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Abstract. Proximal imaging using tractor-mounted cameras is a simple and cost-effective method 
to acquire large quantities of data in orchards and vineyards. It can be used for the monitoring of 
vegetation and for the management of field operations such as the guidance of smart spraying 
systems for instance. One of the most prolific research subjects in arboriculture is fruit detection 
during the growing season. Estimations of fruit-load can be used for early yield assessments and 
for the monitoring of harvest and thinning. In addition, the visual aspects of fruits enable to 
appraise their growth and ripening status. This paper proposes a new approach for real-time fruit 
detection, combining a fast geometrical pre-processing whose output feeds a deep neural network 
(DNN) classifier. The first step is a radial Hough-like operator, which aims at identifying quickly 
the regions of interest, restricting the use of the DNNs to the most probably genuine candidates. 
The proposed method is generic enough to be applied on most near-spherical fruits. It was tested 
in two contexts: grapes and apples, with different varieties and phenological stages. In both cases 
the proposed method provided promising results. Correlation coefficients with manual counting 
and real harvest loads are up to 0.96 for grapes and up to 0.85 for apples.  
Keywords. Proximal sensing, image analysis, fruit detection, deep learning, radial Hough 
transform  
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Introduction 
Since the beginning of the 1980’s, automated detection and counting of fruits in vineyards and 
orchards has been a major concern and a very prolific research subject in computer vision. The 
implementation of computer vision algorithms enables applications such as the quality grading of 
fruits, yield mappings, robotized picking and disease detection (Gemtos et al., 2013). Jimenez et 
al. (2000) summarizes the most noticeable approaches for fruit detection assisted by computer 
vision. Some fruits, like oranges or tomatoes are easy to detect at maturity, since their color differs 
a lot from the foliage. In other cases, template matching algorithms, texture analysis or shape 
identification (e.g. circular Hough transform) have been used. The use of special cameras (stereo 
cameras, multispectral imaging, laser ranging) is also a well-established solution to improve 
detection efficiency (Gao et al., 2010). However, fruits present a variety of shapes, sizes and 
colors. In natural environments, fruits can be partially occulted and are exposed to varying 
illuminations. In these conditions automated fruit detection within in-field images is still an ongoing 
challenge. In recent years deep learning accomplished major improvements such as the 
development of convolutional neural networks (CNN) which is a promising non parametric 
alternative to standard image analysis methods that proves very efficient for image recognition. 
Dedicated networks are able to identify specific objects in an image (regional CNNs) (Girschlik et 
al, 2014) or to segment an image (SegNets) (Badrinarayanan et al, 2017). Deep learning is a very 
robust approach that can be suitable for agricultural applications such as deep fruit detection in 
orchards (Bargoti and Underwood, 2017).  
This paper presents a new method for fruit detection and counting intended for images acquired 
by proximal sensing. It combines a parametric pre-processing step, based on the circular Hough 
transform meant to identify the locations of fruit candidates and a deep neural network acting as 
a decision process. This combination enables to reduce the number of samples to be processed 
compared to an R-CNN, while keeping the robustness of the deep neural networks, so that the 
presented algorithm is able to identify any kind of circular fruit. In addition, a convenient method 
for the creation of large training database is proposed. 
The following sections present the acquisition device and the different algorithms designed for 
the two-step fruit detection. The third section presents the results of the proposed method both 
for grapes and apples.  

Materials and methods 

Image acquisition 
The aim of this project is to create a system able to count the visible fruits in orchards using a 
computer vision system that can be easily integrated in common farm infrastructures and 
equipment. For this purpose, the device needs to be compact and easy to operate during the 
main farm works on conventional machines (quads, tractors or high clearance tractors). The 
device should work autonomously at the regular work rates (around 8km/h), i.e. acquisitions 
covering up to three pictures per second. The camera is oriented perpendicularly to the trellising 
plane. Image processing has to be implemented on an on-board computer, providing direct 
georeferencing of the fruit headcount. 
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a. b. c. 

Figure 1. a. The imaging system; b. the camera mounted on a tractor and c. on a quad. 

The imaging system is built around a Basler Ace industrial camera with a resolution of 5 
megapixels. The lens has a 55° horizontal field of view, capturing a 0.8𝑚% area in the vineyards 
and 2𝑚% area in the orchards, which is sufficient to observe the fruit-zone in each case. 
The camera is controlled by an on-board computer which is also used to store and process the 
acquired images. The computer is built around a low consumption 4-core ARM chip, and does 
not contain any mechanical component, to reduce the risk of failure caused by vibrations. In order 
to run the deep neural networks more effectively, the computer is equipped with a dedicated 
Movidius AI processor. 
To overcome the uncontrolled variability in illumination levels encountered in outdoor conditions, 
a high-power xenon flash-bulb is used. This flash removes any unwanted background on images, 
since the rows behind target receive much less light than the plants in the foreground.  In addition 
the use of a short exposure time (250 − 300𝜇𝑠𝑒𝑐) ensures that images are not blurred by the 
movement of the camera. The system contains an ultrasonic telemeter to measure the distance 
between the camera and the plants. Distance information is used to detect missing plants and the 
end of rows. 
Finally, the system is controlled by a GNSS unit connected to the computer. The position of the 
tractor is monitored, and the acquisition starts automatically as it enters the defined areas, there 
is then no requirement for any user interaction when operating measurements. The cruising speed 
is used to determine automatically the acquisition rate. Each picture is georeferenced, so that 
results can be processed further in a GIS software. Some examples of images acquired by the 
system are presented in figure 4. 

Image analysis 
The proposed method is a two-step process. The first step is a detection of potential fruits in the 
canopy; the locations of the detected candidates are passed through the second step which is a 
binary classification of fruit candidates that determines if candidates are indeed a fruit or an error.  
The following subsections describe the two steps. 
Detection 

This section presents a fast detection method for the selection of fruit candidates. It is an entirely 
shape-based method that retrieves circular objects regardless of their color or illumination. This 
algorithm is then able to detect any near-spherical fruit even when the color of fruits matches the 
color of the leaves, while being robust to variations in luminosity.  
It can be assumed that the fruits are the only spherical objects in the image. Considering the very 
short distance between the target and the acquisition device, the illumination power of the 
embedded flash occults natural sunlight. The directions of the main light source and of the focal 
plane are then the same. 
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In these conditions, images can be described using the Lambertian reflection model (Oren and 
Nayar, 94). On a point P of the surface of a sphere: 

𝐼/ = 𝐼1𝐶𝑐𝑜𝑠𝛼 (1) 

where 𝐼/ is the reflected light, 𝐼1  is the incident light, 𝐶 is the color reflexion coefficient of the 
surface and 𝛼 is the angle between the normal vector N to the surface and the incident light vector. 
Assuming that the light source is close to the camera i.e. the image plane is orthogonal to the 
light direction: 

𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛(d/r)	 (2) 

where 𝑟 is the radius of the fruit and 𝑑 is the distance of the pixel from point P to the line passing 
though the sphere center O in the light direction. On the image plane, d is the distance between 
the projections P’ and O’ of the point P and the sphere center O. 
 

 
Figure 2. The reflection model of the spherical fruits: schematic side view (a), Schematic view of a fruit in the image plane 

(b). Gradients are represented as red arrows, converging towards the centre of the disk.  

Putting together equations (1) and (2), we get: 

𝐼/ = 𝐼1𝐶?1 −
𝑑%

𝑟%
	 (3) 

The derivative of 𝐼/ according to 𝑑 is then: 

𝜕𝐼/
𝜕𝑑

= −
𝐼1𝐶
𝑟

𝑑

√𝑟% − 𝑑%
	 (4) 

which is negative for 𝑑 > 0, which means that the light intensity diminishes with the distance from 
the fruit center projection O’ and form circular isocontours around it. This also means that the 
image gradients are positive towards the center of the fruit, then all the gradient vectors point 
toward this point, as presented by the red arrows in figure 2.b. 
In order to estimate the positions of the fruits, the radial Hough transform is defined where the 
accumulator space is formed by the gradient vectors of the image. If these vectors converge, they 
add up and create a peak in the accumulator. These peaks indicate the centers of the fruits. 
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a. b. 

Figure 3. Radial Hough transform on a grape bunch (a); Radial Hough transform on an image of apples (b) 

Figure 3 shows the result of radial Hough operator on the image of an apple tree (b) and a bunch 
of grapes (a).  
The results show that the radial Hough transform gives reliable results for spherical fruits, 
regardless of their color, and development stage. Fruits are also correctly identified by their center 
even when they are partially occulted by another fruit, a leaf or a branch. It is also possible to 
discriminate individual fruits within a group of contiguous fruits. The proposed method can also 
work in other direct lighting conditions, even when the light source does not have the same 
direction as the camera (e.g. natural light, flash not close to the camera). In this case, the 
gradients converge toward the projection of the fruit center on the fruit surface, in the direction of 
light. The image gradients are computed using a two-dimensional Gaussian derivative function. 
This is a separable fast computing operator along the x and y axes. It also smooths the image, 
so that gradient directions are robust to noise. The smoothing degree of this function can be 
modified using the standard deviation 𝜎 of the Gaussian kernel. The radial Hough transform is a 
fast algorithm; as it required to be operated only with one pass through images. Both the 
computation of gradients and the radial Hough transform can be parallelized to achieve real-time 
processing. 
Classification 

The method presented above identifies regions in the image with convergent gradients. However, 
in some cases some circular patches on leaves or shiny junctions of branches present similar 
geometrical properties and are then falsely selected. The Hough radial transform is not robust to 
these marginal cases. In order to achieve a more reliable detection, an additional step based on 
a DNN classifier identifies the fruits and discards other objects. 
Classifying images of fruits is not a trivial task, because there is a substantial variability regarding 
the illumination, geometric and colorimetric properties of fruits. At a single stage, fruits differ in 
shapes, sizes and colors. The differences are even more pronounced, when different varieties 
and different development stages are taken into account. The classifier should be robust to these 
intrinsic variations. A deep neural network can meet the requirements above, so it is used as 
classifier in this application. 
The description of fairly simple objects like spherical fruits does not require the extraction of very 
complex features. With a small number of simple convolutional filters, it is possible to obtain 
features that describe and discriminate fruits within images. The LeNet architecture (LeCun et al, 
1999) presented in figure 4 is sufficient to meet the requirements of the intended applications. 
This architecture has a low number of trainable parameters that makes its training simple and 
fast, compared to the recently developed, complex deep neural networks. Even with a low number 
of training samples overfitting can be avoided. The processing of a ROI is also very fast. 

At the considered resolution, the image of a grape berry fits in the [32 × 32] pixel sized input layer 
of the LeNet architecture. For apples and other fruits, the maximal size of the fruit is considered 
as initial size for the ROI, which is resized to [64 × 64] pixel patches. The deep neural network is 
scaled accordingly. 
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Figure 4. The deep neural network architecture  

For the training a binary a database of 45.000 samples for grapes and 150.000 samples for 
apples, labeled with fruit/not fruit is used. The training samples contained fruit images from 
different varieties and development stages. The training was conducted over 50 epochs. The 
batch size was set to 20.000 samples for the grapes and 5.000 samples for the apples, to be able 
to fit into the GPU memory. 10% of the samples were randomly selected for the testing database. 
The training of the DNN was conducted offline, on a dedicated workstation. 
The classification algorithm consists in locating the maxima of the accumulator space of the radial 
Hough transform, and the window around this point is passed through the deep neural network. 
This operation is repeated until the classifier outputs are all negatives. The sum of the positive 
responses gives the number of fruits in the image. 
CPU’s are usually not adapted to run DNN, it results in slow computations of convolutional layers. 
However, the use of a dedicated processor considerably improves the computational times. The 
Movidius AI processor allows real-time processing, with power consumption inferior to 1W. 

Post-processing 
Concerning grape berry detection, an additional post-processing step is necessary to eliminate 
some of the remaining false detections. Since grape berries form bunches, isolated detections of 
berries should then be discarded. 
The use of an adjacency graph of the detection results allows assessing that two berries are 
connected, if the distance between their centers is less than twice the fruit diameter. A detection 
is considered isolated if it has no neighbors. 
It has also to be considered that connected clusters of the graph may form a grape bunch. This 
is a quite simplistic approach, as it is very difficult to discriminate the real number and morphology 
of bunches when some of them are contiguous. However, it provides an approximation of grape 
distribution in images and the compactness of bunches. 

Training 
One of the main difficulties in the field of deep learning is the construction of a large training 
database, which is time-consuming and labor-intensive. Based on the number of trainable 
parameters of the network, a database of at least 20.000 samples is required. 
To overcome this problem, an interactive method for the creation of the training database is 
proposed. The training images were processed using the radial Hough transform presented in 
section 2.2.1, and then a simple decision method was applied on the local maxima, based mostly 
on the color and luminance (Keresztes et al., 2012). The process continued until the numbers of 
positive and negative detections were equal, i.e. we get the same number of fruit and non-fruit 
detections. 
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Figure 5. Interactive fruit labeling.  

Then, the detected objects are overlaid on images with different colors according on the labels. 
The operator can manually change the labels by clicking on an object which is incorrectly labeled. 
When all the labels are correct, the positions and labels are added to the database. 
Using this method, a sufficient training database can be built in a few hours by a single operator. 

Results 

Dataset 

This paper presents the results of the proposed algorithm on grape and apple detection. The data 
acquisition for grapes was conducted in a 12 ha vineyard in the Bordeaux area. The plots are 
planted with red wine grape varieties Merlot Noir, Cabernet Franc and a white grape variety 
Cabernet Sauvignon. Four ha are dedicated for each variety. Images were acquired at four 
different phenological stages defined on the BBCH (Biologische Bundesanstalt, Bundessortenamt 
und CHemische Industrie) scale (Lorentz et al., 1995): 
• Cluster closening in mid-July (BBCH 79) 
• Beginning veraison in mid-august (BBCH 83) 
• Full veraison (BBCH 85) i.e. three weeks before harvest 
• Right before harvest in October (BBCH 89). 

Concerning the cultivation systems, rows were defoliated on North or East sides before cluster 
closing, images were all acquired only on the defoliated sides, where the fruits are the most 
visible. 

  

a. b. 

Figure 6. Two example images from the dataset: a. grapevine a. and b. apple tree.  
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In apple orchards, the experiments were conducted in the Bergerac region, on two 1ha 
experimental plots. The plots contained three apple cultivars: Gala, Golden Delicious and Pink 
Lady. Images were acquired between May and September (fruit diameter over 30mm), with 3 
acquisitions per month. The images were taken on both sides of the apple trees. 

Fruit detection 
The presented algorithm was tested on every image of the grapevine and apple tree dataset. 
The image by image results show a very good detection rate for the grape berries (figure 7). The 
presented images were taken at cluster closening development stage, for Merlot, Cabernet Franc 
and Cabernet Sauvignon varieties respectively. 
 

   
Figure 7. Results of the grape detection at the cluster closening stage (BBCH 79) 

All the detected berries are encircled, the different detected bunches were coded with different 
colors. 
The results of grape berry detection were also compared with the results of the automatic and 
manual berry counting on a small dataset of 10 images. As expected, the results show an 
excellent correlation, with 𝑅% = 0.96 (p-value < 10LM). 

 
Figure 8. Correlation between automatic and manual grape counting at cluster closening 

The apples were also well detected in images. Figure 9. presents the fruit detection results on 
two images presenting early stages of fruit development. This stage is the most difficult to process, 
as the fruits are smaller than the leaves and have the same color. 
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Figure 8. The results of apple detection 

The apple detection algorithm was compared with manual counting on a large number of images 
from two stages corresponding to mean diameters D equal to 40 mm and 50 mm (see fig 9). 

 
Figure 9. Comparison of automatic and manual apple counting on two development stages: mean diameter equal to 40 mm 

(left) and 50 mm (right) 

The correlation between the manual and automatic counting is highly significant (p-value < 10L%N) 
with 𝑅% values of 0.85 and 0.83, respectively for 𝐷 = 40𝑚𝑚 and 𝐷 = 50𝑚𝑚. The correlation is 
slightly lower than for grape detection, as the DNN was trained to recognize only the fruits that 
are more than 50% visible. 
 

Conclusion and perspectives 
In this paper we presented a new computer vision method for detecting spherical fruits. By 
combining a shape-based algorithm with a deep neural network, we created a detection method 
that is both fast and robust. The proposed method provides a reliable detection and counting of 
the visible fruits in the trellising plan. 
By providing training data for different varieties and development stages, the algorithm is able to 
identify correctly the fruits in various conditions, even in early development stages when their 
color blends into the foliage. The R² correlation between the manual and automatic counting is 
over 0.83 even for early development stages. 
An intelligent camera is used for image acquisition and embedded processing. This is a low-cost 
system which is able to acquire large quantities of photos and integrates easily in the existing 
infrastructure: tractors and other machines. The photos can be acquired during regular field work. 
The controlled lighting, provided by a strong on-board flash eliminated the variability of the exterior 
lighting conditions, allowing in the meantime the development of a fast and reliable method to 
estimate the positions of the fruits.  
The presented method does not provide a direct measurement of yields but rather a statistical 

Commented [JPDC1]: Barna, si tu pouvais intégrer des résultats 
de classification (cf. rapport de Dimby) ce serait parfait. 
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estimation of crop load and it spatial repartition at a very local scale. The robustness of this 
method in terms of fruit detection has been proven for different development stages and varieties. 
However the eventual agronomic parameters resulting from the classification are based on 
inferences. Indeed it is still required to approximate unitary fruit weights and occultation 
coefficients i.e. an estimation of the number of fruits hidden by leaves, branches and other fruits. 
Such a coefficients mostly depend on cultivation systems, varieties and pedo-climatic contexts.  
The information that can be extracted with this method provides an insight for many agronomic 
parameters that are still not included in management strategies. For instance the assessment of 
fruit distribution on plants using adjacency could be used as a measure of cluster density. It 
provides then a feedback assessment of the efficiency of mechanical thinning for apple trees or 
assessment of the ventilation and sun exposure of fruits in the canopy. It is now possible to obtain 
reliable estimations of agronomic parameters with extensive measurements and automated 
processing of enormous date set. Yet the development of precision farming still requires more 
combined field data to estimate the inferences coefficients and build models for Decision support 
tools. 
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