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Abstract

We study systems of simple point processes that admit stochastic intensities. We
represent these point processes as thinnings of Poisson measures and are interested
in a convergence result of such systems. This result states that, if the stochastic
intensities of the limit point processes are independent of the underlying Poisson
measures, the convergence in distribution in Skorohod topology of the stochastic
intensities implies the same convergence for the point processes.
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1 Introduction

In this paper we consider systems of point processes admitting stochastic intensities.
Processes of these type arise naturally in the study of particle systems, such as modeling
of neural activity (see e.g. [14] or [15]) or financial data (see e.g. [2] or [13]). Note that
such processes can always be written as thinnings of Poisson measures.

The natural question is: when does the convergence in distribution in Skorohod space
of systems of such processes follow from the convergence of their intensities? In this
paper we study this question. Our main result, Theorem 1.1, roughly states that if the
intensities of point processes converge in distribution and their limits are independent of
the underlying Poisson measures, then the systems of point processes converge as well.

To give the formal statement of Theorem 1.1, denote by D(R+,R) Skorohod space,
M the space of locally finite measures endowed with the topology of vague convergence
and N the subspace of locally finite simple point measures.

Theorem 1.1. Let Ȳ k and Y N,k (N, k ∈ N∗) be D(R+,R+)-valued random variables.
Let

(
πk
)
k∈N∗ and

(
π̄k
)
k∈N∗ be i.i.d. families of Poisson measures on R+ × R+ having

Lebesgue intensity. Let ZN,k and Z̄k be point processes defined as follows

ZN,kt :=

∫
[0,t]×R+

1{z≤Y N,ks− }dπ
k(s, z), Z̄kt :=

∫
[0,t]×R+

1{z≤Ȳ ks−}dπ̄
k(s, z), k ≥ 1.
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Convergence of point processes

Assume that, for every n ≥ 1, (Y N,1, π1, ..., Y N,n, πn) converges in distribution to (Ȳ 1,

π̄1, ..., Ȳ n, π̄n) in (D(R+,R)×N )n, and that, for each k ≥ 1, Ȳ k is independent of π̄k.

Then, for any n ≥ 1,
(
ZN,k

)
1≤k≤n converges to

(
Z̄k
)

1≤k≤n in distribution inD(R+,R
n).

In particular,
(
ZN,k

)
k≥1

converges to
(
Z̄k
)
k≥1

in distribution in D(R+,R)N
∗

endowed
with the product topology.

Remark 1.2. In the statement of Theorem 1.1, we need to guarantee the following
property: Poisson random measures are N−valued random variables. This is a direct
consequence of Theorem 2.6.III.(ii) of [6] and of the definition of Poisson measures (see
Definition 3.1).

Remark 1.3. According to Lemma 4 of [4], a point process Z having stochastic intensity
(Ys−)s≥0 (where Y is a càdlàg process) can always be written in the form of Theorem 1.1.

Let us note that, in Theorem 1.1, the processes Y N,k are not assumed to be inde-
pendent of the Poisson measures πk. Otherwise, the proof would be straightforward by
conditioning by Y N,k. Let us also note that the condition of independence of the limiting
intensities Ȳ k from Poisson measures π̄k is often satisfied and natural in many examples
of application. It holds for example when the limiting intensities are deterministic, or
when they are functionals of Brownian motions with respect to the same filtration as π̄k.

If the processes Y N,k are semimartingales, the result of Theorem 1.1 can follow from
Theorem IX.4.15 of [10], provided the convergence of the characteristics of the corre-
sponding semimartingales holds. But we do not assume the semimartingale structure
for the intensities Y N,k in Theorem 1.1.

When the limiting intensities are deterministic, Theorem 1.1 can be compared to
Theorem 1 of [5] that states that the convergence of point processes is implied by
the pointwise convergence in distribution of their compensators (i.e. for each t ≥ 0,

the compensator at time t converges in distribution in R). In [5], Theorem 1 holds
when the compensator of the limit point process is a deterministic function, whereas in
Theorem 1.1, the limit point processes have stochastic intensities.

The idea of the proof of Theorem 1.1 consists in writing the point processes ZN,k

and Z̄k as a function Φ of respectively Y N,k, πk and Ȳ k, π̄k (k ≥ 1). Then, knowing that,
(Y N,k, πk) converges in distribution to (Ȳ k, π̄k), we can use Skorohod representation
theorem to assume that this convergence is almost sure. Finally, proving that Φ is almost
surely continuous at (Ȳ k, πk) concludes the proof.

The organization of the paper is the following: in Section 2 we give some examples
of applications of Theorem 1.1, then in Section 3 we recall some classical properties of
Poisson measures and of the vague convergence. Finally, Section 4 is devoted to the
proof of Theorem 1.1

2 Examples

We start this section with an example of system of point processes based on [8]. In
this example the stochastic intensities are in fact semimartingales. We illustrate both
methods of proof of the convergence of this system: using Theorem IX.4.15 of [10] about
semimartingale’s convergence and using our Theorem 1.1.

Example 2.1. Let α > 0 and πk (k ≥ 1) be independent Poisson measures onR+×R+×R
with intensity dt · dz · dν(u) where ν is the centered normal distribution with variance
one. Define XN as solution of

dXN
t = −αXN

t dt+
1√
N

N∑
k=1

∫
R+×R

u1{z≤1+(XNt−)2}dπ
k(t, z, u),
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Convergence of point processes

and

ZN,it :=

∫
[0,t]×R+

1{z≤1+(XNs−)2}dπ
i(s, z, u).

It was shown in Theorem 1.4 of [8] that XN converges in distribution in D(R+,R)

to X̄, where X̄ is solution of

dX̄t = −αX̄tdt+
√

1 + X̄2
t dWt,

with W some one-dimensional standard Brownian motion. Define also

Z̄it =

∫
[0,t]×R+

1{z≤1+X̄2
s−}dπ̄

i(s, z, u),

where π̄i (i ≥ 1) are independent Poisson measures on R2
+ having Lebesgue intensity.

In order to show the convergence of (ZN,i)1≤i≤n in distribution in D(R+,R
n) using

Theorem IX.4.15 of [10], we have to consider the semimartingale (XN , ZN,1, ..., ZN,n)

and show that its characteristics converge to those of (X̄, Z̄1, ..., Z̄n).

An alternative proof of the convergence of (ZN,i)1≤i≤n to (Z̄i)1≤i≤n relies on the
Theorem 1.1. Indeed, following Theorem 1.4 of [8], XN converges in distribution in
D(R+,R) to X̄, and, being adapted to the same filtration, the Brownian motion W is
independent of the Poisson measures π̄i (i ≥ 1) (see Theorem II.6.3 of [9]).

Theorem 1.1 allows us to consider processes that are not semimartingales, such as
Hawkes processes and Volterra processes. Since the stochastic intensities of Hawkes
processes are not, in general, semimartingales, Theorem 1.1 can be interesting to show
the convergence of Hawkes processes, provided that one can show the convergence of
their stochastic intensities. Let us give an example of application of Theorem 1.1 in this
case. The example is based on Examples 7.3 and 7.4 of [1].

Example 2.2. Let us consider K(t) := tγ for some γ > 0, KN (t) := K(t/N) and some
Poisson random measure π on R2

+ having Lebesgue intensity. Let XN satisfy

XN
t =

∫
[0,t]×R+

KN (t− s)1{z≤|XNs−|}dπ(s, z)−
∫ t

0

KN (t− s)
∣∣XN

s

∣∣ ds.
Theorem 7.2 of [1] implies that the sequence of processes (X̃N

t )t≥0 = (N−1XN
Nt)t≥0 has

converging subsequences (in distribution in the topology L2
loc), and that every limit

process (X̄t)t≥0 satisfies

X̄t =

∫ t

0

K(t− s)
√
|X̄s|dBs, (2.1)

for some standard Brownian motion B. Besides, one can prove with standard arguments,
the tightness of (X̃N )N in Skorohod topology. Then, we can consider a subsequence of
(X̃N )N that converges in distribution in the topology of L2

loc and in Skorohod topology.
The limit for both topologies is necessarily the same on Skorohod space. Indeed, let x̂ be
the limit for L2

loc topology and x̌ be the limit for Skorohod topology of a sequence of càdlàg
functions (xn)n. The L2

loc convergence implies that xnt converges to x̂t for Lebesgue-a.e.
t ≥ 0. Besides, the convergence in Skorohod topology implies the convergence xnt to x̌t
for every continuity point t of x̌. This implies that x̌ = x̂ Lebesgue-a.e.

This implies the convergence of (a subsequence of) Y N := |X̃N | to Ȳ := |X̄| in Skoro-
hod topology. Moreover, the Brownian motion can be shown to be necessarily indepen-
dent of the Poisson measure π (using Theorem II.6.3 of [9]). Then, Theorem 1.1 implies
the convergence in distribution in Skorohod topology of ZNt :=

∫
[0,t]×R+

1{z≤Y Ns−}dπ(s, z)

to the point process Z̄t :=
∫

[0,t]×R+
1{z≤Ȳs−}dπ̄(s, z), where π̄ is independent of Ȳ . To the

best of our knowledge, there is no classical way to prove this convergence.
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Convergence of point processes

As it was mentioned in Introduction, if the stochastic intensities of the limit point
processes are deterministic, then the hypotheses of Theorem 1.1 are satisfied. Let us
give a practical example based on [7].

Example 2.3. Consider any locally bounded K : R+ → R and any Lipschitz continuous
function f : R→ R+. Define XN as solution of

XN
t =

1

N

N∑
j=1

∫
[0,t]×R+

K(t− s)1{z≤f(XNs−)}dπ
j(s, z),

where πj (j ≥ 1) are independent Poisson measures on R2
+ with Lebesgue intensity, and

X̄ as the deterministic solution of

X̄t =

∫ t

0

K(t− s)f(X̄s)ds.

Let

ZN,it =

∫
[0,t]×R+

1{z≤f(XNs−)}dπ
i(s, z) and Z̄it =

∫
[0,t]×R+

1{z≤f(X̄s−)}dπ
i(s, z).

Then, Theorem 8 of [7] states that, for i ≥ 1, for all T ≥ 0,

E

[
sup

0≤t≤T

∣∣∣ZN,it − Z̄it
∣∣∣] ≤ CTN−1/2,

for some constant CT . In other words, ZN,i converges to Z̄ in a L1−sense. As X̄ is a
deterministic function, Theorem 1 of [5], and a fortiori Theorem 1.1, can be used to
show the (weaker) convergence in distribution in D(R+,R) of ZN,i to Z̄, provided XN

converges to X̄.

3 Classical properties of Poisson measures and the vague conver-
gence

Let us begin with the usual definition of random measures and Poisson measures. We
restrict this definition to the space R2

+ since we only need this space in the paper, but
Definition 3.1 can be generalized to any measurable space. In the rest of the paper, R2

+

is always endowed with the Borel sigma algebra B(R2
+).

Definition 3.1. A locally finite random measure on R2
+ is aM−valued random variable,

where M is endowed with the σ−algebra generated by the functions π ∈ M 7→ π(B)

(B ∈ B(R2
+)).

A Poisson measure on R2
+ is a locally finite random measure π satisfying:

• for all B ∈ B(R2
+), π(B) follows a Poisson distribution,

• for every n ∈ N∗, for all disjoint sets B1, . . . , Bn ∈ B(R2
+), the variables π(Bi)

(1 ≤ i ≤ n) are independent.

The function µ : B ∈ B(R2
+) 7→ E [π(B)] is a measure on R2

+ that is called the intensity
of π.

Remark 3.2. In Definition 3.1, we can consider Poisson distribution with parameter
infinity. A Poisson variable with parameter infinity is a random variable X satisfying
X = +∞ a.s.

Let us begin with an elementary lemma.

Lemma 3.3. Let D ∈ B(R2
+), µ be a (deterministic) measure on R2

+, and π be a Poisson
measure on R2

+ with intensity µ. If µ(D) = 0, then, a.s. π(D) = 0.
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Convergence of point processes

Proof. By definition, π(D) is a Poisson variable with parameter µ(D) = 0.

Now, we state and prove another classical property of Poisson measures.

Lemma 3.4. Let π be a Poisson measure on R2
+ with Lebesgue intensity. Then,

P (∀t ≥ 0, π({t} ×R+) ≤ 1) = 1.

Proof. Let us write

P (∃t, π({t} ×R+) ≥ 2) ≤ P

 ∑
(t1,x1),(t2,x2)∈π
(t1,x1)6=(t2,x2)

1{t1=t2} ≥ 1

 ≤ E
 ∑

(t1,x1),(t2,x2)∈π
(t1,x1)6=(t2,x2)

1{t1=t2}

 .
Then, introducing the random measure π(2) (called the second factorial measure of π)

defined as
π(2) :=

∑
(t1,x1),(t2,x2)∈π
(t1,x1)6=(t2,x2)

δ(t1,x1,t2,x2),

we can write ∑
(t1,x1),(t2,x2)∈π
(t1,x1)6=(t2,x2)

1{t1=t2} =

∫
R4

+

1{t1=t2}dπ
(2)(t1, x1, t2, x2).

According to the multivariate Mecke equation (see Theorem 4.4 of [12]) and Fubini-
Tonelli’s theorem, the expectation of the integral above is∫

R+

∫
R+

∫
R+

∫
R+

1{t1=t2}dt1dt2dx1dx2 = 0.

This allows to conclude that P (∃t, π({t} ×R+) ≥ 2) = 0.

We end this section with a result claiming that the vague convergence of locally finite
point measures implies the convergence of their atoms.

Proposition 3.5. Let P k (k ∈ N) and P be locally finite simple point measures on R2
+

such that P k converges vaguely to P. Let T,M be positive real numbers such that
P (∂([0, T ] × [0,M ])) = 0. Denote nk := P k([0, T ] × [0,M ]), n := P ([0, t] × [0,M ]) and
(tki , z

k
i )1≤i≤nk (resp. (ti, zi)1≤i≤n) the atoms of P k|[0,T ]×[0,M ] (resp. P|[0,T ]×[0,M ]).

Then, for k large enough, nk = n, and there exists a sequence of permutation (σk)k of
J1, nK such that, for all 1 ≤ i ≤ n, tkσk(i) (resp. zkσk(i)) converges to ti (resp. zi) as k goes
to infinity.

Proof. To begin with, Proposition A2.6.II.(iv) of [6] implies that nk converges to n as k
goes to infinity. As nk (k ∈ N) and n are integers, this implies that nk = n for k large
enough.

To show the convergence of tki and zki , (1 ≤ i ≤ n) let us fix some ε > 0. Then, for each
1 ≤ i ≤ n, consider an open ball Bi centered on (ti, zi) of radius smaller than ε (for the
supremum norm) such that, for all i 6= j, Bi ∩Bj = ∅.

Thanks to Proposition A2.6.II.(iv) of [6], we know that P k(Bi) converges to P (Bi) = 1

(1 ≤ i ≤ n). Since P k are point measures, this implies that for all 1 ≤ i ≤ n, P k(Bi) = 1

for k large enough. As the sets Bi (1 ≤ i ≤ n) are disjoint, there exists a permutation σk

such that (tkσk(i), z
k
σk(i)) ∈ Bi. Hence, for k large enough, for all 1 ≤ i ≤ n, |tkσk(i) − ti| ≤ ε

and |zkσk(i) − zi| ≤ ε.
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Convergence of point processes

4 Proof of Theorem 1.1

This section is dedicated to prove Theorem 1.1. Let us begin with an important result.

Theorem 4.1. Let Φ : D(R+,R+)m ×Nm → D(R+,R
m) be defined as

Φ(x, π)t :=

(∫
[0,t]×R+

1{z≤xjs−}dπ
j(s, z)

)
1≤j≤m

.

Let (x, π) ∈ D(R+,R+)m ×Nm. A sufficient condition for Φ to be continuous at (x, π) is:

(a) for each 1 ≤ j ≤ m, for every t ≥ 0, πj({t} ×R+) ≤ 1,

(b) for each 1 ≤ j ≤ m, for every t ≥ 0, if πj({t} × R+) = 1, then, for all i 6= j,

πi({t} ×R+) = 0,

(c) for each 1 ≤ j ≤ m, for every t ≥ 0 such that πj({t} × R+) = 1, xj is continuous
at t,

(d) for each 1 ≤ j ≤ m, πj
(
{(t, xjt−) : t ≥ 0}

)
= 0.

Before proving Theorem 4.1, let us point out that, in general, Φ is not continuous at
every point of D(R+,R+)m ×Nm. This is shown in Example 4.2, where hypothesis (d) is
not satisfied.

Example 4.2. Let us consider the point measure π = δ(1,1) and the constant function
x : t ∈ R+ 7→ 1. In addition, we consider the functions xn defined as in Figure 1 below.
Obviously, ||x − xn||∞ = 1/n, but Φ(x, π)t = 1{t≥1} and Φ(xn, π) = 0. In other words,
xn converges uniformly to x, but Φ(xn, π) does not converge to Φ(x, π) for non-trivial
topologies.

1/2 3/21

1− 1/n

1

Figure 1: Graph of xn

The proof of Theorem 4.1 uses the following lemmas about the convergence in
Skorohod space.

Lemma 4.3. Let (xN )N be a sequence of D(R+,R) converging to some x ∈ D(R+,R),
and (tN )N be a sequence converging to some t > 0. If x is continuous at t, then
xN (tN−)→ x(t).

Proof. Let T > t such that x is continuous at T . By Theorem 16.2 of [3], xN converges to
x in D([0, T ],R). Consequently, there exists a sequence of continuous increasing bijective
functions λN : [0, T ]→ [0, T ] such that ||λN − Id||∞,[0,T ] and ||xN − x ◦ λN ||∞,[0,T ] vanish
as N goes to infinity. Then, as λN is continuous,

|x(t)− xN (tN−)| ≤ |x(t)− x(λN (tN ))|+ |x(λN (tN−))− xN (tN−)|
≤ |x(t)− x(λN (tN ))|+ ||x ◦ λN − xN ||∞,[0,T ]

vanishes as N goes to infinity since

|λN (tN )− t| ≤ |λN (tN )− tN |+ |tN − t| ≤ ||λn − Id||∞,[0,T ] + |tN − t| .

This concludes the proof.
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Convergence of point processes

Lemma 4.4. Let T > 0, k ∈ N∗, ni ∈ N∗, and consider increasing sequences 0 = ti,0 <

ti,1 < . . . < ti,ni−1 < ti,ni = T , 0 = tNi,0 < tNi,1 < . . . < tN
i,nNi −1

< tN
i,nNi

= T (1 ≤ i ≤ k). We

define the functions g, gN ∈ D([0, T ],Rk) by{
g(t) =

(∑ni−1
j=0 1[ti,j ,ti,j+1[(t)j

)
1≤i≤k

for t ∈ [0, T [,

g(T ) = (ni − 1)1≤i≤k ,

and  gN (t) =
(∑nNi −1

j=0 1[tNi,j ,t
N
i,j+1[(t)j

)
1≤i≤k

for t ∈ [0, T [,

gN (T ) =
(
nNi − 1

)
1≤i≤k .

We assume that there exists a dense subset A ⊆ [0, T ] containing T and such that,
for all t ∈ A, gN (t) converges to g(t). Moreover, we assume that for all i1 6= i2, for all
j1 ∈ J1, ni1−1K and j2 ∈ J1, ni2−1K, ti1,j1 6= ti2,j2 . Then gN converges to g in D

(
[0, T ],Rk

)
.

Proof. Since gN (T ) = (nNi − 1)1≤i≤k converges to g(T ) = (ni − 1)1≤i≤k, we know that
nNi = ni for all N (large enough) and all 1 ≤ i ≤ k.

Now, we show that for each 1 ≤ i ≤ k, 1 ≤ j ≤ ni − 1, tNi,j converges to ti,j . As the
sequence (tNi,j)N is bounded, it is sufficient to show that ti,j is its only limit point. Let s

be a limit of a subsequence (t
ϕ(N)
i,j )N .

We show that s = ti,j . If s > ti,j there would exist some r ∈ A∩]ti,j , s[ satisfying

that gϕ(N)(r) converges to g(r). This is not possible because, as r < s = limN t
ϕ(N)
i,j ,

gϕ(N)(r)i ≤ j − 1 for N large enough, and as r > ti,j , g(r)i ≥ j. For the same reason,
it is not possible to have s < ti,j . As a consequence, ti,j is the only limit point of the
bounded sequence

(
tNi,j
)
N

. This implies the convergence of tNi,j to ti,j . In the rest of the
proof, let us re-index the set {ti,j : 1 ≤ i ≤ k, 1 ≤ j ≤ ni − 1} as {si : 1 ≤ i ≤ n} where

n =
∑k
i=1(ni − 1), such that s1 < s2 < ... < sn. And we consider the same indexes for the

points tNi,j (1 ≤ i ≤ k, 1 ≤ j ≤ ni − 1).
To prove the convergence of gN to g in D([0, T ],R), we just have to define the

sequence of functions (λN )N such that each λN is the function that is linear on each
interval [sNi , s

N
i+1] and that satisfies λN (sNi ) = si. These functions verify gN = g ◦ λN and

||λN − Id||∞,[0,T ] = max
1≤i≤n

|si − sNi | = max
1≤i≤k

1≤j≤ni−1

|ti,j − tNi,j | −→
n→∞

0.

This implies that (gN )N converges to g in Skorohod topology.

Now, we can give the

Proof of Theorem 4.1. Let us consider (xk, πk) = (x1
k, . . . , x

m
k , π

1
k, . . . , π

m
k )k a sequence of

D(R+,R)m × Nm converging to (x, π) = (x1, . . . , xm, π1, . . . , πm). Let Z := Φ(x, π) and
Zk := Φ(xk, πk).

Let us consider T ≥ 0 such that for all 1 ≤ j ≤ m, πj({T} × R+) = 0 and for all
k ∈ N∗, πjk({T} ×R+) = 0. In particular T is a point of continuity of Z and of each Zk,
and, as the set of all the atoms of the measures πj and πjk (1 ≤ j ≤ m, k ≥ 1) is countable,
the set of points T satisfying the previous conditions is dense.

According to the proof of Theorem 16.2 of [3], in order to prove the convergence of
Zk to Z in D(R+,R

m), it is sufficient to prove this convergence in D([0, T ],Rm) for the
points T satisfying the conditions of the previous paragraph. Indeed, these points T are
continuity points of Z and there exists an increasing sequence of such points T going
to infinity. Then, by Lemma 4.4 (whose hypothesis is satisfied thanks to hypothesis (a)

and (b)), the convergence of Zk to Z in D([0, T ],Rm) will follow from the convergence
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of (Zk)t to Zt for every point t satisfying the same conditions as T . Let us show the
convergence of (Zjk)t to Zjt for every 1 ≤ j ≤ m. In the rest of the proof, we work with
fixed j, t, T.

To show this, fix some M > max(||xj ||∞,[0,T ], supk ||x
j
k||∞,[0,T ]) (where we know that

the supremum over k of ||xjk||∞,[0,T ] is finite since (xjk)k converges in Skorohod topology)
such that πj(∂([0, t]× [0,M ])) = 0. Then write

{(
τ i, ζi

)
: 1 ≤ i ≤ N

}
the set of the atoms

of πj|[0,t]×[0,M ] and
{(
τ ik, ζ

i
k

)
: 1 ≤ i ≤ Nk

}
that of (πjk)|[0,t]×[0,M ].

Then, since we choose M such that πj(∂([0, t]× [0,M ])) = 0, Proposition 3.5 implies
that Nk = N for all k (large enough), and that, for each 1 ≤ i ≤ N, τ ik and ζik converge
respectively to τ i and ζi (we can assume that σk = Id in the statement of Proposition 3.5,
possibly reordering the indexes of the atoms of every P k).

Notice that

(Zjk)t =

N∑
i=1

1{
ζik≤(xjk)

τi
k
−

}1{τ ik≤t}.
To end the proof, one has to note that 1{ζik≤(xjk)

τi
k
−}

converges to 1{ζi≤xjτi−}
, and

that 1{τ ik≤t} converges to 1{τ i≤t} = 1. By hypothesis (d), ζi 6= xjτ i−, whence there are

two cases, either ζi < xjτ i− or ζi > xjτ i−. In the first case, we consider ε > 0 such that

ζi + ε < xjτ i−. Then, noticing that hypothesis (c) guarantees that xj is continuous at τ i,
Lemma 4.3 and the convergence of τ ik and ζik respectively to τ i and ζi imply that, for
k large enough, ζik < ζi + ε/3 < xjτ i − ε/3 < (xjk)τ ik−, what implies the convergence of
1{ζik≤(xjk)

τi
k
−}

to 1{ζi≤xj
τi−
}. The second case is handled in the same way, as well as the

convergence of 1{τ ik≤t} to 1{τ i≤t}, recalling that πj({t} ×R+) = 0, and so τ i < t.

Let us finally prove our main result.

Proof of Theorem 1.1. Step 1: Let us show that (ZN,k)1≤k≤n converges to (Z̄k)1≤k≤n as
N goes to infinity in D(R+,R

n).

Since (D(R+,R) ×M)n is a separable metric space (see Theorem 16.3 of [3] for
D(R+,R), and Theorem A2.6.III.(i) of [6] forM), we can apply Skorohod representation
theorem (see e.g. Theorem 6.7 of [3]) to show the almost sure convergence of a
sequence ((Ỹ N,1, π̃N,1), . . . , (Ỹ N,n, π̃N,n)) to ((Ỹ 1, π̃1), . . . , (Ỹ n, π̃n)) in (D(R+,R) × N )n

as N goes to infinity, where these variables have respectively the same distribution as
((Y N,1, π1), . . . , (Y N,n, πn)) and ((Ȳ 1, π̄1), . . . , (Ȳ n, π̄n)).

Then Theorem 4.1 implies the almost sure convergence of the multivariate point
processes (Z̃N,k)1≤k≤n := Φ((Ỹ N,k, π̃N,k)1≤k≤n) to (Z̃k)1≤k≤n := Φ((Ỹ k, π̃k)1≤k≤n) in
D(R+,R

n). Let us show that the hypothesis of Theorem 4.1 are satisfied almost surely.
Hypothesis (a) is a classical property of Poisson measures (see Lemma 3.4). Hypoth-
esis (b) is satisfied since the Poisson measures π̄i (i ≥ 1) are independent, whence,
considering i 6= j, denoting A(π̄j) the set of points t ≥ 0 such that π̄j({t} ×R+) = 0, we
have that

⋃
t∈A(π̄j){t} ×R+ is a null set (since A(π̄j) is finite or countable) independent

of π̄i, and consequently

P

π̄i( ⋃
t∈A(π̄j)

{t} ×R+) 6= 0

 = E

P
π̄i( ⋃

t∈A(π̄j)

{t} ×R+) 6= 0|π̄j
 = 0,

by Lemma 3.3.
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Hypothesis (c) and (d) are satisfied for a similar reason. For (c), one has to observe
that

P
(
∃t>0, πj({t}×R+)=1 and Ȳ j is not continuous at t

)
=P

π̄j( ⋃
t∈D(Ȳ j)

{t}×R+)≥1

,
where D(Ȳ j) is the set of discontinuity points of Ȳ j . As D(Ȳ j) is a.s. finite or countable
(see e.g. the discussion after Lemma 1 of Section 12 of [3]), whence

⋃
t∈D(Ȳ j){t} ×R+ is

a null set independent of π̄j , and Lemma 3.3 gives the result:

P

π̄j( ⋃
t∈D(Ȳ j)

{t} ×R+) ≥ 1

 = E

P
π̄j( ⋃

t∈D(Ȳ j)

{t} ×R+) ≥ 1|Ȳ j
 = 0.

And hypothesis (d) holds true, because the set {(t, Ȳ jt−) : t ≥ 0} is also a null set
independent of π̄j .

Then, the almost sure convergence of (Z̃N,k)1≤k≤n to (Z̃k)1≤k≤n implies the conver-
gence in distribution of (ZN,k)1≤k≤n to (Zk)1≤k≤n in D(R+,R

n).

Step 2: We have shown that, for every n ∈ N∗, (ZN,k)1≤k≤n converges to (Z̄k)1≤k≤n
in distribution in D(R+,R

n). This implies the convergence in the weaker topology
D(R+,R)n. Then, the convergence of (ZN,k)k≥1 to (Z̄k)k≥1 as N goes to infinity in
D(R+,R)N

∗
is classical (see e.g. Theorem 3.29 of [11]).
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