), we put a copy of the edges of T2 on the vertex set {v}×T2.

Then the Γ×Λ action on V (T) given by (γ,λ ) · (x1,x2) = (γ · x1,λ · x2) is an action by automor-
phisms on our new tree T. Noting that each half-tree contains a copy of a half-tree of T2, it is not
hard to check that this action is moreover topologically free. Moreover, it is of general type since the
Γ-action on T1 was of general type.

The previous proposition will allow us to show that in our main result, the hypothesis of minimality
of the action on the tree is needed, using the well-known fact that non-trivial product groups cannot
be highly transitive. For the convenience of the reader, we provide a proof of the latter fact via the
following stronger result.

Proposition 9.3. Let G be a non-abelian topologically simple group. If Γ is a dense subgroup of G,
then the centralizer of every non-trivial element of Γ is core-free.
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Proof. Let γ ∈ Γ\{1Γ}. If the centralizer of Γ is not core-free, then there exists a normal subgroup
N ≤ Γ such that every element of N commutes with γ . Since G is topologically simple, N is dense in
G, so by continuity of group multiplication we conclude that every element of G commutes with γ . In
particular, G has a non-trivial center, which contradicts the topological simplicity of G since G is not
abelian.

Corollary 9.4. Let Γ be a highly transitive group. Then the centralizer of every non-trivial element of
Γ must be core-free, and Γ cannot be decomposed as a non-trivial direct product.

Proof. If Γ is highly transitive, it can be embedded as a dense subgroup of S(X) for some infinite
set X , and since the latter is topologically simple, the conclusion follows from the previous result.
Moreover, if Γ could be decomposed as a non-trivial direct product Γ1 ×Γ2, then if γ ∈ Γ1 \{1Γ1}, the
element (γ,1Γ2) would commute with every element of the non-trivial normal subgroup {1Γ1}×Γ2, a
contradiction.

Applying Proposition 9.2 for instance to Γ = F2 and Λ =Z, we see that the finitely generated group
F2×Z admits a (faithful) action of general type on a tree T which is topologically free on the boundary,
although the group F2 ×Z is not highly transitive because it decomposes as a direct product. We see
moreover that when restricting to the minimal component of this action, we will loose the faithfulness
of the action (in particular the topological freeness), which is why Theorem A cannot be applied.

We now move on to showing that no general classification can be hoped for in the case of parabolic
actions (note that minimal parabolic actions only arise for non-finitely generated groups).

Lemma 9.5. Every non-finitely generated group admits a faithful parabolic action on a tree.

Proof. Since Γ is countable, it can be written as a countable increasing union of finitely generated
subgroups Γ =

⋃
n∈N Γn, where Γ0 = {1}. We now put a tree structure on the vertex set

⊔
n Γ/Γn by

connecting each γΓn to γΓn+1. Γ acts on this tree by left translation. Since Γ0 = {1}, this action is
faithful. Note that every group element g ∈ Γ is elliptic (with fixed point Γn, where n ∈ N is such that
g ∈ Γn). Since Γ is not finitely generated, this action has no global fixed point, so we have a parabolic
action.

Note that the Γ-invariant subtrees of the action constructed above are exactly those of the form
⊔n≥mΓ/Γn for some m ≥ 0. So this action has no minimal globally invariant subtree, as opposed to
what happens for finitely generated groups.

Proposition 9.6. Let Γ be a non-finitely generated group, let Λ be a residually finite infinite group.
Then Γ×Λ admits a parabolic action on a tree such that the action on the boundary is topologically
free.

Proof. As before we use the Γ-action on a tree T1 provided by the previous lemma. Let Λ ↷ T2 be an
elliptic action provided by Proposition 9.1, whose unique fixed point is denoted by o ∈V (T2). This
time, we glue a copy of T2 on each terminal vertex (that is, each vertex of the form γΓ0) in the tree
T1, thus yielding a Γ×Λ action which is easily seen to be parabolic. Moreover, the action on the
boundary is topologically free. Note furthermore that the action on the boundary has a unique fixed
point, corresponding to the unique element of the boundary of T1.

As an example, we can take for Γ the group of finitely supported permutations, and for Λ the group
Z, and we get a non-highly transitive group with a parabolic action which is topologically free on the
boundary, and which has no minimal component. We do not know if there is a highly transitive group
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with a parabolic action which is topologically free on the boundary.

Let us now treat the quasi-parabolic case. First, note that the Baumslag-Solitar groups BS(1,n) for
n ≥ 2 provide examples of groups admitting an action on a tree which is minimal and quasi-parabolic
(since it is an ascending HNN extension, cf. Sec. 2.5) and topologically free on the boundary (by
Lemma 8.6), but which are not highly transitive since they are solvable.

Remark 9.7. Another example of a non-highly transitive group with a quasi-parabolic minimal
action on a tree which is topologically free on the boundary is provided by Thompson’s group
F =

〈
x0,x1,x2, . . . |x−1

k xnxk = xn+1 for all k < n
〉
. F is not highly transitive since, by [LBMB22, Corol-

lary 5.3], it has transitivity degree at most 2. Let H be the subgroup generated by {xi : i ≥ 1}
(which is isomorphic to F), and ϑ be the endomorphism which takes xi to xi+1 and observe that
F = HNN(H,H,ϑ). By Section 2.5 the action of F on the associated Bass-Serre tree is quasi-parabolic
and minimal. Moreover, since x−k

0 ϑ(H)xk
0 = ⟨xn |n ≥ k+2⟩ for all k ≥ 1, it is not difficult to check

that ϑ(H) is core-free in H hence, the action is also topologically free on the boundary.

Coupled with the previous examples, the following proposition shows that for groups admitting
minimal quasi-parabolic actions on a tree, the topological freeness of the action does not play a role in
their high transitivity.

Proposition 9.8. The finitely generated group Γ = S f (Z)⋊Z is highly transitive and finitely generated
but admits a minimal quasi-parabolic action on a tree which is topologically free on the boundary.

Proof. We have already observed that Γ is highly transitive thanks to its natural action on Z. We will
obtain our desired action on a tree by showing that it can be written as an ascending HNN extension.
Note that Γ is a semi-direct product, so it does have a natural HNN extension decomposition, but this
decomposition provides a lineal action so we need another one.

Denote by τ the translation on Z. Let ϑ be the corresponding inner automorphism of S(Z), i.e.
ϑ(γ) = τ−1γτ . Consider the subgroups H = Σ = S f (N) which we view as subgroups of S f (Z)< Γ.
Note that ϑ(Σ) is the stabilizer of 0 in S f (N) i.e. ϑ(Σ) = Σ(0)< S f (N) with the notations of Section
8.2. We claim that Γ = HNN(H,Σ,ϑ).

First, since ϑ(h) = τ−1hτ for all h ∈ H, we have a quotient map π : HNN(H,Σ,ϑ)→ Γ given by
t 7→ τ and h 7→ h for every h ∈ H. To show that π is injective, we use the fact that the HNN extension
is ascending: since H = Σ, for every g ∈ HNN(H,Σ,ϑ), there exists k ∈ Z such that t−kgtk = htn with
h ∈ H and n ∈ Z (it suffices to take k sufficently large). If g ̸= 1, one must have h ̸= id or n ̸= 0, and it
is clear that π(g) ̸= 1 in both cases.

So we do have Γ = HNN(H,Σ,ϑ), in particular it is an ascending non-degenerate HNN extension.
So as explained in Section 2.5, its action on its Bass-Serre tree is minimal and quasi-parabolic. Finally,
ϑ(Σ) = Σ(0) is core-free in H = S f (N) by Lemma 8.21, so by Lemma 7.3 we conclude that the action
on the boundary is topologically free as wanted.

Remark 9.9. One can also construct a tree T directly, with vertex set V =
⊔

k∈Z S f (Z)/Hk, where
Hk := S f (Z≥−k), and positive edges corresponding to inclusions σHk ⊆ σHk+1. The reader can verify
that Γ = S f (Z)⋊Z acts on T via

(σ ,n) ·σ ′Hk := στ
n(σ ′Hk)τ

−n = σ(τn
σ
′
τ
−n)Hk+n,

where τ is still the translation on Z, and then check “by hand” that this action has all the properties
announced in the above proposition.
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We finally mention the lineal case. Note that in this case, minimal actions are not interesting with
respect to high transitivity since no subgroup of the automorphism group of the biinfinite line is highly
transitive.

In the elliptic case, a natural weakening of the minimality assumption was provided by asking that
the action on the boundary is minimal. Here however, this is still too strong a condition since any
lineal action will have the two ends corresponding to the axis as an invariant set. We thus replace it
by topological transitivity (which means the existence of a dense orbit) and observe that in this setup,
there seems to be no connection between high transitivity and lineal actions.

Proposition 9.10. Let Γ be a residually finite group, then the group Γ×Z admits a lineal action on a
tree which is both topologically free and topologically transitive on the boundary.

Proof. Let T be a tree equipped with an elliptic Γ-action which is minimal and free on the boundary
as provided by Proposition 9.1, let o be the fixed point. As in the previous constructions, we then
glue a copy of T at the vertex o on top of every element of Z, thus obtaining a tree with a natural
Γ×Z-action which is both topologically free and topologically transitive on the boundary: every
element of the boundary which does not belong to the two element set ∂Z has a dense orbit and is fixed
by no nontrivial group element.

The previous proposition provides us many non-highly transitive groups with a lineal action on a
tree which is both topologically free and topologically transitive on the boundary.

In the opposite direction, the group S f (Z)⋊Z provides us an example of a highly transitive group
satisfying the assumptions of the previous proposition, thus showing that lineal actions which are
topologically free and topologically transitive on the boundary do not play a role in high transitivity.

Proposition 9.11. The highly transitive group S f (Z)⋊Z admits a lineal action on a tree which is both
topologically free and topologically transitive on the boundary.

Proof. Let us construct a tree T as follows. We start with Z, seen as a bi-infinite line. Then, for every
(σ ,k) ∈ S f (Z)⋊Z, we consider an infinite ray R(σ ,k), and link its origin o(σ ,k) to the vertex k ∈ Z by
an edge. The boundary ∂T consists of points ξγ for γ ∈ S f (Z)⋊Z (the extremities of the rays, which
are isolated in ∂T) and two accumulation points η±.

The group S f (Z)⋊Z acts on T by (σ ,k) · k′ = k+ k′ and by γ ·Rγ ′ = Rγγ ′ (it permutes the rays).
The induced action on ∂T fixes η± and is transitive free on {ξγ : γ ∈ S f (Z)⋊Z}. Thus, it is both
topologically free and topologically transitive.
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