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Abstract: Triple negative breast cancer (TNBC) represent 15% of breast cancers. Histoclinical
features and marketed prognostic gene expression signatures (GES) failed to identify good- and
poor-prognosis patients. Tyrosine kinases (TK) represent potential prognostic and/or therapeutic
targets for TNBC. We sought to define a prognostic TK GES in a large series of TNBC. mRNA
expression and histoclinical data of 6379 early BCs were collected from 16 datasets. We searched for a
TK-based GES associated with disease-free survival (DFS) and tested its robustness in an independent
validation set. A total of 1226 samples were TNBC. In the learning set of samples (N = 825), we
identified a 13-TK GES associated with DFS. This GES was associated with cell proliferation and
immune response. In multivariate analysis, it outperformed the previously published GESs and
classical prognostic factors in the validation set (N = 401), in which the patients classified as “low-risk”
had a 73% 5-year DFS versus 53% for “high-risk” patients (p = 1.85 × 10−3). The generation of
100,000 random 13-gene signatures by a resampling scheme showed the non-random nature of our
classifier, which was also prognostic for overall survival in multivariate analysis. We identified
a robust and non-random 13-TK GES that separated TNBC into subgroups of different prognosis.
Clinical and functional validations are warranted.

Keywords: triple negative breast cancer; tyrosine kinase; gene expression signature; prognosis

1. Introduction

Breast cancer (BC) is heterogeneous. The latest therapeutic advances have transformed the
prognosis of patients with endocrine receptors (ER)-positive and ERBB2-positive BCs [1]. BCs that do
not express ER nor ERBB2, known as triple negative breast cancer (TNBCs), represent 15%–20% of
BCs [2] and are high-grade tumors with poor prognosis [3]. Patients with TNBC have benefited less
from recognized molecular targets than patients with other subtypes, and chemotherapy remains the
only systemic treatment currently approved in the adjuvant setting, underlining the urgent need to
further understand the intrinsic molecular biology of this subtype. TNBCs display heterogeneity at
multiple levels, with different pathological types such as ductal or medullary [4], different intrinsic
molecular subtypes [5,6] such as basal mainly but also non-basal [7], and different probabilities of
relapse [8,9] and of therapeutic response [10]. Regarding the prediction of post-operative clinical
outcome in early stages, both standard clinicopathological features and current gene expression
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signatures (GES), such as Mammaprint or Recurrence Score, failed to identify TNBC patients who will
relapse and those who will not respond to chemotherapy [11]. Defining the molecular bases of this
heterogeneity should help better understand these tumors and identify new therapeutic targets and
more reliable predictors of survival and response. During the last years, immune signatures have been
reported associated with metastatic risk and response to chemotherapy in basal and/or TNBC [12–16],
but none of them is currently applied in clinical practice. Six and then four distinct molecular subtypes
clinically and biologically relevant were identified by gene expression profiling [17,18].

Tyrosine kinases (TKs) are commonly activated in cancers and constitute major targets for anti-cancer
therapies, as well as prognostic and predictive markers for therapeutic response [19]. In BC, TK activation
as a driving oncogenic event has been clearly described with ERBB2 amplification, and prognostic
kinase-based GESs have been reported in basal BCs [9], luminal BCs [20], and ER-negative BCs
including ERBB2-positive tumors and basal tumors [21]. Nevertheless, the aberrant TK signaling,
the subjacent mechanisms, and the clinical impact in TNBC remain elusive [22,23]. Although TKs
appear as potential candidates for personalized medicine, the plasticity and redundancy of the kinome
present key challenges for drug development. Targeting this pathway can result in the upregulation
and system-wide changes in multiple TK expression and activity as an adaptive response [24] and
could explain why TNBC clinical trials of single kinase inhibitors have largely failed. Nevertheless,
an approach aiming to predict clinical outcome of early stage TNBC based on TK genes expression
has never been applied to a large series of TNBCs. Here, we have tested the hypothesis that a
TK-gene expression signature could help the discrimination between good- and poor-prognosis
patients with TNBCs.

2. Results

2.1. Patient Population

We gathered 16 retrospective public whole-genome mRNA expression data sets of 6379 operated
primary BC samples, and focused our analysis on the 1226 TNBC samples with available survival.
As shown in Table 1, most of the patients with TNBC were 50-years-old or more (55%), and most of
the tumors were high grade (81% of grade 3), ductal type (82%), over 2 cm-size (66% of pT2-pT3),
and pN-negative (59%). All Lehmann’s intrinsic molecular subtypes were represented with mainly
mesenchymal, immunomodulatory, and basal like-1 subtypes (25%, 21%, and 18%, respectively).
The median follow-up after diagnosis was 44 months (range, 1–286). A total of 410 patients displayed a
DFS event, and the 5-year DFS was 63% (95% Confidence Interval (95%CI) 60–66). A total of 215 patients
died, and the 5-year OS was 73% (95%CI 70–76).

Table 1. Description of the triple negative breast cancer (TNBC) samples.

Characteristics N (%)

Patients’ age
≤50 years 484 (45%)
>50 years 584 (55%)

Pathological grade
1 23 (3%)
2 144 (17%)
3 690 (81%)

Pathological axillary lymph nodes status (pN)
Negative 504 (59%)
Positive 347 (41%)
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Table 1. Cont.

Characteristics N (%)

Pathological tumor size (pT)
pT1 277 (34%)
pT2 459 (57%)
pT3 67 (8%)

Pathological type
Ductal 555 (82%)
Lobular 25 (4%)
Other 98 (14%)

Lehmann’s TNBC subtypes
Basal-like 1 216 (18%)
Basal-like 2 90 (7%)
Immunomodulatory 259 (21%)
Luminal Androgen Receptor 189 (15%)
Mesenchymal 301 (25%)
Mesenchymal stem-like 171 (14%)

Median follow-up, months (range) 44 (1–286)
DFS events 410 (33%)
5-year DFS 63% (95%CI 60–66)
OS events 215 (25%)
5-year OS 73% (95%CI 70–76)

2.2. Identification of a Robust Prognostic Tyrosine Kinase Signature

We searched for a gene expression signature associated with DFS within the list of 86 tyrosine
kinase genes (Supplementary Table S1). As shown in Figure 1, the supervised analysis, done in the
learning set of 825 TNBC samples, identified 25 genes associated with DFS (Supplementary Table S1),
of which 13 were retained after Akaike information criterion (AIC) stepwise regression analysis. These
13 genes are listed in Figure 2A and were included in our prognostic classifier. As expected, this
13-gene classifier displayed prognostic value in the learning set (Figure 2B): the 5-year DFS was 52%
(95%CI 46–58) in the “high-risk” class (N = 406) and 74% (95%CI 69–79) in the “low-risk” class (N = 419;
p = 3.9 × 10−4, log-rank test). The respective median DFS were 70 and 238 months. Importantly, this
prognostic value was confirmed in the independent validation set, suggesting the robustness of our
classifier (Figure 2C): the 5-year DFS was 55% (95%CI 48–64) in the “high-risk” class (N = 206) and
71% (95%CI 64–79) in the “low-risk” class (N = 195; p = 1.85 × 10−3, log-rank test), and the respective
median DFS were 107 and 225 months.

We then generated by a resampling scheme 100,000 random 13-gene signatures extracted from the
list of 86 TK genes and tested their prognostic value in the validation set. The likelihood of our 13-gene
signature as a random signature was very low (p = 2.60 × 10−4).
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Figure 1. Flow diagram showing the different steps of analysis. Abbreviations: BC, breast cancer; 
TNBC, triple negative breast cancer; TK, tyrosine kinase; DFS, disease-free survival. 

Figure 1. Flow diagram showing the different steps of analysis. Abbreviations: BC, breast cancer;
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Figure 2. 13-Gene signature and its prognostic value for DFS. (A) List of the 13 genes retained after
Akaike information criterion (AIC) stepwise regression analysis with Forest plots of hazard ratio (HR)
for DFS for each gene and the 13-TK gene expression signatures (GES). (B,C) Kaplan–Meier DFS curves
of patients according to the 13-gene classifier in the learning set (B) and the validation set (C).
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2.3. Correlations of Our 13-Gene Classification with Clinicopathological and Molecular Features

To better characterize our classifier, we searched for correlations with the clinicopathological
and molecular variables of tumors in the whole data set (N = 1226), in which 612 were classified as
“high-risk” and 614 as “low-risk” (Table 2). Compared to the “high-risk” class, the “low-risk” class was
enriched in pathological grade 3 tumors (p = 4.40 × 10−2), in node-positive tumors (p = 8.30 × 10−5),
in pT1 tumors (p = 2.44 × 10−2), and in the immunomodulatory Lehmann subtype (p = 3.40 × 10−17).
There was no correlation with either other clinicopathological variables (patients’ age, pathological type)
or the three major prognostic GESs (70-gene signature, Recurrence Score, and ROR-P signature). Of note,
the lymphocyte infiltration, relatively simple measure of immune response, which was available
only for the 199 TCGA samples, was not correlated as continuous variable (p = 0.459) or as binary
variable (p = 1) with our risk classes By contrast, strong correlations existed with immunity-related
signatures, including the three prognostic GES reported in ER-negative BC (IR signature, LCK signature,
and Immune 28-kinase) with more predicted “poor-prognosis” patients according to these signatures in
our “high-risk” class, and including signatures/metagenes reflecting the activation and/or enrichment of
different types of immune cells/responses. For example, the activation scores of IFNα, IFNγ, and TNFα
pathways [25] were higher in the “low-risk” class, as were the cytolytic activity score [26] and the
Bindea’s signatures for T-cells, cytotoxic T-cells, CD8 + T-cells, T-helper cells, Th1-cells, and Tγδ cells,
activated NK CD56dim cells and neutrophils (p < 1.00 × 10−5). Similarly, the “low-risk” class was
associated with enrichment for immune cell types involved in antigen presentation, such as activated
dendritic cells (aDC), DC, B-cells, and macrophages. Finally, we found a higher activation probability
of the MYC, P53 and hypoxia pathways in the “high-risk” class.

Table 2. Correlations of our 13-gene classification with clinicopathological and molecular features

Characteristics N
13-Genes Classification

p-Value
Low-Risk High-Risk

Patients’ age 0.149

≤50 years 484 242 (43%) 242 (48%)
>50 years 584 319 (57%) 265 (52%)

Pathological grade 4.4 × 10−2

1 23 14 (3%) 9 (2%)
2 144 69 (14%) 75 (20%)
3 690 408 (83%) 282 (77%)

Pathological axillary lymph nodes status (pN) 8.3 × 10−5

Negative 504 251 (53%) 253 (67%)
Positive 347 221 (47%) 126 (33%)

Pathological tumor size (pT) 2.4 × 10−2

pT1 277 173 (39%) 104 (29%)
pT2 459 242 (54%) 217 (61%)
pT3 67 34 (8%) 33 (9%)

Pathological type 0.541

Ductal 555 317 (82%) 238 (82%)
Lobular 25 12 (3%) 13 (4%)
Other 98 59 (15%) 39 (13%)

Lehmann’s TNBC subtype [17] 3.4 × 10−17

Basal−like 1 216 110 (18%) 106 (17%)
Basal−like 2 90 36 (6%) 54 (9%)

Immunomodulatory 259 188 (31%) 71 (12%)
Luminal Androgen Receptor 189 92 (15%) 97 (16%)

Mesenchymal 301 103 (17%) 198 (32%)
Mesenchymal stem-like 171 85 (14%) 86 (14%)

70-gene signature [27] 0.118

Low-risk 15 4 (1%) 11 (2%)
High-risk 1211 610 (99%) 601 (98%)
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Table 2. Cont.

Characteristics N
13-Genes Classification

p-Value
Low-Risk High-Risk

Recurrence Score [28] 0.397

Low-risk 5 1 (0%) 4 (1%)
High-risk 1176 591 (96%) 585 (96%)

Intermediate-risk 45 22 (4%) 23 (4%)

ROR-P signature [6] 0.61

Low-risk 77 36 (6%) 41 (7%)
High-risk 1005 510 (83%) 495 (81%)

Intermediate-risk 144 68 (11%) 76 (12%)

Immune 28-kinase [9] 1.4 × 10−32

Low-risk 298 239 (39%) 59 (10%)
High-risk 928 375 (61%) 553 (90%)

IR signature [12] 6.5 × 10−5

Low-risk 602 335 (56%) 267 (44%)
High-risk 609 268 (44%) 341 (56%)

LCK signature [13] 2.9 × 10−29

Low-risk 710 258 (42%) 452 (74%)
High-risk 516 356 (58%) 160 (26%)

Gatza’s molecular pathways activation score [25]

IFN alpha 1226 0.68 (0.01−0.99) 0.51 (0−0.99) 3.4 × 10−17

IFN gamma 1226 0.72 (0–1) 0.56 (0–0.99) 2.1 × 10−16

TGF beta 1226 0.45 (0.01–1) 0.51 (0.01–1) 7.9 × 10−5

Lymphocyte infiltration (%) 199 8.93 (0–100) 6.99 (0–100) 0.459

Lymphocyte infiltration 1.00

≤10% 167 58 (84%) 109 (84%)
>10% 32 11 (16%) 21 (16%)

Bindea’s signatures [29]

B cells 1226 0.49 (−0.62–3.4) 0.14 (−0.89–1.74) 1.3 × 10−26

T cells 1226 0.6 (−2.26–4.21) 0.01 (−1.6–2.09) 2.9 × 10−37

T helper cells 1226 0.11 (−1.71–1.49) 0.02 (−1.11–1.61) 3.4 × 10−5

Tcm 1226 0.07 (−1.28–2.19) −0.02 (−1.09–0.82) 1.8 × 10−6

Tem 1226 0.09 (−0.82–1.17) 0 (−1.07–0.88) 1.8 × 10−7

Th1 cells 1226 0.27 (−0.69–1.46) 0.1 (−0.98–0.93) 4.5 × 10−20

Th2 cells 1226 0.09 (−0.86–0.85) 0.12 (−0.76–1.18) 0.0734
TFH 1226 0.03 (−1.16–1.18) −0.06 (−0.77–0.81) 7.7 × 10−10

Th17 cells 1226 −0.08 (−1.98–3.17) −0.16 (−1.87–4.09) 0.0293
TReg 1226 0.15 (−3.69–6.7) 0.08 (−2.35–4.42) 0.246

CD8 T cells 1226 0.02 (−0.88–1.65) −0.1 (−0.93–0.57) 7.5 × 10−13

Tgd 1226 0.24 (−1.38–5.5) 0.02 (−2.09–2.63) 9.2 × 10−10

Cytotoxic cells 1226 0.38 (−1.21–2.5) −0.07 (−1.61–1.71) 1.9 × 10−35

NK cells 1226 −0.05 (−0.96–0.89) −0.04 (−1–0.88) 0.607
NK CD56dim cells 1226 0.3 (−0.97–3.2) 0.08 (−1.16–2.06) 2.0 × 10−16

NK CD56bright cells 1226 −0.17 (−1.49–2.9) −0.25 (−1.69–1.25) 2.6 × 10−4

DC 1226 0.31 (−1.11–3.29) 0.1 (−1.92–2.32) 3.5 × 10−9

iDC 1226 0.06 (−0.89–1.61) −0.06 (−1.26–1.58) 7.3 × 10−9

aDC 1226 0.65 (−1.11–3.07) 0.24 (−1.74–4.72) 1.6 × 10−22

pDC 1226 0.33 (−3.27–6.34) −0.04 (−2.91–4.26) 2.6 × 10−9

Eosinophils 1226 −0.11 (−0.84–0.73) -0.15 (−1.01–0.55) 0.00498
Macrophages 1226 0.24 (−1.27–2.79) 0.12 (-1.17–2.57) 1.4 × 10−5

Mast cells 1226 −0.17 (-0.93–1.2) -0.17 (-1.32–1.29) 0.96
Neutrophils 1226 0.16 (−1.19–2.77) 0.06 (−1.22–2.19) 6.1 × 10−5

SW480 cancer cells 1226 0.13 (−1.32–1.42) 0.16 (−0.77–1.59) 0.085
Normal mucosa 1226 −0.2 (−1.4–0.96) −0.11 (−1.59–1.31) 2.6 × 10−4

Blood vessels 1226 −0.31 (−4.44–4.93) −0.23 (−3.39−3.66) 0.169
Lymph vessels 1226 −0.06 (−2.06–2.75) −0.13 (−2.46−2.55) 0.0924

Cytolytic activity score [26] 1226 0.41 (−2.42–4.66) 0.05 (−1.95–3.75) 7.87 × 10−10

Median follow-up (months) 1226 53 (1–286) 31 (1–229) 9.8 × 10−17

DFS events (months) 1226 157 (74%) 253 (41%) 5.6 × 10−9

5-year DFS 1226 73% (69–77) 53% (48–58) 1.3 × 10−15

OS events (months) 1226 101 (21%) 114 (30%) 4.3 × 10−3

5-year OS 1226 79% (75–83) 64% (59–71) 3.0 × 10−6
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2.4. Univariate and Multivariate Prognostic Analyses for DFS

We compared the prognostic value of our 13-gene classifier for DFS with that of other
clinicopathological and molecular variables in the validation set. In univariate analysis (Table 3), four
factors were associated with DFS (Wald test): the Lehmann’s subtypes (p = 3.79 × 10−2), the LCK
signature (p = 3.16 × 10−2), the Bindea CD8 T-cells signature (p = 2.18 × 10−2), and our 13-gene signature
(p = 2.09 × 10−3) with a hazard ratio (HR) for relapse of 1.72 (95%CI 1.22–2.44) for “high-risk” patients as
compared with “low-risk” patients. The IR signature tended to be associated with DFS (p =5.2 × 10−2),
whereas, as expected, the variables related to cell proliferation (pathological grade, 70-gene signature,
Recurrence Score, and ROR-P signature) were not associated with DFS. In multivariate analysis,
two variables remained significant, including our 13-gene signature (p = 1.30 × 10−2), suggesting
independent prognostic value notably when compared with other prognostic classifiers and signatures
reported in ER-negative BCs. Of note, the 13-gene signature did not show any prognostic value in
the non-TN cancer samples: the 5-year DFS was 78% for the “high-risk” patients versus 79% for the
“low-risk” patients (p = 0.15, log-rank test).

2.5. Univariate and Multivariate Prognostic Analyses for Overall Survival

We compared the prognostic value of our 13-gene classifier for overall survival (OS) with that
of other clinicopathological and molecular variables in the whole population. In univariate analysis
(Table 4), eight factors were associated with OS (Wald test): the pathological grade (p = 6.80 × 10−2),
axillary lymph node status (p = 2.26 × 10−6), and tumor size (p = 3.77 × 10−3), the Lehmann’s subtypes
(p = 1.55 × 10−3), the Immune 28-kinase signature (p = 4.14 × 10−4), the LCK signature (p = 1.37 × 10−4),
the Bindea CD8 T-cells signature (p = 2.18 × 10−2), and our 13-gene signature (p = 4.48 × 10−6) with
a hazard ratio (HR) for death of 1.88 (95%CI 1.43–2.46) for “high-risk” patients as compared with
“low-risk” patients. The 5-year OS was 64% (95%CI 59–71) for the “high-risk” patients versus 79%
(95%CI 75–83) for the “low-risk” patients (p = 3.10 × 10−6, log-rank test; Figure 3). In multivariate
analysis, three variables remained significant, including our 13-gene signature (p = 4.18 × 10−4),
suggesting independent prognostic value.
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Table 3. Uni- and multivariate prognostic analyses for DFS in the validation set.

Variable Test
Univariate Multivariate

N HR (95% CI) p-Value N HR (95%CI) p-Value

Patients’ age >50 vs. ≤50 years 351 0.88 (0.60−1.31) 0.540

Pathological grade 2 vs. 1 275 18841300 (0–Inf) 0.445
3 vs. 1 27280092 (0–Inf)

Pathological axillary lymph
node status (pN) Positive vs. negative 273 1.35 (0.87–2.09) 0.177

Pathological tumor size (pT) pT2 vs. pT1 254 1.35 (0.81–2.25) 0.505
pT3 vs. pT1 1.32 (0.50–3.50)

Pathological type Lobular vs. ductal 219 2.12 (0.76–5.92) 0.337
Other vs. ductal 1.19 (0.60–2.35)

Lehmann’s TNBC subtype [17]

Basal-like 2 vs. Basal-like 1 401 2.44 (1.27–4.69) 3.79 × 10−2 394 2.62 (1.36–5.08) 4.22 × 10−3

Immunomodulatory vs.
Basal-like 1 0.98 (0.57–1.67) 394 1.48 (0.82–2.67) 0.198

Luminal AR vs. Basal-like 1 1.15 (0.65–2.04) 394 1.30 (0.72–2.33) 0.385
Mesenchymal vs. Basal-like 1 0.88 (0.52–1.52) 394 0.75 (0.43–1.29) 0.292

Mesenchymal stem-like vs.
Basal-like 1 0.85 (0.47–1.55) 394 1.16 (0.61–2.19) 0.650

70-gene signature [27] High- vs. low-risk 401 2.88 (0.40–20.6) 0.292

Recurrence Score [28] High- vs. low-risk 401 1233058 (0–Inf) 0.635
Intermediate- vs. low-risk 624862 (0–Inf)

PAM50 and ROR-P [6] High- vs. low-risk 401 6.88 (0.96–49.3) 0.152
Median vs. low-risk 6.30 (0.84–47.3)

28-gene Immune Kinase [9] High- vs. low-risk 401 1.22 (0.83–1.79) 0.313

Immune response [12] High- vs. low-risk 394 1.41 (1.00–1.98) 0.052 394 1.33 (0.93–1.90) 0.125

Lymphocyte-specific kinase [13] High- vs. low-risk 401 0.68 (0.48–0.97) 0.032 394 0.83 (0.52–1.33) 0.445

Bindea’s CD8 T-cells signature 401 0.47 (0.25–0.90) 2.18 × 10−2 394 0.51 (0.24–1.08) 0.080

13-tyrosine kinase genes High- vs. low-risk 401 1.72 (1.22–2.44) 2.09 × 10−3 394 1.61 (1.11−2.36) 1.30 × 10−2



Cancers 2019, 11, 1158 9 of 19

Table 4. Uni- and multivariate prognostic analyses for OS.

Variable Test
Univariate Multivariate

N HR (95%CI) p-Value N HR (95% CI) p-Value

Patients’ age >50 vs. ≤50 years 830 0.84 (0.64–1.10) 0.209

Pathological grade 2 vs. 1 641 2.36 (0.56–9.93) 0.068 532 2.14 (0.5–9.24) 0.308
3 vs. 1 3.33 (0.83–13.5) 532 2.84 (0.67–12.1) 0.158

Pathological axillary lymph
node status (pN) Positive vs. negative 742 2.00 (1.50–2.67) 2.26 × 10−6 532 1.93 (1.39–2.68) 8.04 × 10−5

Pathological tumor size (pT) pT2 vs. pT1 744 1.59 (1.16–2.19) 3.77 × 10−3 532 1.34 (0.94–1.91) 0.106
pT3 vs. pT1 2.04 (1.22–3.39) 532 1.37 (0.75–2.51) 0.299

Pathological type Lobular vs. ductal 677 0.91 (0.42–1.94) 0.144
Other vs. ductal 0.60 (0.37–1.00)

Lehmann’s TNBC subtype [17]

Basal-like 2 vs. Basal-like 1 854 1.49 (0.83–2.68) 1.55 × 10−3 532 1.99 (1.02–3.9) 4.47 × 10−2

Immunomodulatory vs.
Basal-like 1 0.54 (0.34–0.87) 532 1.04 (0.57–1.91) 0.892

Luminal AR vs. Basal-like 1 1.12 (0.73–1.70) 532 1.67 (1.00–2.77) 4.91 × 10−2

Mesenchymal vs. Basal-like 1 1.33 (0.91–1.94) 532 1.72 (1.08–2.76) 2.33 × 10−2

Mesenchymal stem-like vs.
Basal-like 1 0.79 (0.47–1.31) 532 1.15 (0.57–2.30) 0.699

70-gene signature [27] High- vs. low-risk 854 3.03 (0.42–21.6) 0.269

Recurrence Score [28] High- vs. low-risk 854 1236427 (0–Inf) 0.42
Intermediate- vs. low-risk 330274 (0–Inf)

PAM50 and ROR-P [6] High- vs. low-risk 854 1.90 (0.84–4.28) 0.217
Median vs. low-risk 1.54 (0.62–3.84)

28-gene Immune Kinase [9] High- vs. low-risk 854 1.83 (1.31–2.55) 4.14 × 10−4 532 0.96 (0.53–1.71) 0.881

Immune response [12] High- vs. low-risk 840 1.16 (0.89–1.52) 0.28

Lymphocyte-specific kinase [13] High- vs. low-risk 854 0.58 (0.44–0.77) 1.37 × 10−4 532 0.92 (0.57–1.47) 0.713

Bindea’s CD8 T-cells signature 854 0.45 (0.27–0.75) 2.16 × 10−3 532 0.94 (0.45–1.97) 0.87

13-tyrosine kinase genes High- vs. low-risk 854 1.88 (1.43–2.46) 4.48 × 10−6 532 1.86 (1.32–2.62) 4.18 × 10−4
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2.6. Biological Processes Associated to Our 13-Gene Classification

To better explore the molecular differences between the “low-risk” and “high-risk” TNBC samples
as defined by our 13-gene classifier, we searched for the genes differentially expressed between the
two classes in the largest sample set (Metabric: N = 335) using supervised analysis within the whole
genome data. Using stringent criteria, we identified 480 differential genes, including 333 overexpressed
in “low-risk” samples and 147 overexpressed in “high-risk” samples (Figure 4A; Supplementary
Table S2). As expected, this gene list accurately classified the samples from the learning set, but more
importantly accurately classified also the 891 samples from the independent validation set (Figure 4B),
suggesting its robustness. Ontology analysis showed that the genes overexpressed in “low-risk”
samples were particularly involved in immune response, whereas those overexpressed in “high-risk”
samples were involved in the process of mRNA translation into protein and cell cycle progression
(Figure 4C; Supplementary Table S3).
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Figure 4. Supervised analysis of expression profiles between the “high-risk” and “low-risk” TNBC
according to our 13-gene classifier. (A) Volcano plot showing the 480 genes differentially expressed in
the learning set (Metabric), including 333 overexpressed in “low-risk” samples and 147 overexpressed
in “high-risk” samples. (B) The metagene-based prediction score is significantly higher (Student t-test)
in the “high-risk” samples than in the “low-risk” samples in the learning set as expected (left), but also
in the independent validation set (right). (C) Gene ontology (GO) biological processes of the DAVID
database associated with the 480-gene list. The barplot indicates the −log(p-value) (y-axis) of the top
15 biological pathways (x-axis) that are enriched for genes overexpressed in the “high-risk” samples
versus the “low-risk” samples (in red) and that are enriched for genes overexpressed in the “low-risk”
samples versus the “high-risk” samples (in green). The p-value threshold is indicated by the orange
horizontal line.

2.7. Prognostic and/or Predictive Value of Our13-Gene Classifier

To determine the link of our classifier with metastatic risk and/or with response to chemotherapy,
we analyzed, within our series of 1226 patients with operated TNBC, the 668 cases who had not
received any adjuvant systemic therapy. In this set, the “low-risk” patients had a longer DFS than
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the “high-risk” patients with 5-year DFS of 79% (95%CI 74–84) versus 60% (95%CI 54–66) respectively
(p = 2.02 × 10−8, log-rank test; data not shown).

Then, we assessed the ability of our classifier to predict for the pathological complete response
(pCR) to anthracycline-based neoadjuvant chemotherapy. The pCR was defined as absence of invasive
residual cancer in breast and lymph nodes removed during post-chemotherapy surgery. Information
was available in our dataset for 257 patients with TNBC, including 78 cases (30%) with pCR samples
and 105 “low-risk” and 152 “high-risk”. The pCR rate was similar between the “low-risk” patients
(31%) and the “high-risk” patients (30%; p = 0.861, Fisher’s exact test). Among these 257 patients,
no correlation existed between the pCR rate and the other immunity-related signatures (p = 0.354 for
the IR signature, p = 0.471 for the LCK signature, p = 0. 522 for the Immune 28-kinase signature, p = 0.7
for the MHC class I signature, and p = 0.608 for the MHC class II signature).

3. Discussion

Here, we have identified a robust prognostic 13-TK gene expression signature in early-stage
TNBC. The 13-gene model divided TNBC into two classes (“high-risk” and “low-risk”) with different
post-operative DFS and OS. Despite its association with prognostic clinicopathological features, such
classification remained an independent prognostic feature in multivariate analysis in the validation set.

We analyzed a retrospective pooled set of 1226 pre-therapeutic samples of non-metastatic and
invasive primary TNBC, all informative for DFS. Such figure allowed to use a learning set and a
validation set thus avoiding the problem of overfitting and allowed to apply the multivariate analysis in
the validation set only. Moreover, the whole-genome transcriptional data allowed to test the prognostic
value of several published gene signatures and modules relevant to breast cancer, and to search for
biological alterations associated to our 13-gene classifier.

Although associated with poor-prognosis features (grade 3, pN-positivity), the «low-risk» class
was associated with longer DFS than the “high-risk” class, with a HR for DFS event of 1.72 for
“high-risk” as compared with “low-risk”. As expected for TNBC that are overall highly proliferative
tumors, there was no correlation of our classification with the proliferation-associated prognostic GES
currently used in ER+/ ERBB2− breast cancer. By contrast, our classification was strongly associated
with prognostic immunity-related signatures reported in ER-negative BC (IR signature, LCK signature,
and Immune 28-kinase), and with signatures/metagenes reflecting the activation and/or enrichment
of different types of immune cells/responses, such as the activation score of IFNα, IFNγ, and TNFα
pathways, the cytolytic activity score, and Bindea’s signatures for immune cells involved in cytotoxic
immune antitumor response. For all these immune signatures, the “low-risk” class was associated with
stronger cytotoxic immune antitumor response than the “high-risk” class. For example, the “low-risk”
class was enriched in the Immunomodulatory Lehmann’s subtype whereas the “high-risk” class was
enriched in the Mesenchymal Lehmann’s subtype. Importantly, despite such correlations, our 13-gene
classifier retained its prognostic value in multivariate analysis, not only when confronted to the CD8
T-cells signature, but also to more global signatures of cytotoxic immune antitumor response. When
considering the most recent Lehmann’s subtype classification [18], the “low-risk” class was enriched
in the Basal-like-1 subtype and the “high-risk” class in the Mesenchymal subtype (p = 5.18 × 10−11;
data not shown). Of note, and as previously reported for many prognostic GESs [12–16], our
13-gene signature did not show any prognostic value in the non-TN samples, further underlining the
heterogeneity of molecular subtypes.

Our signature included five members of the EPH-receptor family (EPHA1, EPHA4, EPHA7, EPHB4,
and EPHB6), two genes of the SRC family kinases (SRC and FYN), two immune-related genes (ITK and
ZAP70), FLT1, ALK, and ERBB4 receptor TKs (RTK) and PTK2B. A resampling scheme randomly
generating 100,000 13-gene signatures showed that this data-derived 13-gene signature represents a
non-random optimal prognostic combination. It represents a prognostic bar code signature for DFS
in TNBC, and whether the 13 genes are causative or even predictive of the DFS event in a biological
sense or reflect another associated phenomenon remains to be explored, and functional validation
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is warranted not only for better understanding of disease progression, but also for identification of
potential therapeutic targets.

Five genes of the signature had expression associated with shorter DFS in univariate analysis:
ALK, which codes for Anaplastic lymphoma kinase that promotes survival via activation of signaling
pathways such as PI3-kinase/AKT [30–33]; FLT1, which codes for VEGFR1 that plays an important
role in angiogenesis and exerts proliferative activity in invasive breast cancer [34] and whose high
expression in BC correlates with high-risk of relapse [35]; EPHA4, EPHA7, and EPHB4, which code
for three members of the largest family of RTK, the EPH-receptors. These three receptors have been
described in breast cancer and associated with poor prognosis, migration promotion and tumor
growth [36–40]. The eight other genes of the signature had expression associated with longer DFS in
univariate analysis: ITK (IL2-inducible T-cell kinase), formerly considered as an immune cell-specific
protein and responsible for down-streaming the T-cell receptor [41], and ZAP70 (zeta-chain associated
protein kinase), known for its role in T-cell development and lymphocyte activation, are likely signs of
a T-cell cytotoxic immune response. In contrast to EPHA4, A7, and B4, EPHA1, and B6 were associated
with longer DFS. Different studies have implicated EPHA1 and -B6 in opposing responses than other
EPH-receptors, including cell adhesion or repulsion, support or inhibition of cell proliferation and cell
migration, and progression or suppression of multiple malignancies [42,43]. EPHB6 was described
as an epithelial–mesenchymal transition suppressor in TNBC cells and increased tumor sensitivity
against drug therapy in TNBC xenograft models and cell lines [39,40]. Other data indicate that EPHA1
may play different roles during the different stages of cancer progression. Low EPHA1 expression
strongly correlates with poor survival in colorectal cancer [44] and its downregulation correlates
with invasion and metastasis [45]. Moreover, knockdown of EPHA1 by CRISPR/CAS9 promotes
adhesion and motility of HRT18 CRC cells [46]. As shown by our results, the action of EPH-receptors
in malignant cells could be very contradictory. This discrepancy may be partially explained by the
activity of so-called kinase-dead RTKs within the EPH family [47]. FYN and SRC, as components of
the SRC family, are overexpressed and activated in a large number of human malignancies and have
been linked to poor prognosis and endocrine therapy resistance in non-TNBC [48–51]. Nevertheless,
activation of SRC family members and downstream signaling proteins are associated with a good
prognosis in other types of cancer [52] and its impact in TNBC is not clear to date.

As written above, whether these 13 genes are causative of the DFS event in a biological sense or
reflect another associated phenomenon remains to be explored. The results of our supervised analysis
comparing the whole-transcriptional profiles of “high-risk” versus “low-risk” TNBC samples might
provide a few insights. The correlation of our 13-gene classifier with immune features was clearly
demonstrated, because ontology analysis showed that the genes overexpressed in “low-risk” samples
are involved in both canonical T-cell/B-cell receptors signaling pathways (e.g., Interferon-γ, perforins
or granzymes genes) and in a RAS/RAC-trafficking modulation pathway potentially involved in the
induction of lymphocyte-mediated tumor cells apoptosis [53]. The whole-transcriptional profiles
of “high-risk” samples clearly reflect a highly metabolic behavior with genes involved in protein
translation, transcription, synthesis and cell cycle control. More than half of the overexpressed genes
coded for ribosomal proteins (RP). This dysregulation of multiple RP transcripts undoubtedly evokes
ribosomal stress in TNBC. Ribosomal stress interferes with p19ARF/MDM2/TP53 tumor suppressor
pathway and has been described as associated with shorter survival in breast cancer, independently
of the molecular subtype [54]. Several other genes involved in cell cycle regulation are of interest,
such as WEE1 or CCNC. WEE1 is a central kinase that controls G/M and S phase checkpoints via
the phosphorylation of CDK1 and CDK2. Inhibitors of WEE1 delay mitosis in several types of
cancer and make cancer cells more susceptible to chemotherapy by inducing mitotic catastrophes [55].
In breast cancer models, combination of ATR and WEE1 inhibitors inhibits tumor cells progression
and metastasis process [56]. CCNC interacts with CDK8 as components of the MEDIATOR complex,
a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes,
making it a target of interest in TN subtype [57]. Moreover, selective inhibitors of CCNC/CDK8 with
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promising drug metabolism and pharmacokinetics profile are already in clinical trials for ER-positive
ERBB2-negative BC [58]. Thus, TNBC relapse appears to be dependent of a multilayered interplay
between cellular proliferation, stress response, and immune response. By including both immune
and other prognostically relevant biological features, our 13-gene signature model displays a better
prognostic value than previously published immune signatures alone.

4. Materials and Methods

4.1. Tumor Samples and Kinase Genes

Clinicopathological and mRNA expression data were collected from 6379 primary BC patients
included in 16 retrospective data sets, including ours (Supplementary Table S4). All samples were
extracted from surgery specimen of non-pretreated patients, with histologically proven non-metastatic
invasive TN carcinoma, and with available clinicopathological data, and had been previously profiled
using DNA microarrays or RNA-sequencing. We analyzed a total of 86 genes coding for tyrosine
kinases (Supplementary Table S1), selected within the list of 771 kinase and kinase-interacting genes,
based on an update of the initial kinome description [21,59].

4.2. Gene Expression Data Processing

Data sets were processed as previously described [60]. Briefly, for the Agilent sets, we applied
quantile normalization to available processed data. Regarding the Affymetrix sets, we used Robust
Multichip Average (RMA) with the non-parametric quantile algorithm as normalization parameter [61].
Quantile normalization or RMA was done in R using Bioconductor and associated packages. Data
analysis required pre-analytic processing. First, we normalized each DNA microarray-based data
set separately, by using quantile normalization for the available processed Agilent data, and Robust
Multichip Average (RMA) [61] with the non-parametric quantile algorithm for the raw Affymetrix
data. Normalization was done in R using Bioconductor and associated packages. Then, we mapped
hybridization probes across the different technological platforms. We used SOURCE and NCBI
EntrezGene to retrieve and update the Agilent annotations, and NetAffx Annotation files [62] for the
Affymetrix annotations. The probes were then mapped according to their EntrezGeneID. When multiple
probes represented the same GeneID, we retained the one with the highest variance in a particular
dataset. For the TCGA data, we used the available normalized RNA-Seq data that we log2-transformed.
Next, the batch effects were corrected across the 16 studies using z-score normalization. Briefly, for each
expression value in each study separately, all values were transformed by subtracting the mean of
the gene in that dataset divided by its standard deviation, mean and standard deviation (SD) being
measured on luminal A samples.

Thanks to the bimodal distribution of respective mRNA expression levels and in order to
avoid biases related to trans-institutional immunohistochemistry (IHC) analyses, the estrogen receptor,
progesterone receptor, and ERBB2 statutes (negative/positive) of tumors were defined on transcriptional
data of ESR1, PGR, and ERBB2 genes respectively, as previously described [17]. The molecular subtypes
of tumors were then defined as ER+/ERBB2− for estrogen receptor-positive and/or progesterone
receptor-positive and ERBB2-negative tumors, ERBB2+ for ERBB2-positive tumors, and TN for
ER-negative, PR-negative and ERBB2-negative tumors. Within the 6379 samples, we identified
1226 TNBC samples that were informative regarding the survival.

4.3. Gene Expression Data Analysis

The search for a prognostic tyrosine kinase signature was done within these 1226 TNBC samples
and comprised several steps. First, the series was divided in two sets randomly selected: the learning
set including ~2/3 of samples (N = 825) and the validation set including ~1/3 of samples (N = 401).
Because of the predominance of DNA microarray-derived data (N = 1027) versus RNA-Seq-derived
data (N = 199), we verified that both technologies were well balanced between the learning set
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(68% versus 66% respectively) and the validation set (32% versus 34% respectively). Second, each
of the 86 genes was tested in the learning set for association of its expression level with disease-free
survival (DFS) by using Cox regression analysis (Wald test; p ≤ 0.05), allowing identification of 25 genes.
Third, within these 25 genes we searched for the best gene combination associated with DFS by using
Akaike information criterion (AIC) stepwise regression analysis, allowing identification of a 13-gene
combination. A classifier was then built form the 13-gene list and allowed defining two classes of
samples defined as “high-risk” and “low-risk” Finally, the classifier was applied to the samples of the
validation set in order to estimate its robustness.

Since a few studies have suggested that prognostic gene signatures might be random noise
signatures [63,64], we evaluated whether our prognostic 13-gene model was not inferior to random
signatures. A resampling scheme was used to generate 100,000 random 13-gene models within the
86 TK genes. Each random signature was then applied to the validation set to determine its significance
level in prognostic term for DFS. We then measured the proportion of random signatures with p-value
inferior to the p-value observed with our 13-gene model.

We applied to each data set separately several multigene signatures. First, the Lehmann’s
classifier [17], which defines six TNBC subtypes, including 2 basal-like (BL1 and BL2),
an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem-like (MSL), and a luminal
androgen receptor (LAR) subtype. We also applied the three major prognostic multigene classifiers
of breast cancer: 70-gene Mammaprint signature [27], Recurrence Score [28], and Risk of Relapse
score based on PAM50 subtype and proliferation ROR-P [6]. Other signatures included three immune
gene signatures reported as prognostic in specific molecular subtypes of breast cancer: the Immune
Response (IR) signature [12] and the LCK signature [13] in ER-negative breast cancers, and the
Immune 28-kinase signature [9] in basal breast cancers. We also applied the metagenes associated
with immune cell populations such as T-cells, CD8+ T-cells and B-cells defined by Palmer et al. [65],
the transcriptional signatures of 24 different innate and adaptative immune cell subpopulations defined
by Bindea et al. [29], the cytolytic activity score [26], the activation score of IFNα, IFNγ, and TNFα
immune-related and TP53, MYC and hypoxia biological pathways [25].

Finally, to explore more-in-depth the biological pathways linked to our 13-gene classifier, we
applied a supervised analysis by using the largest data set (Metabric: 335 samples) as learning set,
and the other data sets as independent validation sets (891 samples). In the learning set, we compared
the whole-genome expression profiles between the tumors classified as “high-risk” (N = 86) according
to our 13-gene model and the tumors classified as “low-risk” (N = 249) using a moderated t-test
with empirical Bayes statistic [66] included in the limma R packages. False discovery rate (FDR) [67]
was applied to correct the multiple-testing hypothesis and significant genes were defined by the
following thresholds: p < 1.0 × 10−2, q < 1.0 × 10−2, and fold change FC > |1.25×|. Ontology analysis
of the resulting gene list was based on the GO biological processes of the Database for Annotation,
Visualization, and Integrated Discovery (DAVID; david.abcc.ncifcrf.gov/). The robustness of the
resulting 480-gene list was verified in the validation set (526 tumors classified as “high-risk” and 365 as
“low-risk”) by computing for each tumor a score defined as the difference between the correlation
coefficient of its 480-gene expression profile with the median 480-gene expression profile of “high-risk”
samples and the correlation coefficient of its 480-gene expression profile with the median 480-gene
expression profile of “low-risk” samples. This score was then compared between the “high-risk” and
“low-risk” samples.

4.4. Statistical Analysis

Correlations between sample groups and clinicopathological factors were calculated with the
Fisher’s exact test and the t-test when appropriate. DFS was calculated from the date of diagnosis until
date of first relapse or death using the Kaplan–Meier method, and follow-up was measured to the date
of last news for event-free patients. OS was calculated from the date of diagnosis until date of death
using the Kaplan–Meier method. Survival curves were compared with the log-rank test. Univariate
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and multivariate prognostic analyses used the Cox regression method. Univariate analyses tested
classical clinicopathological factors: age (≤50 years vs. >50), pathological tumor size (pT1 vs. pT2 vs.
pT3), lymph node status (pN positive vs. negative), Scarff-Bloom-Richardon (SBR) grade (1 vs. 2 vs. 3),
and type (ductal vs. lobular vs. other). Analyses included also molecular classifications based on the
Lehmann’s subtypes, and six prognostic GES (good vs. poor-prognosis subgroups), and the Bindea
CD8 T-cells GES. Multivariate analyses tested all variables with a p-value inferior to 0.10 in univariate
analysis. All statistical tests were two-sided at the 5% level of significance. Analyses were done using
the survival package (version 2.30), in the R software (version 2.9.1). Our analysis adhered to the
reporting recommendations for tumor marker prognostic studies (REMARK) [68].

5. Conclusions

In conclusion, we have identified a robust prognostic 13-TK gene signature for early TNBC that
outperforms the prognostic performances of individual clinicopathological prognostic factors and
published gene expression signatures in term of DFS. Tumors with a coordinated cytotoxic immune
anti-tumor response display longer DFS than those without, further reinforcing the fact that immune
reaction is an important component of TNBC. The strength of our results lies in five main aspects:
(i) the large size of the series, which represents to our knowledge the largest prognostic gene expression
study reported so far in TNBC; (ii) the persistence of its prognostic value in multivariate analysis
including classical prognostic signatures; (iii) its non-random nature; (iv) the biological relevance of
the signature, which suggests the potential therapeutic interest of stimulating a pro-Th-1 response; and
(v) the small number of genes in the signature, which should facilitate its clinical application by using
other tests applicable to formaldehyde-fixed paraffin-embedded samples such as qRT-PCR. The main
limitations are the retrospective nature of the study and associated biases, the absence of functional
validation of genes included in the signature, and the absence of analysis at the protein level. Thus,
functional validation is warranted using cell and animal models, as well as clinical validation at the
protein level in large retrospective, then prospective studies.

The potential perspectives are therapeutic. Indirectly, our 13-gene classifier could improve
prognostication of TNBC. The identification of poor or good-prognosis cases within operated TNBC
should help tailor the systemic treatment. Analysis of DFS within patients treated without adjuvant
chemotherapy and analysis of pCR to neoadjuvant chemotherapy suggest that our 13-gene classifier is
associated with relapse risk, whereas its association with response to chemotherapy deserves to be
tested in larger series. Since most of TNBCs are high grade (81% in our present series), it seems difficult
to avoid adjuvant chemotherapy. However, the strong DFS difference between the two prognostic
classes suggests that the “high-risk” patients should need a more aggressive and different treatment
than “low-risk” patients. Of note, with a 71% 5-year DFS, the “low-risk” patients still have a relatively
poor-prognosis and might benefit from additional treatment such as immune therapy. Thus, rather
than identifying patients as candidates to de-escalation, our classifier may help to stratify patients for
future clinical trials and to better develop specific additional therapies in distinct molecular subgroups
of TNBC. More directly, since the anti-tumor immune response, the MEDIATOR complex and cell
cycle checkpoints seem to play pivotal roles regarding the clinical outcome, the manipulation of genes
and/or pathways [69,70] interfering with their functions should provide new therapeutic weapons
for treating the “high-risk” patients. Of course, all these hypotheses should be tested in prospective
clinical trials, before any clinical application.
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the 480 genes differentially expressed between the “low-risk” and “high-risk” TNBC samples as defined by our
13-gene classifier in the Metabric data set (N = 335); Table S4: List of breast cancer data sets included in the study.
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18. Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.;
Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for
Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [CrossRef]

19. Yamaoka, T.; Kusumoto, S.; Ando, K.; Ohba, M.; Ohmori, T. Receptor Tyrosine Kinase-Targeted Cancer
Therapy. Int. J. Mol. Sci. 2018, 19, 3491. [CrossRef]

20. Finetti, P.; Cervera, N.; Charafe-Jauffret, E.; Chabannon, C.; Charpin, C.; Chaffanet, M.; Jacquemier, J.;
Viens, P.; Birnbaum, D.; Bertucci, F. Sixteen-kinase gene expression identifies luminal breast cancers with
poor prognosis. Cancer Res. 2008, 68, 767–776. [CrossRef]

21. Speers, C.; Tsimelzon, A.; Sexton, K.; Herrick, A.M.; Gutierrez, C.; Culhane, A.; Quackenbush, J.; Hilsenbeck, S.;
Chang, J.; Brown, P. Identification of novel kinase targets for the treatment of estrogen receptor-negative
breast cancer. Clin. Cancer Res. 2009, 15, 6327–6340. [CrossRef]

22. Nair, A.; Chung, H.-C.; Sun, T.; Tyagi, S.; Dobrolecki, L.E.; Dominguez-Vidana, R.; Kurley, S.J.; Orellana, M.;
Renwick, A.; Henke, D.M.; et al. Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly
effective therapeutic strategy in triple-negative breast cancer. Nat. Med. 2018, 24, 505–511. [CrossRef]

23. Gaule, P.; Mukherjee, N.; Corkery, B.; Eustace, A.J.; Gately, K.; Roche, S.; O’Connor, R.; O’Byrne, K.J.;
Walsh, N.; Duffy, M.J.; et al. Dasatinib Treatment Increases Sensitivity to c-Met Inhibition in Triple-Negative
Breast Cancer Cells. Cancers 2019, 11, 548. [CrossRef]

24. Duncan, J.S.; Whittle, M.C.; Nakamura, K.; Abell, A.N.; Midland, A.A.; Zawistowski, J.S.; Johnson, N.L.;
Granger, D.A.; Jordan, N.V.; Darr, D.B.; et al. Dynamic Reprogramming of the Kinome in Response to
Targeted MEK Inhibition in Triple-Negative Breast Cancer. Cell 2012, 149, 307–321. [CrossRef]

25. Gatza, M.L.; Lucas, J.E.; Barry, W.T.; Kim, J.W.; Wang, Q.; Crawford, M.D.; Datto, M.B.; Kelley, M.;
Mathey-Prevot, B.; Potti, A.; et al. A pathway-based classification of human breast cancer. Proc. Natl. Acad.
Sci. USA 2010, 107, 6994–6999. [CrossRef]

26. Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors
associated with local immune cytolytic activity. Cell 2015, 160, 48–61. [CrossRef]

27. van de Vijver, M.J.; He, Y.D.; van’t Veer, L.J.; Dai, H.; Hart, A.A.M.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.;
Roberts, C.; Marton, M.J.; et al. A gene-expression signature as a predictor of survival in breast cancer.
N. Engl. J. Med. 2002, 347, 1999–2009. [CrossRef]

28. Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.;
et al. A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N. Engl.
J. Med. 2004, 351, 2817–2826. [CrossRef]

29. Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.;
Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune
landscape in human cancer. Immunity 2013, 39, 782–795. [CrossRef]

30. Powers, C.; Aigner, A.; Stoica, G.E.; McDonnell, K.; Wellstein, A. Pleiotrophin signaling through anaplastic
lymphoma kinase is rate-limiting for glioblastoma growth. J. Biol. Chem. 2002, 277, 14153–14158. [CrossRef]

31. Verma, N.; Müller, A.-K.; Kothari, C.; Panayotopoulou, E.; Kedan, A.; Selitrennik, M.; Mills, G.B.; Nguyen, L.K.;
Shin, S.; Karn, T.; et al. Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and
Circumvents HER3-Associated Resistance via the NEDD4–NDRG1 Axis. Cancer Res. 2017, 77, 86–99.
[CrossRef]

32. Robertson, F.M.; Petricoin III, E.F.; Van Laere, S.J.; Bertucci, F.; Chu, K.; Fernandez, S.V.; Mu, Z.; Alpaugh, K.;
Pei, J.; Circo, R.; et al. Presence of anaplastic lymphoma kinase in inflammatory breast cancer. SpringerPlus
2013, 2, 497. [CrossRef]

33. Siraj, A.K.; Beg, S.; Jehan, Z.; Prabhakaran, S.; Ahmed, M.; Hussain, A.R.; Al-Dayel, F.; Tulbah, A.; Ajarim, D.;
Al-Kuraya, K.S. ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Res. 2015,
17, 127. [CrossRef]

http://dx.doi.org/10.1158/1078-0432.CCR-18-3524
http://dx.doi.org/10.1172/JCI45014
http://dx.doi.org/10.1371/journal.pone.0157368
http://dx.doi.org/10.3390/ijms19113491
http://dx.doi.org/10.1158/0008-5472.CAN-07-5516
http://dx.doi.org/10.1158/1078-0432.CCR-09-1107
http://dx.doi.org/10.1038/nm.4507
http://dx.doi.org/10.3390/cancers11040548
http://dx.doi.org/10.1016/j.cell.2012.02.053
http://dx.doi.org/10.1073/pnas.0912708107
http://dx.doi.org/10.1016/j.cell.2014.12.033
http://dx.doi.org/10.1056/NEJMoa021967
http://dx.doi.org/10.1056/NEJMoa041588
http://dx.doi.org/10.1016/j.immuni.2013.10.003
http://dx.doi.org/10.1074/jbc.M112354200
http://dx.doi.org/10.1158/0008-5472.CAN-16-1797
http://dx.doi.org/10.1186/2193-1801-2-497
http://dx.doi.org/10.1186/s13058-015-0610-3


Cancers 2019, 11, 1158 18 of 19

34. Mylona, E.; Alexandrou, P.; Mpakali, A.; Giannopoulou, I.; Liapis, G.; Markaki, S.; Keramopoulos, A.;
Nakopoulou, L. Clinicopathological and prognostic significance of vascular endothelial growth factors
(VEGF)-C and -D and VEGF receptor 3 in invasive breast carcinoma. Eur. J. Surg. Oncol. 2007, 33, 294–300.
[CrossRef]

35. Golfmann, K.; Meder, L.; Koker, M.; Volz, C.; Borchmann, S.; Tharun, L.; Dietlein, F.; Malchers, F.; Florin, A.;
Büttner, R.; et al. Synergistic anti-angiogenic treatment effects by dual FGFR1 and VEGFR1 inhibition in
FGFR1-amplified breast cancer. Oncogene 2018, 37, 5682–5693. [CrossRef]

36. Nikas, I.; Ryu, H.S.; Theocharis, S. Viewing the Eph receptors with a focus on breast cancer heterogeneity.
Cancer Lett. 2018, 434, 160–171. [CrossRef]

37. Hachim, I.Y.; Villatoro, M.; Canaff, L.; Hachim, M.Y.; Boudreault, J.; Haiub, H.; Ali, S.; Lebrun, J.-J.
Transforming Growth Factor-beta Regulation of Ephrin Type-A Receptor 4 Signaling in Breast Cancer
Cellular Migration. Sci. Rep. 2017, 7, 14976. [CrossRef]

38. Hochgräfe, F.; Zhang, L.; O’Toole, S.A.; Browne, B.C.; Pinese, M.; Cubas, A.P.; Lehrbach, G.M.; Croucher, D.R.;
Rickwood, D.; Boulghourjian, A.; et al. Tyrosine Phosphorylation Profiling Reveals the Signaling Network
Characteristics of Basal Breast Cancer Cells. Cancer Res. 2010, 70, 9391–9401. [CrossRef]

39. Bhushan, L.; Tavitian, N.; Dey, D.; Tumur, Z.; Parsa, C.; Kandpal, R.P. Modulation of liver-intestine
cadherin (Cadherin 17) expression, ERK phosphorylation and WNT signaling in EPHB6 receptor-expressing
MDA-MB-231 cells. Cancer Genom. Proteomics 2014, 11, 239–249.

40. Yates, L.R.; Gerstung, M.; Knappskog, S.; Desmedt, C.; Gundem, G.; Van Loo, P.; Aas, T.; Alexandrov, L.B.;
Larsimont, D.; Davies, H.; et al. Subclonal diversification of primary breast cancer revealed by multiregion
sequencing. Nat. Med. 2015, 21, 751–759. [CrossRef]

41. Andreotti, A.H.; Schwartzberg, P.L.; Joseph, R.E.; Berg, L.J. T-cell signaling regulated by the Tec family kinase,
Itk. Cold Spring Harb. Perspect. Biol. 2010, 2, a002287. [CrossRef] [PubMed]

42. Pasquale, E.B. Developmental cell biology: Eph receptor signalling casts a wide net on cell behaviour.
Nat. Rev. Mol. Cell Biol. 2005, 6, 462–475. [CrossRef] [PubMed]

43. Truitt, L.; Freywald, A. Dancing with the dead: Eph receptors and their kinase-null partnersThis paper is one
of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting—Membrane
Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem. Cell Biol.
2011, 89, 115–129. [PubMed]

44. Herath, N.I.; Doecke, J.; Spanevello, M.D.; Leggett, B.A.; Boyd, A.W. Epigenetic silencing of EphA1 expression
in colorectal cancer is correlated with poor survival. Br. J. Cancer 2009, 100, 1095–1102. [CrossRef] [PubMed]

45. Dong, Y.; Wang, J.; Sheng, Z.; Li, G.; Ma, H.; Wang, X.; Zhang, R.; Lu, G.; Hu, Q.; Sugimura, H.; et al.
Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Mod. Pathol.
2009, 22, 151–160. [CrossRef] [PubMed]

46. Wu, B.O.; Jiang, W.G.; Zhou, D.; Cui, Y.-X. Knockdown of EPHA1 by CRISPR/CAS9 Promotes Adhesion and
Motility of HRT18 Colorectal Carcinoma Cells. Anticancer Res. 2016, 36, 1211–1219. [PubMed]

47. Lisabeth, E.M.; Falivelli, G.; Pasquale, E.B. Eph Receptor Signaling and Ephrins. Cold Spring Harb. Perspect.
Biol. 2013, 5, a009159. [CrossRef]

48. Yeatman, T.J. A renaissance for SRC. Nat. Rev. Cancer 2004, 4, 470–480. [CrossRef]
49. Qian, X.-L.; Zhang, J.; Li, P.-Z.; Lang, R.-G.; Li, W.-D.; Sun, H.; Liu, F.-F.; Guo, X.-J.; Gu, F.; Fu, L. Dasatinib

inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells
which overexpress Syndecan-Binding Protein (SDCBP). PLoS ONE 2017, 12, e0171169. [CrossRef]

50. Morgan, L.; Gee, J.; Pumford, S.; Farrow, L.; Finlay, P.; Robertson, J.; Ellis, I.; Kawakatsu, H.; Nicholson, R.;
Hiscox, S. Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with poor
prognosis clinically. Cancer Biol. Ther. 2009, 8, 1550–1558. [CrossRef]

51. Finn, R.S. Targeting Src in breast cancer. Ann. Oncol. 2008, 19, 1379–1386. [CrossRef] [PubMed]
52. Qayyum, T.; Fyffe, G.; Duncan, M.; McArdle, P.A.; Hilmy, M.; Orange, C.; Halbert, G.; Seywright, M.;

Horgan, P.G.; Underwood, M.A.; et al. The interrelationships between Src, Cav-1 and RhoGD12 in
transitional cell carcinoma of the bladder. Br. J. Cancer 2012, 106, 1187–1195. [CrossRef] [PubMed]

53. O’Shea, J.J.; Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells.
Science 2010, 327, 1098–1102. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ejso.2006.10.015
http://dx.doi.org/10.1038/s41388-018-0380-3
http://dx.doi.org/10.1016/j.canlet.2018.07.030
http://dx.doi.org/10.1038/s41598-017-14549-9
http://dx.doi.org/10.1158/0008-5472.CAN-10-0911
http://dx.doi.org/10.1038/nm.3886
http://dx.doi.org/10.1101/cshperspect.a002287
http://www.ncbi.nlm.nih.gov/pubmed/20519342
http://dx.doi.org/10.1038/nrm1662
http://www.ncbi.nlm.nih.gov/pubmed/15928710
http://www.ncbi.nlm.nih.gov/pubmed/21455264
http://dx.doi.org/10.1038/sj.bjc.6604970
http://www.ncbi.nlm.nih.gov/pubmed/19277044
http://dx.doi.org/10.1038/modpathol.2008.188
http://www.ncbi.nlm.nih.gov/pubmed/19011600
http://www.ncbi.nlm.nih.gov/pubmed/26977017
http://dx.doi.org/10.1101/cshperspect.a009159
http://dx.doi.org/10.1038/nrc1366
http://dx.doi.org/10.1371/journal.pone.0171169
http://dx.doi.org/10.4161/cbt.8.16.8954
http://dx.doi.org/10.1093/annonc/mdn291
http://www.ncbi.nlm.nih.gov/pubmed/18487549
http://dx.doi.org/10.1038/bjc.2012.52
http://www.ncbi.nlm.nih.gov/pubmed/22353809
http://dx.doi.org/10.1126/science.1178334
http://www.ncbi.nlm.nih.gov/pubmed/20185720


Cancers 2019, 11, 1158 19 of 19

54. Kulkarni, S.; Dolezal, J.M.; Wang, H.; Jackson, L.; Lu, J.; Frodey, B.P.; Dosunmu-Ogunbi, A.; Li, Y.; Fromherz, M.;
Kang, A.; et al. Ribosomopathy-like properties of murine and human cancers. PLoS ONE 2017, 12, e0182705.
[CrossRef] [PubMed]

55. Lewis, C.W.; Jin, Z.; Macdonald, D.; Wei, W.; Qian, X.J.; Choi, W.S.; He, R.; Sun, X.; Chan, G. Prolonged
mitotic arrest induced by Wee1 inhibition sensitizes breast cancer cells to paclitaxel. Oncotarget 2017, 8,
73705–73722. [CrossRef] [PubMed]

56. Bukhari, A.B.; Lewis, C.W.; Pearce, J.J.; Luong, D.; Chan, G.K.; Gamper, A.M. Inhibiting Wee1 and ATR
kinases produces tumor-selective synthetic lethality and suppresses metastasis. J. Clin. Investig. 2019, 129,
1329–1344. [CrossRef]

57. Broude, E.V.; Győrffy, B.; Chumanevich, A.A.; Chen, M.; McDermott, M.S.J.; Shtutman, M.; Catroppo, J.F.;
Roninson, I.B. Expression of CDK8 and CDK8-interacting Genes as Potential Biomarkers in Breast Cancer.
Curr. Cancer Drug Targets 2015, 15, 739–749. [CrossRef]

58. Philip, S.; Kumarasiri, M.; Teo, T.; Yu, M.; Wang, S. Cyclin-Dependent Kinase 8: A New Hope in Targeted
Cancer Therapy? J. Med. Chem. 2018, 61, 5073–5092. [CrossRef]

59. Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the
human genome. Science 2002, 298, 1912–1934. [CrossRef]

60. Theillet, C.; Adelaide, J.; Louason, G.; Bonnet-Dorion, F.; Jacquemier, J.; Adnane, J.; Longy, M.; Katsaros, D.;
Sismondi, P.; Gaudray, P. FGFRI and PLAT genes and DNA amplification at 8p12 in breast and ovarian
cancers. Genes Chromosomes Cancer 1993, 7, 219–226. [CrossRef]

61. Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4,
249–264. [CrossRef]

62. Staaf, J.; Ringnér, M.; Vallon-Christersson, J.; Jönsson, G.; Bendahl, P.-O.; Holm, K.; Arason, A.; Gunnarsson, H.;
Hegardt, C.; Agnarsson, B.A.; et al. Identification of subtypes in human epidermal growth factor receptor
2—Positive breast cancer reveals a gene signature prognostic of outcome. J. Clin. Oncol. 2010, 28, 1813–1820.
[CrossRef]

63. Venet, D.; Dumont, J.E.; Detours, V. Most Random Gene Expression Signatures Are Significantly Associated
with Breast Cancer Outcome. PLoS Comput. Biol. 2011, 7, e1002240. [CrossRef]

64. Boutros, P.C.; Lau, S.K.; Pintilie, M.; Liu, N.; Shepherd, F.A.; Der, S.D.; Tsao, M.-S.; Penn, L.Z.; Jurisica, I.
Prognostic gene signatures for non-small-cell lung cancer. Proc. Natl. Acad. Sci. USA 2009, 106, 2824–2828.
[CrossRef]

65. Palmer, C.; Diehn, M.; Alizadeh, A.A.; Brown, P.O. Cell-type specific gene expression profiles of leukocytes
in human peripheral blood. BMC Genom. 2006, 7, 115.

66. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray
experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3. [CrossRef]

67. Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9,
811–818. [CrossRef]

68. McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Statistics Subcommittee of
the NCI-EORTC Working Group on Cancer Diagnostics Reporting Recommendations for Tumor Marker
Prognostic Studies (REMARK). JNCI J. Natl. Cancer Inst. 2005, 97, 1180–1184. [CrossRef]

69. Disis, M.L.; Park, K.H. Immunomodulation of Breast Cancer via Tumor Antigen Specific Th1. Cancer Res.
Treat. 2009, 41, 117–121. [CrossRef]

70. Bertucci, F.; Gonçalves, A. Immunotherapy in Breast Cancer: The Emerging Role of PD-1 and PD-L1.
Curr. Oncol. Rep. 2017, 19, 64. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0182705
http://www.ncbi.nlm.nih.gov/pubmed/28820908
http://dx.doi.org/10.18632/oncotarget.17848
http://www.ncbi.nlm.nih.gov/pubmed/29088738
http://dx.doi.org/10.1172/JCI122622
http://dx.doi.org/10.2174/156800961508151001105814
http://dx.doi.org/10.1021/acs.jmedchem.7b00901
http://dx.doi.org/10.1126/science.1075762
http://dx.doi.org/10.1002/gcc.2870070407
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1200/JCO.2009.22.8775
http://dx.doi.org/10.1371/journal.pcbi.1002240
http://dx.doi.org/10.1073/pnas.0809444106
http://dx.doi.org/10.2202/1544-6115.1027
http://dx.doi.org/10.1002/sim.4780090710
http://dx.doi.org/10.1093/jnci/dji237
http://dx.doi.org/10.4143/crt.2009.41.3.117
http://dx.doi.org/10.1007/s11912-017-0627-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Patient Population 
	Identification of a Robust Prognostic Tyrosine Kinase Signature 
	Correlations of Our 13-Gene Classification with Clinicopathological and Molecular Features 
	Univariate and Multivariate Prognostic Analyses for DFS 
	Univariate and Multivariate Prognostic Analyses for Overall Survival 
	Biological Processes Associated to Our 13-Gene Classification 
	Prognostic and/or Predictive Value of Our13-Gene Classifier 

	Discussion 
	Materials and Methods 
	Tumor Samples and Kinase Genes 
	Gene Expression Data Processing 
	Gene Expression Data Analysis 
	Statistical Analysis 

	Conclusions 
	References

