Reversal of contractility as a signature of self-organization in cytoskeletal bundles - Archive ouverte HAL Access content directly
Journal Articles eLife Year : 2020

Reversal of contractility as a signature of self-organization in cytoskeletal bundles

Abstract

Bundles of cytoskeletal filaments and molecular motors generate motion in living cells, and have internal structures ranging from very organized to apparently disordered. The mechanisms powering the disordered structures are debated, and existing models predominantly predict that they are contractile. We reexamine this prediction through a theoretical treatment of the interplay between three well-characterized internal dynamical processes in cytoskeletal bundles: filament assembly and disassembly, the attachement-detachment dynamics of motors and that of crosslinking proteins. The resulting self-organization is easily understood in terms of motor and crosslink localization, and allows for an extensive control of the active bundle mechanics, including reversals of the filaments’ apparent velocities and the possibility of generating extension instead of contraction. This reversal mirrors some recent experimental observations, and provides a robust criterion to experimentally elucidate the underpinnings of both actomyosin activity and the dynamics of microtubule/motor assemblies in vitro as well as in diverse intracellular structures ranging from contractile bundles to the mitotic spindle.
Fichier principal
Vignette du fichier
Lenz_eLife_2020.pdf (1.4 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

hal-02518848 , version 1 (05-10-2021)

Identifiers

Cite

Martin Lenz. Reversal of contractility as a signature of self-organization in cytoskeletal bundles. eLife, 2020, 9, ⟨10.7554/eLife.51751⟩. ⟨hal-02518848⟩
14 View
22 Download

Altmetric

Share

Gmail Facebook X LinkedIn More