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ARTICLE

Reconciling qualitative, abstract, and scalable
modeling of biological networks
Loïc Paulevé 1,2✉, Juraj Kolčák3, Thomas Chatain 3 & Stefan Haar 3

Predicting biological systems’ behaviors requires taking into account many molecular and

genetic elements for which limited information is available past a global knowledge of their

pairwise interactions. Logical modeling, notably with Boolean Networks (BNs), is a well-

established approach that enables reasoning on the qualitative dynamics of networks. Several

dynamical interpretations of BNs have been proposed. The synchronous and (fully) asyn-

chronous ones are the most prominent, where the value of either all or only one component

can change at each step. Here we prove that, besides being costly to analyze, these usual

interpretations can preclude the prediction of certain behaviors observed in quantitative

systems. We introduce an execution paradigm, the Most Permissive Boolean Networks

(MPBNs), which offers the formal guarantee not to miss any behavior achievable by a

quantitative model following the same logic. Moreover, MPBNs significantly reduce the

complexity of dynamical analysis, enabling to model genome-scale networks.
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Models in systems biology typically integrate knowledge
and hypotheses on molecular interactions, manually or
semi-automatically, gathered from experimental data

found in databases and the literature. These models are often
qualified as mechanistic, in opposition to those solely based on
biophysical laws.

Since their introduction in the late 1960s1,2, logical models,
such as Boolean Networks (BNs), have been widely adopted for
reasoning about signaling and gene networks3–11 as they require
few parameters and can easily integrate information from omics
datasets and genetic screens. These models represent processes
with a high degree of generalization and can offer coarse-grained
but robust predictions. That makes them particularly suitable for
large biological networks, for which ample global knowledge
exists about potential interactions with little precise data on actual
molecules abundances and reaction kinetics.

The validation of computational models is necessary to trust
their subsequent predictions. In systems biology, validation pri-
marily involves in silico reproduction of observed behaviors by
executing the computational model. Such observations may be
measurements of the activity, over time, or at steady state, of
some of the interacting molecules under different experimental
conditions. Therefore, if no executions of a BN reproduce an
experimentally observed behavior (e.g., the activation of a parti-
cular gene), the model, and the associated interactions, is con-
sidered as invalid. This procedure also enables general studies on
interaction motifs that are necessary or sufficient for achieving
fundamental behaviors such as cellular differentiation or home-
ostasis12–15.

A BN specifies the logic of activation of each component (or
node) of the system and aims at abstracting away quantitative
aspects related to kinetics and molecule abundances. For instance,
it may specify that component c can turn on whenever its acti-
vator b is on provided its inhibitor a is off. Considering that the
activity of components in the underlying system is not binary, the
on and off actually relate to activity/abundance of molecules
being above or below an interaction threshold. However, one may
wonder whether such a binary coarse-graining may impede the
validation of the model, leading to reject a BN although it
describes the logic of components’ activities correctly.

Figure 1 illustrates this issue with the incoherent feed-forward
loop of type 3, I3-FFL16, where an input node 1 directly inhibits
the output 3, but indirectly activates it via node 2. The logic of
nodes’ activation is fixed: the activation of 3 requires that node 2
is sufficiently active and that node 1 is not sufficiently active.
Theoretical studies with quantitative models17,18 and experi-
mental data from synthetically designed circuits19 showed that,
depending on kinetics parameters and starting from all nodes
being inactive, a monotonic activation of the input can lead to a
transient activity of the output (node 3). However, it is impossible
to reproduce this behavior with usual (a)synchronous inter-
pretations of BNs: starting from the state where all nodes are
inactive, neither 2 nor 3 can be activated without the prior acti-
vation of 1. If 1 is active, 2 is active, but any transient activation of
3 is prevented (Fig. 1(d)).

Additional model features, such as intermediate levels for the
nodes, or delays in interactions, would allow a transient activation
for the I3-FFL output. However, such features come with addi-
tional parameters and higher computational cost, which limits
their general application to large-scale networks.

This simple example seems to show that setting binary activ-
ities for nodes can both generate spurious behaviors (as expected
with qualitative models), and also preclude the recapitulation of
existing behaviors. Therefore, the validity of a model cannot be
assessed by the usual (a)synchronous interpretations of BNs. This
limitation largely impedes the inference of dynamical network

models and the identification of necessary interaction network
motifs since the Boolean interpretation can wrongly conclude that
no BN matching with a network motif can reproduce the desired
behavior.

However, we found that this issue is actually due to the
interpretations of BNs and not to their intrinsic Boolean nature.
We introduce a simulation approach, the Most Permissive Boo-
lean Networks (MPBNs), which presents the formal guarantee to
capture all behaviors achievable without the need for additional
parameters. If MPBNs cannot reproduce a given observation, no
quantitative refinement of the Boolean model can do it, and the
model can safely be considered as incoherent with the observa-
tions. While predicting more behaviors than synchronous and
asynchronous interpretations of BNs, MPBNs still capture
essential dynamical features of biological models.

Moreover, we demonstrate that the analysis of MPBNs avoids
the state-space explosion problem, a strong limiting factor for the
synchronous and asynchronous interpretations of BNs. The
drastically reduced computational cost enables the precise qua-
litative analysis of dynamics of genome-scale networks.

Results
Preliminaries. Computational modeling of dynamical systems
relies on two fundamental ingredients: a language to specify the
model, and an execution semantics. The language provides
symbols and syntax rules to write a model, while the execution
semantics mathematically defines how to interpret it. The
semantics formalizes the notion of network configurations (or
states) and how to compute their evolution over time. It provides
an exhaustive assessment of model capabilities by enabling
dynamical analyzes such as simulations as well as formal ver-
ification by invariant analysis and model-checking.

A BN is specified by a mathematical function mapping any
binary vector of dimension n to another binary vector of the same
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Fig. 1 Boolean modeling of the incoherent feed-forward loop of type 3
(I3-FFL). a the I3-FFL network and (b) its associated Boolean logic for
nodes activities; f1,2,3(x) are the Boolean functions used to compute the
next value of each node from a given configuration x of the network, which
is here a binary vector specifying the current value of each node, xi referring
to the Boolean value of node i. Whereas theoretical and experimental
studies showed that starting from all nodes being inactive, an activation of
the output is possible when the signal is turned on (c), BN analysis cannot
predict this transient behavior: (d) shows the corresponding complete
dynamics of f starting from the configuration where all nodes are inactive,
and signal is set to 1. Configurations are represented by piles of three
squares, where the top square represents the state of the first component,
and so forth. A white square represents the inactive (0) state; a blue square
represents the active (1) state; a dashed line indicates that no further
evolution is possible. Arrows indicate possible transitions. The node 3 is
never predicted to be active.
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dimension:

f : Bn ! Bn; ð1Þ
where B ¼ f0; 1g represent the Boolean values. Each component
of a binary vector models the state (inactive/active, absent/present)
of the associated network node, and fi is the function which
specifies the state towards which the ith component evolves.
Figure 2(b) gives an example of a BN modeling a switch system.

BNs semantics computes the possible temporal evolutions of the
component states using different methods. With synchronous
executions of BNs (introduced by Kauffman1), we update all the
components of the network at the same time, and a configuration
x 2 Bn can only evolve to one configuration f(x). With fully
asynchronous executions of BNs (introduced by R. Thomas and
usually referred to more simply as asynchronous in the computa-
tional systems biology literature), we update only one component at
a given time, and a configuration x 2 Bn can evolve to any
configuration which differs only by a single component i where
fi(x) ≠ xi. This introduces potential non-determinism in the model
trajectory since there can be different executions of the same BN
from a given initial configuration. The (fully) asynchronous
semantics is often described as more realistic for modeling
biological networks, accounting for different kinetics of interactions.

Many more variants of executions of BNs have been studied in
the literature, some imposing a precise order in the updating of
the components, others allowing subsets of components to be
updated simultaneously, etc. Most, if not all, generate a subset of
the executions achievable with the (generalized) asynchronous
semantics of BNs where any number of components can be
updated at a time: a configuration can evolve to any other
configuration that complies with the logical functions for the
components that differ between both. Formally, for any
x; y 2 Bn,

x!f
a
y () 8i 2 Δðx; yÞ; yi ¼ f iðxÞ; ð2Þ

where Δ(x, y) is the list of components which state differs between
x and y, i.e., Δ(x, y) = {i ∈ {1, …, n}∣xi ≠ yi}.

A configuration y 2 Bn is reachable from x 2 Bn if either
x = y, or there exists a sequence of transitions from x to y:

ρ f
a ðxÞ ¼ y 2 Bnjx ¼ y or x!f

a
� � �!f

a
y

� �
: ð3Þ

Notice that if y =2 ρ f
a ðxÞ, then it is impossible to evolve from x to y

according to any of the semantics defined above, including the
synchronous and fully asynchronous ones. Figure 2(c) shows all
possible asynchronous evolutions of the example BN from the
configuration where all the components are inactive, i.e.
ρ f
a ð000Þ ¼ f000; 110; 010; 011; 100g.
Reachability is a fundamental property to assess the compat-

ibility of BN models with time series data: if none of the
configurations matching an observation at a given time is
reachable from any configuration matching an experimental
observation at an earlier time, the BN cannot capture the
observed behaviors.

Another prominent dynamical property studied with BNs,
strongly linked to reachability, are attractors. Attractors represent
the long-term behaviors of the model and are often used to
represent cell phenotypes. Formally, an attractor is a smallest
non-empty set of configurations from which it is impossible to
escape: A � Bn is an attractor if and only each of its
configuration z ∈ A verifies ρfaðzÞ ¼ A. An attractor is said to
be a fixed point whenever it is a single configuration z 2 Bn

(whenever f(z) = z with the asynchronous semantics), and
complex if it is an ensemble of configurations, such as cyclic
attractors, modeling potential sustained oscillations.

Refinements of BNs. BNs impose a drastic coarse-graining on
component activity. Several modeling frameworks introduced a
finer granularity in logical models20. Examples include Multi-
valued Networks (MNs)21, where components can take more
than two logical values (0, 1, 2,…, m), fuzzy logic22, which
extends logical models with continuous domains, stochastic
extensions of fully asynchronous BNs23, and ordinary differential
equations (ODEs)24,25, where values of components are non-
negative reals and vary along continuous time. Their specifica-
tions require, however, much more information about the bio-
logical system, such as thresholds of interactions for MNs and
precise kinetics for ODEs. These parameters are often unknown,
and their automatic inference would require a significant amount
of data collected in similar experimental settings.

One could use any of these frameworks to model the same
biological system at different abstraction levels. Which raises the
question of the relationship between models from different
frameworks: is a MN model F a refinement of a BN model f? In
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Fig. 2 Example of qualitative models for the interactions between three components. a Influence graph denoting the activation and inhibition
relationships. b Example of a compatible BN, which defines the activation conditions of each component. c Exhaustive list of transitions obtained from the
initial configuration where all three components are inactive. d Example of a multivalued network refining the BN (b) with components able to exist under
three states (0, 1, 2). e Example of asynchronous execution of the multivalued network from the configuration 000. Half and fully blue squares represent
the states 1 and 2.
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other words, does F specify a system with more quantitative
information than f, while following the same (Boolean) logic for
the interactions.

We consider here a simple mathematical criterion for
refinements: the value of a component can decrease (resp.
increase) only if the component can be set to 0 (resp. 1) in the BN
with a possible binarization of the state. A formal definition will
be given in the next section.

Incompleteness of (a)synchronous BNs. We can define a MN F
of dimension n by a discrete function, which maps, for each
component, states to the tendency of value change (decrease,
steady, increase). To ease notations, and without loss of gen-
erality, we assume that all the components can take an integer
value between 0 and the same fixed m:

F : Mn ! f�1; 0; 1gn; ð4Þ
where M ¼ f0; 1; ¼ ;mg. The successors of a configuration x 2
Mn are then computed by adding the value of F(x) to (a subset
of) components, provided they stay non-negative and do not
exceed their maximum value m.

In Fig. 2 we present a simple example of BN for which
asynchronous executions miss possible behaviors of the network
when considering a multivalued refinement of it. The MN in
Fig. 2(d) is a refinement of the BN in Fig. 2(b). In addition to the
higher granularity for the activity levels of all three components, it
brings additional information on the activation of component 3.
An intermediate value of 2 is sufficient to activate 3 provided that
the value of its inhibitor 1 is not high. One of its asynchronous
execution shown in Fig. 2(e) predicts that the three components
can get activated simultaneously, which was never predicted by
any of the asynchronous executions of the BN. Assuming the
validation of the model were subject to the reachability of a
configuration with all the three components active from a
configuration with all the components inactive, this BN model
would be deemed insufficient for achieving the observed behavior,
with an erroneous conclusion that its logic is wrong.

The Most Permissive execution paradigm for BNs. The critical
reason usual BN interpretations miss behaviors is that the binary
coarse-graining coupled with the instantaneous state changes
preempt interactions occurring during the course of (de)activa-
tions. In the counter-example of Fig. 2, Boolean interpretations
exclude the activation of component 3 during the activation of
components 1 and 2, whereas, in a possible refinement, 3 can
indeed increase before 2 reaches its fully active state and before 1
is sufficiently expressed to inhibit it.

We devised a dynamical interpretation of BNs, called Most
Permissive semantics, in which we consider that a component can
exist in 4 states: inactive (0), increasing (↗), decreasing (↘), or
active (1). While a component is in a dynamic state (↗ or ↘), it
can be read non-deterministically as either 0 or 1. These
ambiguous states account for the absence of information on
actual influence thresholds: a component in a dynamic state can
be above the influence threshold for one component while being
below the influence threshold for another one.

Figure 3 summarizes the changes of component states
possible with the Most Permissive semantics. A component i can
change to the ↗ (resp. ↘) state from the 0 or ↘ (resp. 1 or ↗)
state whenever it can interpret the value of its regulators in a way
which makes its logical function fi true (resp. false) – if one of its
regulators is in a dynamic state, both Boolean interpretations can
be considered. Once in ↗ (resp. ↘) state, it can reach 1 (resp. 0)
at any time. As a result, a component cannot go from↗ (resp.↘)
state to 0 (resp. 1) without going through the ↘ (resp. ↗) state.

Each component evolves independently of all others. The
complete formal definition is given in Supplementary Note 2.

Figure 4 shows an example of execution using the Most
Permissive semantics on the BN of Fig. 2. Contrary to the (a)
synchronous interpretations, the Most Permissive semantics
correctly captures the possible (transient) reachability of the
configuration where the three genes are active. While component
1 is↗ and component 2 is active, gene 3 can indeed change to↗,
thus leading to the activation of all three components. This
configuration is not in an attractor, and both single-point
attractors identified in Fig. 2(c) are reachable via different Most
Permissive executions.

We provide in Supplementary Fig. 1 the application of MPBNs
to the BN of the I3-FFL motif presented in Fig. 1, which
successfully captures the transient activation of node 3. Even if we
allow changing the Boolean logic, it is the only BN that can
reproduce the observed transient and steady behaviors (Supple-
mentary Note 3.D). Therefore, a Boolean asynchronous analysis
would have concluded that the network motif is insufficient to
reproduce the observed behavior.

Formal guarantees for model refinements. Using the simple
examples in Figs. 1 and 2, we have shown that BN refinements
can introduce behaviors that cannot be captured with classical
semantics.

MPBNs bring the formal guarantee of being able to reproduce
all the behaviors achievable in any refinements, being a MN or an
ODE system (Theorem 1 and Corollary 1 in Supplementary
Note 2). In other words, if the Most Permissive semantics
concludes that it is impossible to observe a given state change for
some components, then no qualitative or quantitative model
verifying the refinement criteria can predict these state changes.

The refinement criterion relies on a binarization of the
multivalued configuration. An appropriate binarization necessarily

 : , example: =   ,

can fire anytime
(x) : fi (z) = 1

f i (
z)

 =
 1

fi (z) = 0

z

(x) : fi (z) = 0z

Fig. 3 Allowed changes of component states in Most Permissive Boolean
Networks. Conditions are expressed for a component i ∈ {1, …, n} from a
most-permissive configuration x ∈ {0, ↗, ↘, 1}n. The increasing state ↗ is
represented by a top-left white and bottom-right blue square, the decreasing
state ↘ by a bottom-left blue and top-right white square. The function γ gives
the admissible Boolean interpretations of x: γðxÞ ¼ fz 2 Bnj8i 2 f1; ¼ ; ng;
xi 2 B ) zi ¼ xig, i.e., all the components in Boolean states are fixed, and the
others are free.

Time
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Fig. 4 One of the possible executions using the Most Permissive
semantics on the BN in Fig. 2(b). The execution starts from the
configuration where all components are inactive. Note that it correctly
recovers the (transient) reachability of the configuration where the three
components are active.
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quantifies 0 as Boolean 0 and m as 1, and is free for the other
intermediate values. Let us denote by β(x) the set of possible
binarization of configuration x 2 Mn:

βðxÞ ¼ x0 2 Bnj8i 2 f1; ¼ ; ngf ; xi ¼ 0 ) x0i ¼ 0

and xi ¼ m ) x0i ¼ 1
�
:

ð5Þ

For example with m = 2, β(012) = {001, 011}.
Then, we say a MN F is a refinement of a BN f of the same

dimension n if and only if for every configuration x 2 Mn, and
for every component i ∈ {1, …, n}, Fi(x) < 0 implies there exists
x0 2 βðxÞ such that f iðx0Þ ¼ 0, and Fi(x) > 0 implies there exists
x0 2 βðxÞ such that f iðx0Þ ¼ 1.

This characterization of BN refinement to MN can be directly
extended to ODEs. Indeed, ODEs specify the (real) derivative of
the (positive real) value of each component:

F : Rn
≥ 0 ! Rn : ð6Þ

Only the binarization β should be adapted in (5) to reflect that
there is no (a priori) upper bounded value m for components.

The completeness property states the following. Consider a
multivalued refinement F of a BN f with which there exists an
asynchronous trajectory from a multivalued configuration x to y.
Let us write x̂ any most-permissive configuration compatible with
x: if xi = 0, then x̂i ¼ 0, if xi is the maximum value of i, then
x̂i ¼ 1, and in the other cases x̂i can be either ↗ or ↘ . Then,
there exists a most-permissive trajectory leading from any of
these x̂ to a most-permissive configuration ŷ compatible with y
and which is consistent with the the changes between x and y:
ŷi ¼% if yi > xi and yi < m, ŷi ¼& if yi < xi and yi > 0, and
ŷi ¼ x̂i if yi = xi. As the proof relies solely on the sign of the
derivative of the refinement of f, the property extends to ODE
refinements, which can be seen as multivalued networks with m
to infinity.

Allowing any state change without restriction would also
provide the above guarantee. It appears that if there is a most-
permissive trajectory between two binary configurations, then
there is a multivalued refinement of the BN showing an
asynchronous trajectory between matching multivalued config-
urations (Theorem 2 in Supplementary Note 2). Therefore, the
completeness property can be achieved only by predicting at least
the behaviors of MPBNs. In other words, the Most Permissive
semantics is the tightest Boolean abstraction of multivalued
refinements regarding reachability properties.

Simpler computational complexity. Most computational ana-
lyzes of BNs focus on two elementary dynamical properties: the
reachability, which is the existence of a trajectory between two
given configurations, and the existence of attractors. Here, we
study these properties in term of algorithmic complexity classes.
These theoretical results have very concrete implications for the
analysis of MPBNs, making the approach scalable to genome-
scale networks.

We first recall the bases of computational complexity classes26:
the P class is formed by the algorithms running in time
polynomial with the size of its inputs; the NP class by the
algorithms running in polynomial time with non-deterministic
choices; the PSPACE class by the algorithms running in
polynomial space. We know that P ⊆ NP ⊆ PSPACE, where
“⊆” can be understood as “simpler”. A problem is complete for a
given complexity class if it belongs to and is among the hardest
problems of this class. The famous SAT problem of determining
if a formula expressed in propositional logic (essentially Boolean
variables and logic connectors) has a satisfying solution is NP-
complete. It is not known yet if NP = PSPACE, but in practice,
NP-complete problems are much more tractable than PSPACE-

complete ones, by several orders of magnitude. Hereafter, we also
refer to the coNP class, delimiting the problems for which finding
a counter-example is in NP, and to the PNP and coNPcoNP classes,
where AB denotes the problems that can be solved with
complexity A assuming problems of class B can be solved in
one instruction (oracle); note that PP = P and NPP = NP. These
complexity classes belong to the polynomial hierarchy, and are
subject to the following properties: NP ⊆ PNP and coNP ⊆
PNP ⊆ coNPcoNP ⊆ PSPACE.

With asynchronous BNs, it is challenging to determine if a
trajectory exists between two configurations since, in the worst
case, it requires exploring all the possible configurations. With
MPBNs, this problem is much simpler thanks to an intriguing
property: if there exists a trajectory between two configurations,
then there is such a trajectory visiting at most 3n configurations.
Intuitively, this shortcut corresponds to a particular sequence of
state changes: in a first phase, only transitions changing a state
from 0 or 1 to ↗ or ↘ take place; In a second phase, only
transitions changing states within ↗ and ↘ ; in a final phase,
only transitions changing states from ↗ or ↘ to 1 or 0. Each
phase comprises at most n transitions, one for each component.

Moreover, finding this shortcut requires exploring at most a
quadratic number of transitions in the general case, and only 3n
whenever the target configuration is in an attractor. The
exploration consists of performing as many transitions as possible
of the first phase, putting the largest possible number of
components in a dynamic state. For each component whose
state does not change between the starting and target configura-
tion, it is then necessary to switch the dynamic state back (second
phase). If this is not possible, then the exploration is repeated
from the beginning while preventing this specific component
from changing to a dynamic state (as it would still be impossible
to go back to the initial binary state, and the target configuration
would not be part of an attractor). Overall, the exploration is thus
repeated at most n times. Finally, all the transitions of the third
phase are applied, which should lead to the target configuration if
and only if it is reachable.

On the other hand, determining the possibility of a most-
permissive transition is NP-complete in the general case:
indeed, the condition “∃ z ∈ γ(x): fi(z) = 1” in Fig. 3 is the SAT
problem. For biological networks, it is usual to assume that
components cannot have both positive (activator) and negative
(inhibitor) direct influences. The resulting BNs are called
locally monotonic: each local function fi is monotonic for every
component it depends on: increasing the number of activators
(resp. inhibitors) of i in state 1 can only increase (resp.
decrease) the value of fi. Thus, determining the existence of a
Boolean interpretation z of a most-permissive configuration x
so that fi(z) = 1 comes down to considering activators in
dynamic state as 1 and inhibitors in dynamic state as 0, and
conversely for fi(z) = 0. Therefore, determining the possibility
of a most-permissive transition can be done in linear time with
locally monotonic BNs.

The reachability problem in MPBNs can thus be solved in
polynomial time whenever f is locally monotonic (Theorem 3 in
Supplementary Note 2), a considerable drop in complexity
compared to synchronous or asynchronous BNs where the
problem is PSPACE-complete (Supplementary Note 1). With
non-locally monotonic BNs, the reachability problem is in PNP.

While the attractors of asynchronous BNs can be complex
objects, the attractors of MPBNs are particular mathematical
objects called minimal trap spaces. A trap space is a hypercube
which is closed by f: for any vertex x, f(x) is also a vertex. A trap
space is minimal whenever it does not include a different trap
space. Attractors in MPBNs have this regular structure because
whenever two configurations lying on any diagonal of an
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hypercube are reachable from each other, they can reach the
adjacent configurations as well.

Determining if a configuration x 2 Bn belongs to an attractor
of f is a key problem to identify attractors of a BNs. It is again a
PSPACE-complete problem for synchronous and asynchronous
BNs (Supplementary Note 1). In the case of MPBNs, it boils
down to verifying if the trap space containing x is minimal, which
is at most of complexity coNP for locally monotonic BNs, and at
most coNPcoNP for non-locally monotonic BNs (Theorem 4 in
Supplementary Note 2). The computation of minimal trap spaces
of a BN can be performed efficiently with SAT solvers and related
logic programming frameworks27.

Finally, notice that determining a configuration x 2 Bn which
both belongs to an attractor of f and which is reachable from
another configuration y 2 Bn has the same complexity as the
attractor problem: it is PSPACE-complete with synchronous and
asynchronous BNs, whereas it is at most coNP for locally
monotonic BNs and coNPcoNP for non-locally monotonic BNs.
Therefore, MPBNs offer a drastic reduction in the theoretical
computational complexity for analyzing reachability, attractors,
and reachable attractors of BNs, with practical implications in
term of scalability of Boolean modeling: on a regular 3.3GHz
processor, our implementation of MPBNs can compute reachable
attractors of randomly generated scale-free networks28 with 1000
components in a fraction of a second, less than 2 s with 10,000
components, and less than 50 s with 100,000 components
(Supplementary Note 3.C, Supplementary Fig. 4).

Validation of MPBNs on actual biological models. An essential
feature of logical models is their ability to conclude on the
absence of certain behaviors. For instance, differentiation pro-
cesses are modeled using separate attractors representing the final
phenotypes and trajectories where configurations are committed
to reaching a particular attractor with no possibility to rejoin
other differentiation branches. A model allowing any configura-
tion to reach any attractor would indeed be useless without
quantitative aspects. We will show that, although enabling more
behaviors than (a)synchronous BNs, MPBNs are still constraining
and able to capture differentiation and cell fate decisions.

As we have said above, attractors of MPBNs correspond to the
minimal trap spaces of the Boolean function. Prior work has
shown that these trap spaces match well with the complex
attractors of fully asynchronous BNs in many real-world models
of biological networks27. We illustrate this in Supplementary
Note 3, with the computations of attractors in a logical model of
bladder tumorignesis29, where attractors match with asynchro-
nous BNs and are computed in milliseconds, while taking several
minutes and even time out with asynchronous simulation
methods30.

To further assess the predictive capacity of MPBNs in practice,
we reproduced studies on logical models of differentiation which
involve delineating the set of attractors reachable from different
initial conditions (Supplementary Note 3). Due to the formal
guarantees of MPBNs stated in previous sections, MPBNs will
recover at least the reachable states identified using asynchronous
analysis. In the following case studies, despite predicting
potentially more behaviors, MPBNs rules out the same set of
attractors that the asynchronous analysis, and at a much lower
computational cost.

In the case of a tumor invasion model8 (Supplementary Fig. 2),
all the attractors are fixed points, and thus are identical in
MPBNs. The study focused on the reachability of these attractors
from a set of initial conditions with different combinations of
mutants. One of the main prediction is the synergistic combina-
tion of p53 loss of function and Notch gain of function which lead

to the loss of reachability of attractors corresponding to cell death.
The MPBN analysis recovers the exact same set of reachable
attractors with the different combinations of mutations than
reported with fully asynchronous analysis.

In the case of T-cell differentiation9 (Supplementary Fig. 3), the
study focused on identifying changes of input conditions which
trigger a change of attractor, resulting in a reprogramming graph
across pre-determined T-cell subtypes. Due to the large size of the
model (101 components), the original study had to perform
approximations through model reduction and symbolic model-
checking techniques, avoiding the need for computing attractors.
On the other hand, MPBNs can efficiently handle the
booleanized31 original large multivalued model, list the attractors
and compute their reachability following the input condition
changes. The attractor computation enables determining that in
most conditions the attractors are fixed points (and thus are
identical in asynchronous BNs), in two conditions (APC and
proTh1), the MPBN has one complex attractor, indicating the
existence of at least one complex asynchronous attractor. Then,
the Most Permissive reachability analysis concludes on the same
reprogramming graph, at much lower computational cost.

In conclusion, as stated in previous sections, MPBNs are
formally guaranteed to capture behaviors that only multivalued
discrete models could capture with (a)synchronous interpreta-
tions; and as supported by these case studies, the Most Permissive
interpretation of BNs is still stringent enough to capture processes
that control reachable attractors, and doing so at a much lower
computational cost.

Discussion
The choice of the dynamical interpretation of BNs has drastic
effects on their predictions. Whereas the (fully) asynchronous BN
interpretation is often advised for practical applications, it over-
looks behaviors emerging from different timescales for the
interactions, leading to biases when selecting plausible models.
Such misses are due to artifacts of configurations updates. On the
contrary, MPBNs offer a framework for reasoning on the quali-
tative dynamics without making any strong a priori hypothesis
about the timescale and thresholds of interactions, and without
additional parameter.

The state-space explosion triggered by the synchronous and
asynchronous interpretations of BNs is another significant bot-
tleneck for their application in systems biology3,32. MPBNs offer
drastic gains in computational complexity when analyzing pos-
sible trajectories and attractors, both elementary and essential
properties, underpining the potential of a model. In practice, the
verification of these properties with asynchronous BNs is typically
limited to networks with 50–100 nodes. In contrast, deciding the
reachability and attractor properties in MPBNs relies on scalable
algorithms and does not suffer from the state-space explosion.
For the case of locally monotonic BNs, which is a classical
hypothesis for biological networks, the complexity allows
addressing very large-scale networks, as illustrated in Supple-
mentary Note 3, with experiments on BNs with up to 100,000
components.

The prediction of attractors reachable from specific initial
conditions, and possibly under various mutant conditions, is at
the core of many studies using logical models. While MPBNs can
identify the complete set of reachable attractors several orders of
magnitude faster than asynchronous BNs, the quantification of
the propensities of each attractor, e.g., performed by sampling
the trajectories23,30, is yet to be explored. In addition to the
validation and the control of genome-scale models, the com-
plexity breakthrough brought by MPBNs together with their
ability to overcome artifacts of Boolean modeling paves the way
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towards the inference and learning of large-scale logical models
from experimental data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Notebooks for reproducing the case studies are available at https://doi.org/10.5281/
zenodo.3936123, with instructions for their execution.

Code availability
Our software tool mpbn implementing reachability and attractor analysis in BNs with
Most Permissive semantics is available at https://github.com/pauleve/mpbn and https://
doi.org/10.5281/zenodo.3946585, and is integrated in the CoLoMoTo notebook
environment33 available at http://colomoto.org/notebook.
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