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Abstract. We derive high order homogenized models for the Poisson problem in a cubic domain periodically
perforated with holes where Dirichlet boundary conditions are applied. These models have the potential

to unify the three possible kinds of limit problems derived by the literature for various asymptotic regimes

(namely the “unchanged” Poisson equation, the Poisson problem with a strange reaction term, and the zeroth
order limit problem) of the ratio η ≡ aε/ε between the size aε of the holes and the size ε of the periodic cell.

The derivation relies on algebraic manipulations on formal two-scale power series in terms of ε and more

particularly on the existence of a “criminal” ansatz, which allows to reconstruct the oscillating solution uε as
a linear combination of the derivatives of its formal average u∗ε weighted by suitable corrector tensors. The

formal average is itself the solution of a formal, infinite order homogenized equation. Classically, truncating

the infinite order homogenized equation yields in general an ill-posed model. Inspired by a variational
method introduced in [52, 23], we derive, for any K ∈ N, well-posed corrected homogenized equations of

order 2K+2 which yields approximations of the original solutions with an error of order O(ε2K+4) in the L2

norm. Finally, we find asymptotics of all homogenized tensors in the low volume fraction regime η → 0 and
in dimension d ≥ 3. This allows us to show that our higher order effective equations converge coefficient-wise

to either of the classical homogenized regimes of the literature which arise when η is respectively equivalent,

or greater than the critical scaling ηcrit ∼ ε2/(d−2).
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1. Introduction

One of the industrial perspectives offered today by the theory of homogenization lies in the development of
more and more efficient topology optimization algorithms for the design of mechanical structures; there exists
a variety of homogenization based techniques [7, 24, 16], including density based (or “SIMP”) methods [17].
Broadly speaking, the principle of these algorithms is to optimize one or several parameters of the micro-
structures which affect the coefficients of an effective model. The latter model accounts for the constitutive
physics of the mixture of two materials (one representing the solid structure and one representing void) and is
mathematically obtained by homogenization of the linear elasticity system. The knowledge of the dependence
between the parameters of the microstructure and the coefficient of the effective model is the key ingredient
of homogenization based techniques, because it allows to numerically—and automatically—interpret “gray
designs” (i.e., for which the local density of solid is not a uniformly equal to 0 or 1) into complex composite
shapes characterized by multi-scale patterns and geometrically modulated micro-structures [45, 11, 34, 36].

Several works have sought extensions of these methods for topology optimization of fluid systems, where
the incompressible Navier–Stokes system is involved. In this context, an effective model is needed for
describing the homogenized physics of a porous medium filled with either solid obstacles, fluid, or a mixture
of both. However, classical literature [25, 3, 5, 49] identifies three possible kinds of homogenized models
depending on how periodic obstacles of size aε scale within their periodic cell of size ε: depending on how
the scaling η ≡ aε/ε compares to the critical size σε := εd/(d−2) (in dimension d ≥ 3), the fluid velocity
converges as ε→ 0 to the solution of either a Darcy, a Brinkman or a Navier-Stokes equation. Unfortunately,
there is currently no further result regarding an effective model that would be able to describe a medium
featuring all possible sizes of locally periodic obstacles. The strategy that is the most commonly used in the
density based topology optimization community consists in using either the Brinkman equation exclusively
[20, 21, 28], or the Darcy model exclusively [54, 47]. These methodology have proved efficient in a number of
works [46, 27], however, they remain inconsistent from a homogenization point of view, since these models
are valid only for particular regimes of size of obstacles. In particular, this limitation makes impossible to
interpret “gray” designs obtained with classical fluid topology optimization algorithms.

The main objective of this paper is to expose, accordingly, the derivation of a new class of—high order—
homogenized models for perforated problems which have the potential to unify the different regimes of the
literature. Our hope is that these models could permit, in future works, to develop new mathematically
consistent and homogenization based topology optimization algorithms for fluid systems.

ε

Y

ηT

P = [0, 1]d

Dε

Figure 1. The perforated domain Dε and the unit cell Y = P\(ηT ).

This article is a preliminary study towards such purpose: we propose to investigate here the case of the
Poisson problem in a perforated periodic domain with Dirichlet boundary conditions on the holes,

−∆uε = f in Dε

uε = 0 on ∂ωε

uε is D–periodic,

(1.1)

which can be considered to be a simplified scalar and linear version of the full Navier–Stokes system. Let
us mention that the analysis of the full Navier–Stokes system is much more challenging because of the
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incompressibility constraint and the vectorial nature of the problem; the extension of the current work for
the Stokes system—its linear counterpart—shall however be exposed in a future contribution [32, 33].

The setting considered is the classical context of periodic homogenization represented on Figure 1: D :=
[0, L]d is a d-dimensional box filled with periodic obstacles ωε := ε(Zd + ηT ) ∩ D. P = (0, 1)d is the unit
cell, and Y := P\ηT is the unit perforated cell. The parameter ε is the size of the periodic cell and is given
by ε := L/n where n ∈ N is an integer number assumed to be large. The parameter η is another rescaling
of the obstacle T within the unit cell: the holes are therefore of size aε := ηε which allow us to consider in
section 5 so-called low volume fraction limits where η converges to zero. The boundary of the obstacle T is
assumed to be smooth. Dε := D\ωε denotes the perforated domain and f ∈ C∞(D) is a smooth D–periodic
right-hand side. The periodicity assumption for uε and f is classical in homogenization and is used to avoid
difficulties related to the arising of boundary layers (see [39, 19, 8]).

The literature accounts for several homogenized equations depending on how the size aε = ηε of the
holes compares to the critical size σε := εd/(d−2) in dimension d ≥ 3 or σε := exp(−1/ε2) for d = 2
[43, 26, 3, 5, 49, 29, 37]:

• if aε = o(σε), then the holes are “too small” and uε converges as ε → 0 to the solution u of the
Poisson equation in the homogeneous domain D (without holes):{−∆u = f in D

u is D–periodic.
(1.2)

• if aε = σε, then uε converges as ε→ 0 to the solution u of the modified Poisson equation{−∆u+ Fu = f in D

u is D–periodic,
(1.3)

where the so-called strange reaction term Fu involves a positive constant F > 0 which can be
computed by means of an exterior problem in Rd\T when d ≥ 3 (see (5.10) below), and which is
equal to 2π if d = 2 (see [3, 25, 49, 37]).

• if σε = o(aε) and aε = ηε with η → 0 as ε→ 0, then the holes are “large” and ad−2ε ε−duε converges
to the solution u of the zeroth order equation{

Fu = f in D

u is D–periodic,
(1.4)

where F is the same positive constant as in (1.3).
• if aε = ηε with the ratio η fixed, then ε−2uε converges to the solution u of the zeroth order equation{

M0u = f in D

u is D–periodic,
(1.5)

where M0 is another positive constant (which depends on η). Furthermore it can be shown that
M0/| log(η)| → F if d = 2, and M0/ηd−2 → F (if d ≥ 3) when η → 0, so that there is a continuous
transition from (1.5) to (1.4); see [4] and corollary 6 below.

The different regimes (1.2) to (1.5) occur because the heterogeneity of the problem comes from the zero
Dirichlet boundary condition on the holes ωε in (1.1): this is the major difference with the setting commonly
assumed in linear elasticity, where the heterogeneity induced by the mixture of two materials is instead
inscribed in the coefficients of the physical state equation [53, 7]. (1.2) and (1.3) are the respectively the
analogous of the Navier–Stokes and Brinkman regimes in the context of the homogenization of the Navier-
Stokes equation, while the zeroth order equations (1.4) and (1.5) are analogous to Darcy models. As stressed
above, the existence of these regimes raises practical difficulties in view of applying the homogenization
method for shape optimization: the previous considerations show that one should use (1.2) and (1.3) in
regions featuring none or very tiny obstacles, however one should use the zeroth order model (1.5) when the
obstacles become large enough.
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Our goal is to propose an enlarged vision of the homogenization of (1.1) through the construction, for any
K ∈ N, of a homogenized equation of order 2K + 2,

K+1∑
k=0

ε2k−2D2k
K · ∇2kv∗ε,K = f in D,

v∗ε,K is D–periodic,

(1.6)

which yields an approximation of uε of order O(ε2K+4) in the L2(Dε) norm (for a fixed given scaling of the
obstacles η). The function v∗ε,K denotes the higher order homogenized approximation of uε and D2k

K ·∇2k is a

differential operator of order 2k with constant coefficients (the notation is defined in (2.3) below). Equation
(1.6) is a “corrected” version of the zeroth order model (1.5) (for any K, it holds D0

K = M0), which yields
a more accurate solution when ε is “not so small”.

Our mathematical methodology is inspired from the works of Bakhvalov and Panasenko [15], Smyshlyaev
and Cherednichenko [52], and Allaire et. al. [12]; it starts with the identification of a “classical” two-scale
ansatz

uε(x) =

+∞∑
i=0

εi+2ui(x, x/ε), x ∈ Dε, (1.7)

expressed in terms of Y –periodic functions ui : D × Y → R which do not depend on ε. Our procedure
involves then formal operations on related power series which give rise to several families of tensors and
homogenized equations for approximating the formal, infinite order homogenized average u∗ε:

u∗ε(x) :=

+∞∑
i=0

εi+2

∫
Y

ui(x, y)dy, x ∈ D. (1.8)

In proposition 5 below, we obtain that u∗ε in (1.11) is the solution of a formal, “infinite order” homogenized
equation,

+∞∑
k=0

ε2k−2M2k · ∇2ku∗ε = f, (1.9)

where M0 is the positive constant of (1.5) and (Mk)k≥1 is a family of (constant) tensors or order k. From
a computational point of view, one needs a well-posed finite order model. As it can be expected from other
physical contexts [9, 12], the effective model obtained from a naive truncation of (1.9), say at order 2K,

K∑
k=0

ε2k−2M2k · ∇2kv∗ε,K = f (1.10)

is in general not well-posed [9, 1]. Several techniques have been proposed in the literature to obtain well-posed
homogenized models of finite order in the context of the conductivity or of the wave equation [13, 10, 1, 2, 12].
The derivation of the well-posed homogenized equation (1.6) relies on a minimization principle inspired from
Smyshlyaev and Cherednichenko [52] and is marked by two surprising facts.

The first surprising result is the existence of a somewhat remarkable identity which expresses the oscillating
solution uε in terms of its non-oscillating average u∗ε:

uε(x) =

+∞∑
k=0

εkNk(x/ε) · ∇ku∗ε(x). (1.11)

The functions Nk are P–periodic corrector tensors of order k (definition 2) depending only on the shape of
the obstacles ηT and that vanish on ∂(ηT ). Furthermore, N0 is of average

∫
Y
N0(y)dy = 1 and Nk is of

average
∫
Y
Nk(y)dy = 0 for k ≥ 1 (proposition 8): u∗ε is consistently the average of uε with respect to the fast

variable x/ε. While the derivation of (1.7) is very standard in periodic homogenization [50, 41, 18, 14], the
existence of such a relation (1.11) (when compared to (1.7)) between the oscillating solution is less obvious;
it has been noticed for the first time by Bakhvalov and Panasenko [15] for the conductivity equation, and
then in further homogenization contexts in [51, 52, 23, 12, 2, 1]. Following the denomination of [12], we call
the ansatz (1.11) “criminal” because the function u∗ε has the structure of a formal power series in ε.
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The second surprise lies in that our higher order homogenized equation (1.6) is obtained by adding to

(1.10) a single term ε2KD2K+2
K · ∇2K+2; in other words D2k

K = M2k for any 0 ≤ 2k ≤ 2K. This fact, which
does not seem to have been noticed in previous works, is quite surprising because following [52, 23], the
derivation of (1.6) is based on a minimization principle for the truncation of (1.11) at order K,

Wε,K(v∗ε,K)(x) :=

K∑
k=0

εkNk(x/ε) · ∇kv∗ε,K(x), x ∈ Dε (1.12)

which is expected to yield an approximation of order O(εK+3) only in the L2(Dε) norm (u∗ε and v∗ε,K are

of order O(ε2)). This is the order of accuracy stated in our previous work [32] and similarly obtained
in the conductivity case by [52], or for the Maxwell equations by [23]; it is related to the observation
that that the first half of the coefficients of (1.6) and (1.9) coincide: D2k

K = M2k for any 0 ≤ 2k ≤ K
(proposition 13). In fact, it turns out that all coefficients D2k

K and M2k coincide except the one of the

leading order; D2K+2
K 6= M2K+2. As a result, we are able to show in the present paper that the reconstructed

function obtained by adding more correctors,

Wε,2K+1(v∗ε,K)(x) :=

2K+1∑
k=0

εkNk(x/ε) · ∇kv∗ε,K(x), x ∈ Dε, (1.13)

yields an approximation of uε of order O(ε2K+4) (corollary 5 below):

||uε −Wε,2K+1(v∗ε,K)||L2(Dε) + ε||∇(uε −Wε,2K+1(v∗ε,K))||L2(Dε) ≤ CK(f)ε2K+4. (1.14)

Finally, we obtain in corollaries 6 and 7 (see also remark 8) that our homogenized models have the
potential to “unify” the different regimes of the literature, in the sense that (1.6) and (1.9) converge formally
(coefficient-wise) to either of the effective equations (1.3) and (1.4) when the scaling of the obstacle η → 0
vanishes at rates respectively equivalent or greater than the critical size ηcrit ∼ η2/(d−2).

Unfortunately, we do not obtain in this work that this convergence holds for all possible rates, because the
estimates of corollary 6 imply that higher order coefficients ε2k−2M2k with k > 2 could blow up if the rate
η vanishes faster than the critical size (i.e. when η = o(ε2/(d−2))). However the coefficient-wise convergence
holds for the homogenized equation (1.6) of order 2 (with K = 0). Although (i) the derivation of (1.6)
has been performed by assuming η constant and (ii) all our error bounds feature constants CK(f) which
depend a priori on η, these results seem to indicate that (1.6) has the potential to yield valid homogenized
approximations of (1.1) in any regime of size of holes if K = 0 (which was our initial goal), and for any size
η ≥ ηcrit if K ≥ 1.

The exposure of our work outlines as follows. Section 2 introduces the notation conventions and provides
a brief summary of our derivations.

Section 3 then details the procedure which allows to construct the family of tensors Mk and Nk(y) arising
in the formal infinite order homogenized equation (1.9) and in the criminal ansatz (1.11). Additionally,
we establish a number of algebraic properties satisfied by these tensors and we provide an account of the
simplifications which occur in case of symmetries of the obstacle with respect to the unit cell axes.

Section 4 is devoted to the construction of the finite order homogenized equation (1.6) thanks to the
method of Smyshlyaev and Cherednichenko. We prove the ellipticity of the model and we establish that
D2k
K = M2k for any 0 ≤ 2k ≤ 2K (and not only for the first half coefficients with 0 ≤ 2k ≤ K as observed in

[32, 52]). The high order homogenization process is then properly justified by establishing the error estimate
(1.14).

Finally, section 5 examines the asymptotic properties of the tensors Mk in the low-volume fraction limit
η → 0 (in space dimension d ≥ 3). This allows us to retrieve formally the classical regimes and the arising
of the celebrated “strange term” (see [25]) at the critical scaling η ∼ ε2/(d−2).

2. Notation and summary of the derivation

The full derivation of higher order homogenized equations involves the construction of a number of families
of tensors such as X k,Mk, Nk,D2k

K . For the convenience of the reader, the notation conventions related to
two-scale functions and tensor operations are summarized in section 2.1. We then provide a short synthesis
of our main results and of the key steps of our derivations in section 2.2.
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2.1. Notation conventions

Below and further on, we consider scalar functions such as

u : D × P → R
(x, y) 7→ u(x, y)

(2.1)

which are both D and P–periodic with respect to respectively the first and the second variable, and which
vanish on the hole D × (ηT ). The arguments x and y of u(x, y) are respectively called the “slow” and the
“fast” or “oscillating” variable. With a small abuse of notation, the partial derivative with respect to the
variable yj (respectively xj) is simply written ∂j instead of ∂yi (respectively ∂xj ) where the context is clear,
i.e. when the function to which it is applied depends only on y (respectively only on x).

The star–“∗”– symbol is used to indicate that a quantity is “macroscopic” in the sense it does not depend
on the fast variable x/ε; e.g. v∗ε,K in (1.6), u∗ε in (1.8) or J∗K in (2.16) below. In the particular case where

a two-variable quantity u(x, y) is given such as (2.1), u∗(x) always denotes the average of y 7→ u(x, y) with
respect to the y variable:

u∗(x) :=

∫
P

u(x, y)dy =

∫
Y

u(x, y)dy, x ∈ D,

where the last equality is a consequence of u vanishing on P\Y = ηT .
When a function X : P → R depends only on the y variable, we find sometimes more convenient

(especially in section 5) to write its cell average with the usual angle bracket symbols:

〈X 〉 :=

∫
P

X (y)dy.

In all what follows and unless otherwise specified, the Einstein summation convention over repeated subscript
indices is assumed (but never on superscript indices). Vectors b ∈ Rd are written in bold face notation.

The notation conventions including those used related to tensor are summarized in the nomenclature below.

b Vector of Rd
(bj)1≤j≤d Coordinates of the vector b.
bk Tensor of order k (bki1...ik ∈ R for 1 ≤ i1, . . . , ik ≤ d)

bp ⊗ ck−p Tensor product of tensors of order p and k − p:

(bp ⊗ ck−p)i1...ik := bpi1...ipc
k−p
ip+1...ik

. (2.2)

bk · ∇k Differential operator of order k associated with a tensor bk:

bk · ∇k := bki1...ik∂
k
i1...ik

, (2.3)

with implicit summation over the repeated indices i1 . . . ik.
δij Kronecker symbol: δij = 1 if i = j and δij = 0 if i 6= j.
I Identity tensor of order 2:

Ii1i2 = δi1i2 = ej ⊗ ej .
Note that the identity tensor is another notation for the Kronecker tensor.

J2k Tensor of order 2k defined by:

J2k :=

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I . (2.4)

(ej)1≤j≤d Vectors of the canonical basis of Rd.
ej Tensor of order 1 whose entries are (δi1j)1≤i1≤d (for any 1 ≤ j ≤ d). Note: ej and ej

are the same mathematical object when identifying tensors of order 1 to vectors in Rd.
Bk,lK Tensor of order l +m associated with the quadratic form

Bl,mK ∇
lv∇mw := Bl,ml,i1...ik,j1...jl∂

l
i1...ik

v ∂mj1...jlw, (2.5)

for any smooth scalar fields v, w ∈ C∞(D).
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With a small abuse of notation, we consider zeroth order tensors b0 to be constants (i.e. b0 ∈ R) and we
still denote by b0 ⊗ ck := b0ck the tensor product with a k-th order tensor ck.

In all what follows, a k-th order tensor bk truly makes sense when contracted with k partial derivatives, as
in (2.3). Therefore all the tensors considered throughout this work are identified to their symmetrization:

bki1...ik ≡
1

k!

∑
σ∈Sk

biσ(1)...iσ(k) ,

where Sk is the permutation group of order k. Consequently, the order in which the indices i1, . . . , ik are
written in bki1...ik does not matter and the tensor product ⊗ is commutative under this identification:

bk ⊗ ck−p = ck−p ⊗ bk. (2.6)

Finally, C, CK or CK(f) denote universal constants that do not depend on ε but whose values may change
from line to line (and which depend a priori on the shape of the hole ηT ).

2.2. Summary of the derivation

One of the main results of this paper is the derivation of the higher order homogenized equation (1.6)
for any desired order K ∈ N, and the justification of the procedure by establishing the error estimate
(1.14). Before summarizing the most essential steps of our analysis, let us recall that here and in all what
follows, equalities involving infinite power series such as (1.11) are formal and without a precise meaning of
convergence. Our derivation outlines as follows:

(1) following classical literature [40, 41, 15, 19], we introduce a family of k-th order tensors (X k(y))k∈N
obtained as the solutions of cell problems (see definition 1 and proposition 1) which allows to identify
the functions ui(x, y) arising in (1.11) and to rewrite the traditional ansatz more explicitly:

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇if(x), x ∈ Dε. (2.7)

Introducing the averaged tensors of order i, X i∗ :=
∫
Y
X i(y)dy, the formal average (1.8) reads

u∗ε(x) =

+∞∑
i=0

εi+2X i∗ · ∇if(x). (2.8)

(2) We construct (in proposition 5) constant tensors M i by inversion of the formal equality(
+∞∑
i=0

εi−2M i · ∇i
)(

+∞∑
i=0

εi+2X i∗ · ∇i
)

= I, (2.9)

which yields, after left multiplication of (2.8) by
∑+∞
i=0 ε

i−2M i · ∇i, the “infinite order homogenized
equation” for u∗ε(x):

+∞∑
i=0

εi−2M i · ∇iu∗ε(x) = f(x). (2.10)

Note that (2.10) is exactly (1.9) because all tensors X 2k+1∗ and M2k+1 of odd order vanish (propo-
sition 3 and corollary 1).

(3) We substitute the expression of f(x) given by (2.10) into the ansatz (2.7) so as to recognize a formal
series product:

uε(x) =

(
+∞∑
i=0

εiX i(x/ε) · ∇i
)(

+∞∑
i=0

εiM i · ∇i
)
u∗ε(x). (2.11)

Introducing a new family of tensors Nk(y) defined by the corresponding Cauchy product,

Nk(y) :=

k∑
p=0

X p(y)⊗Mk−p, y ∈ Y,

7



we obtain the “criminal” ansatz (1.11):

uε(x) =

+∞∑
k=0

εkNk(x/ε) · ∇ku∗ε(x). (2.12)

(4) We now seek to construct well-posed effective models of finite order. Inspired by [52, 23], we consider
truncated versions of functions of the form of (2.12): for any v ∈ HK+1(D), we define

Wε,K(v)(x) :=

K∑
k=0

εkNk(x/ε) · ∇kv(x), x ∈ D. (2.13)

where the tensors Nk are extended by zero in P\Y for this expression to make sense in D\Dε.
Remembering that uε (identified with its extension by 0 in D\Dε) is the solution to the energy
minimization problem

min
u∈H1(D)

J(u, f) :=

∫
D

(
1

2
|∇u|2 − fu

)
dx

s.t.

{
u = 0 in ωε

u is D–periodic,

(2.14)

we formulate an analogous minimization problem for v ∈ HK+1(D) by restriction of (2.14) to the
smaller space of functions Wε,K(v) ∈ H1(D):

min
v∈HK+1(D)

J(Wε,K(v), f) =

∫
D

(
1

2
|∇Wε,K(v)|2 − f(x)Wε,K(v)(x)

)
dx

s.t. v is D–periodic.

(2.15)

Averaging over the fast variable x/ε (by using lemma 3), we obtain a new minimization problem
involving an approximate energy J∗K (definition 4) which does not depend on x/ε,

min
v∈HK+1(D)

J∗K(v, f, ε)

s.t. v is D–periodic.
(2.16)

Its Euler–Lagrange equation (see definition 5) defines finally our well-posed homogenized equation
(1.6) and in particular the family of tensors (D2k

K )0≤2k≤2K++22.
(5) In view of (2.13), this procedure is expected to yield by construction an approximation Wε,K(v∗ε,K) of

uε with an error O(εK+3) (because v∗ε,K is of order O(ε2), see lemma 7). Surprisingly, we verify that

all the tensors D2k
K and the tensors M2k coincide for 0 ≤ 2k ≤ 2K (proposition 13). This allows to

obtain in corollary 5 the error estimate (1.14), which states that v∗ε,K and the reconstruction (1.13)

yield a much better approximation than expected, namely of order O(ε2K+4) instead of O(εK+3).

The most essential point of our methodology is the derivation of the non-classical ansatz (2.12) of step (3).
Let us stress that in the available works of the literature concerned with high order homogenization of scalar
conductivity equations and its variants [15, 52, 12], the criminal ansatz (analogous to (2.12)) is readily
obtained from the classical one (analogous to (1.11)) because the tensors Nk and X k coincide in these
contexts (check for instance [15, 9]). Our case is very different because the heterogeneity comes from the
Dirichlet boundary condition on the holes ωε.

3. Derivation of the infinite order homogenized equation and of the criminal ansatz

This section now presents the steps (1) to (3) of section 2.2 in detail. We start in section 3.1 by reviewing
the definition of the family of cell tensors (X k(y))k∈N which allows to identify the functions ui(x, y) involved
in the “usual” two-scale ansatz (1.8) and to obtain an error estimate for its truncation in proposition 2. This
part is not new; it is a review of classical results available in a number of works, see e.g. [40, 41, 19]. We
then establish in section 3.2 several properties of the tensor X k which are less found in the literature; the
most important being that the averages of all odd order tensors vanish: X 2p+1∗ = 0 for any p ∈ N.

The next section 3.3 focuses on the definition and on the properties of the family of tensors Mk and Nk(y)
which allow to we infer the infinite order homogenized equation (1.9) and the criminal ansatz (1.11).

8



Finally, we investigate in section 3.4 how symmetries of the obstacle ηT with respect to the axes of the
unit cell P reflect into a decrease of the number of independent components of the homogenized tensors X k∗
and Mk.

3.1. The traditional ansatz: definition of the cell tensors X k

Classically [50, 40, 41], the first step of our analysis is to insert formally the two-scale expansion (1.11)
into the Poisson system (1.1). Because it will help highlight the occurrence of Cauchy products, we also
assume (for the purpose of the derivation only) that the right-hand side f ∈ C∞(D) depends on ε and admits
the following formal expansion:

f(x) =

+∞∑
i=0

εifi(x), x ∈ D.

Evaluating the Laplace operator against (1.11), we obtain formally

−∆uε =

+∞∑
i=−2

εi+2(−∆yyui+2 −∆xyui+1 −∆xxui),

where we use the convention u−2(x, y) = u−1(x, y) = 0, and where −∆yy, −∆xy, −∆xx are the operators

−∆xx := −divx(∇x·), −∆xy := −divx(∇y·)− divy(∇x·), −∆yy := −divy(∇y·).

Identifying all powers in ε yields then the traditional cascade of equations (obtained e.g. in [41]):{
−∆yyui+2 = fi+2 + ∆xyui+1 + ∆xxui for all i ≥ −2

u−2(x, y) = u−1(x, y) = 0.
(3.1)

This system of equations is solved by introducing an appropriate family of cell tensors [40, 41].

Definition 1. We define a family of tensors (X (y))k∈N of order k by recurrence as follows:

−∆yyX 0 = 1 in Y

−∆yyX 1 = 2∂jX 0 ⊗ ej in Y

−∆yyX k+2 = 2∂jX k+1 ⊗ ej + X k ⊗ I in Y, for all k ≥ 0

X k = 0 on ∂(ηT )

X k is P–periodic.

(3.2)

The tensors X k are extended by 0 inside the hole ηT in the whole unit cell P , namely X k(y) = 0 for y ∈ ηT .

Remark 1. In view of (2.2), the third line of (3.2) is a short-hand notation for

−∆X k+2
i1...ik+2

= 2∂ik+2
X k+1
i1...ik+1

+ X ki1...ikδik+1ik+2
, for all k ≥ 0.

Proposition 1. The solutions (ui(x, y))i≥0 to the cascade of equations (3.1) are given by

∀i ≥ 0, ui(x, y) =

i∑
k=0

X k(y) · ∇kfi−k(x), x ∈ D, y ∈ Y. (3.3)

Recognizing a Cauchy product, the ansatz (1.11) can be formally written as the following infinite power series
product:

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇if(x) = ε2

(
+∞∑
i=0

εiX i(x/ε) · ∇i
)(

+∞∑
i=0

εifi(x)

)
. (3.4)

Proof. See [40, 41, 32]. �

We complete our review by stating a classical error estimate result which justifies in some sense the formal
power series expansion (3.4).
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Proposition 2. Denote uε,K the truncated ansatz of (3.4) at order K ∈ N:

uε,K(x) :=

K∑
i=0

εi+2X i(x/ε) · ∇if(x), x ∈ Dε. (3.5)

Then assuming f ∈ C∞(D) is D–periodic, the following error bound holds:

||uε − uε,K ||L2(Dε) + ε||∇(uε − uε,K)||L2(Dε) ≤ CKε
K+3||f ||HK+2(D) (3.6)

for a constant CK independent of f and ε (but depending on K).

Proof. See [40, 41, 32]. �

3.2. Properties of the tensors X k: odd order tensors X 2p+1∗ are zero.

Following our conventions of section 2.1, the average of the functions ui and X i with respect to the y
variable are respectively denoted:

u∗i (x) :=

∫
Y

ui(x, y)dy, x ∈ D, (3.7)

X i∗ :=

∫
Y

X i(y)dy. (3.8)

In the next proposition, we show that X 2p+1∗ = 0 are of zero average for any p ∈ N and that X 2p∗ depends
only on the lower order tensors X p and X p−1. Similar formulas have been obtained for the wave equation
in heterogeneous media, see e.g. Theorem 3.5 in [2], and also [1, 48].

Proposition 3. For any 0 ≤ p ≤ k, the following identity holds for the tensor X k∗:

X k∗ =

∫
Y

X kdy = (−1)p
∫
Y

(X k−p ⊗ (−∆yyX p)−X k−p−1 ⊗X p−1 ⊗ I)dy, (3.9)

with the convention that X−1 = 0. In particular, for any p ∈ N:

• X 2p+1∗ = 0
• X 2p∗ depends only on the tensors X p and X p−1:

X 2p∗ = (−1)p
∫
Y

(∂jX p ⊗ ∂jX p −X p−1 ⊗X p−1 ⊗ I)dy. (3.10)

Proof. The result is proved by induction. Formula (3.9) holds true for p = 0 by using the convention X−1 = 0
and −∆yyX 0 = 1. Assuming now the result to be true for 0 ≤ p < k, we perform the following integration
by parts where we use the boundary conditions satisfied by the tensors X k and the commutativity property
(2.6) of the tensor product:

X k∗ =(−1)p
∫
Y

(−∆yyX k−p ⊗X p −X k−p−1 ⊗X p−1 ⊗ I)dy

=(−1)p
∫
Y

((2∂jX k−p−1 ⊗ ej + X k−p−2 ⊗ I)⊗X p −X k−p−1 ⊗X p−1 ⊗ I)dy

=(−1)p
∫
Y

(−2∂jX p ⊗ ej −X p−1 ⊗ I)⊗X k−p−1 + X k−p−2 ⊗X p ⊗ I)dy

=(−1)p+1

∫
Y

((−∆yyX p+1)⊗X k−p−1 −X k−p−2 ⊗X p ⊗ I)dy.

Hence the formula is proved at order p+ 1.
Now, the formula at order p = k reads

X k∗ = (−1)k
∫
Y

X 0(−∆yyX k)dy = (−1)k
∫
Y

X k(−∆yyX 0)dy = (−1)kX k∗,

which implies X k∗ = 0 if k is odd. Formula (3.10) follows easily from (3.9) with k = 2p. �
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For completeness, we provide a minor result which implies that there is no order k (even odd) such that
X k(y) is identically equal to zero. However, let us remark that some components X ki1...ik(y) may vanish for
some set of indices i1, . . . , ik, e.g. in case of invariances of the obstacle ηT along the cell axes.

Proposition 4. The following identity holds:

−∆yy(∂ki1...ikX
k
i1...ik

) = (−1)k(k + 1), (3.11)

where we recall the implicit summation convention over the repeated indices i1 . . . ik.

Proof. The results clearly holds true for k = 0. For k = 1, it holds

−∆yy∂iX 1
i = ∂i(2∂iX 0) = 2∆X 0 = −2.

Assuming the result holds true till rank k − 1, the formula still holds at rank k ≥ 2 because

−∆yy∂
k
i1...ik

X ki1...ik = ∂ki1...ik(2∂ikX
k−1
i1...ik−1

+ X k−2i1...ik−2
δik−1ik)

= 2∆yy(∂k−1i1...ik−1
X k−1i1...ik−1

) + ∆yy(∂k−2i1...ik−2
X k−2i1...ik−2

)

= −2(−1)k−1k − (−1)k−2(k − 1)

= (−1)k(k + 1).

�

3.3. Infinite order homogenized equation and criminal ansatz: tensors Mk and Nk

This part outlines the steps (2) and (3) of the procedure outlined section 2.2. Let us recall that the first
tensor X 0∗ is a strictly positive number, since (3.10) implies X 0∗ =

∫
Y
|∇X 0|2dy > 0.

Proposition 5. Let (Mk)i∈N be the family of k-th order tensors defined by induction as follows:
M0 = (X 0∗)−1,

Mk = −(X 0∗)−1
k−1∑
p=0

X k−p∗ ⊗Mp.
(3.12)

Then it holds, given the definitions (3.1) and (3.7) of u∗i :

∀i ∈ N, fi(x) =

i∑
k=0

Mk · ∇ku∗i−k(x). (3.13)

Recognizing a Cauchy product, (3.13) can be rewritten formally in terms of the following “infinite order”
homogenized equation for the “infinite order” homogenized average u∗ε of (2.8):

+∞∑
i=0

εi−2M i · ∇iu∗ε = f. (3.14)

Proof. We proceed by induction. The case i = 0 results from the identity u∗0(x) = X 0∗f0(x) which yields
f0(x) = (X 0∗)−1u∗0(x). Then, assuming (3.13) holds till rank i− 1 with i ≥ 1, we average (3.3) with respect
to the y variable to obtain

u∗i =

i∑
p=0

X p∗ · ∇pfi−p = X 0∗fi +

i∑
p=1

X p∗ · ∇pfi−p.
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By using (3.13) at ranks i− p with 1 ≤ p ≤ i, we obtain the following expression for fi:

fi = (X 0∗)−1

(
u∗i −

i∑
p=1

i−p∑
q=0

(X p∗ ⊗Mq) · ∇p+qu∗i−p−q

)

= (X 0∗)−1

u∗i − i∑
p=1

i∑
k=p

(X p∗ ⊗Mk−p) · ∇ku∗i−k

 (change of index k = p+ q )

= (X 0∗)−1

(
u∗i −

i∑
k=1

k∑
p=1

(X p∗ ⊗Mk−p) · ∇ku∗i−k

)
(inversion of summation)

= (X 0∗)−1

(
u∗i −

i∑
k=1

(
k−1∑
p=0

X k−p∗ ⊗Mp

)
· ∇ku∗i−k

)
(change of index p↔ k − p)

= M0u∗i +

i∑
k=1

Mk · ∇ku∗i−k,

which yields the result at rank i. �

Corollary 1. Mk = 0 for any odd value of k.

Proof. If k is odd, then k−p and p have distinct parities in (3.12). Therefore, the result follows by induction
and by using X k−p∗ = 0 for even values of p (proposition 3). �

It is possible to write a more explicit formula for the tensors Mk:

Proposition 6. The tensors Mk are explicitly given by M0 = (X 0∗)−1 and:

∀k ≥ 1, Mk =

k∑
p=1

(−1)p

(X 0∗)p+1

∑
i1+···+ip=k
1≤i1...ip≤k

X i1∗ ⊗ · · · ⊗ X ip∗. (3.15)

Proof. For k = 1, the result is true because

M1 = −(X 0∗)−1M0X 1∗ = −(X 0∗)−2X 1∗

which is exactly (3.15). Assuming (3.15) holds till rank k ≥ 1, we compute

Mk+1 = −(X 0∗)−1
k∑
p=0

X k+1−p∗ ⊗Mp

= −(X 0∗)−1M0X k+1∗ − (X 0∗)−1
k∑
p=1

p∑
q=1

(−1)q

(X 0∗)q+1
X k+1−p∗ ⊗

∑
i1+···+iq=p
1≤i1...iq≤p

X i1∗ ⊗ · · · ⊗ X iq∗

= −(X 0∗)−2X k+1∗ − (X 0∗)−1
k∑
q=1

(−1)q

(X 0∗)q+1

k∑
p=q

∑
i1+···+iq=p
1≤i1...iq≤p

X k+1−p∗ ⊗X i1∗ ⊗ · · · ⊗ X iq∗

= −(X 0∗)−2X k+1∗ − (X 0∗)−1
k∑
q=1

(−1)q

(X 0∗)q+1

∑
i1+···+iq+1=k+1
1≤i1...iq+1≤k+1

X iq+1∗ ⊗X i1∗ ⊗ · · · ⊗ X iq∗

= −(X 0∗)−2X k+1∗ +

k+1∑
q=2

(−1)q

(X 0∗)q+1

∑
i1+···+iq=k+1
1≤i1...iq≤k+1

X i1∗ ⊗ · · · ⊗ X iq∗,

from where the result follows. �
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Remark 2. This result essentially states that
∑+∞
k=0 ε

kMk · ∇k is the formal series expansion of(
+∞∑
k=0

εkX k · ∇k
)−1

.

Indeed, it is elementary to show the following identity for the inverse of a power series
∑+∞
k=0 akz

k with
(ak) ∈ CN, z ∈ C and radius of convergence R > 0:(

+∞∑
k=0

akz
k

)−1
= a−10 +

+∞∑
k=1

 k∑
p=1

(−1)p

ap+1
0

∑
i1+···+ip=k
1≤i1...ip≤k

ai1ai2 . . . aip

 zk. (3.16)

We now turn on the derivation of the “criminal” ansatz (2.12). Being guided by (2.11), this ansatz is
obtained by writing the oscillatory part ui(x, y) in terms of the non oscillatory part u∗i (x):

Proposition 7. Given the previous definitions (3.1) and (3.7) of respectively ui and u∗i , the following identity
holds:

∀i ≥ 0, ui(x, y) =

i∑
k=0

(
k∑
p=0

Mp ⊗X k−p(y)

)
· ∇ku∗i−k(x). (3.17)

Proof. We substitute (3.13) into (3.3), which yields

ui(x, y) =

i∑
p=0

i−p∑
q=0

(X p(y)⊗Mq) · ∇p+qu∗i−p−q(x)

=

i∑
p=0

i∑
k=p

(X p(y)⊗Mp−k) · ∇ku∗i−k(x) (change of indices k = p+ q)

=

i∑
k=0

k∑
p=0

(X p(y)⊗Mp−k) · ∇ku∗i−k(x) (interversion of summation)

(3.18)

The result follows by performing a last change of indices p↔ k − p. �

This result motivates the definition of the tensors Nk of (2.12):

Definition 2. For any k ≥ 0, we denote by Nk(y) the k-th order tensor

Nk(y) :=

k∑
p=0

Mp ⊗X k−p(y), y ∈ Y. (3.19)

Recognizing a Cauchy product, the identity (3.17) rewrites as expected as the “criminal” ansatz (2.12) which
expresses the oscillating solution uε in terms of its formal homogenized averaged u∗ε (defined in (2.8)):

uε(x) =

+∞∑
k=0

εkNk(x/ε) · ∇ku∗ε(x), x ∈ Dε. (3.20)

The last proposition of this section gathers several important properties for the tensors Nk that are dual to
those of the tensors X k stated in sections 3.1 and 3.2.

Proposition 8. The tensor Nk(y) satisfies:

1.
∫
Y
N0(y)dy = 1 and

∫
Y
Nk(y)dy = 0 for any k ≥ 1.

2. For any k ≥ 0 and assuming the convention N−1 = N−2 = 0:

−∆yyN
k+2 = 2∂jN

k+1 ⊗ ej +Nk ⊗ I +Mk+2. (3.21)

3. For any k ≥ 0,
−∆yy(∂ki1...ikN

k
i1...ik

) = (−1)k(k + 1)M0. (3.22)
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4. For any k ≥ 1 and 1 ≤ p ≤ k − 1,

Mk = (−1)p+1

∫
Y

(Nk−p ⊗ (−∆yyN
p)−Nk−p−1 ⊗Np−1 ⊗ I)dy, (3.23)

In particular, M2p depends only on the tensors Np and Np−1, which depend themselves only on the first
p+ 1 tensors X 0 . . . X p.

Proof. 1. For k = 0, it holds
∫
Y
N0(y)dy = M0X 0∗ = 1. Furthermore, the definition (3.12) of the tensor

Mk can be rewritten as

∀k ≥ 1,

∫
Y

Nk(y)dy =

k∑
p=0

X k−p∗ ⊗Mp = 0.

2. The cases k = 0 and k = 1 are easily verified. The case k ≥ 2 is obtained by writing

−∆yyN
k =

k∑
p=0

Mk−p ⊗ (−∆yyX p)

=

k∑
p=2

Mk−p ⊗ (2∂jX p−1 ⊗ ej + X p−2 ⊗ I) +Mk−1 ⊗ (2∂jX 0 ⊗ ej) +Mk

= 2∂j

(
k∑
p=1

Mk−p ⊗X p−1
)
⊗ ej +

(
k−2∑
p=0

Mp ⊗X k−p−2
)
⊗ I +Mk,

from where the result follows.
3. The proof of (3.22) is identical to that of proposition 4.
4. We start by proving the result for p = 1 with k > 1: using the point 1., we write

Mk =

∫
Y

N0 ⊗Mkdy =

∫
Y

N0 ⊗ (−∆Nk − 2∂jN
k−1 ⊗ ej −Nk−2 ⊗ I)dy

=

∫
Y

M0 ⊗Nkdy +

∫
Y

(2∂jN
0 ⊗ ej ⊗Nk−1 −N0 ⊗Nk−2 ⊗ I)dy

=

∫
Y

((−∆yyN
1)⊗Nk−1 −N0 ⊗Nk−2 ⊗ I)dy.

Assuming now the result holds until rank p with 1 ≤ p ≤ k − 2, we prove it at rank p + 1 thanks to
analogous computations:

Mk = (−1)p+1

∫
Y

(Mk−p + 2∂jN
k−p−1 ⊗ ej +Nk−p−2 ⊗ I)⊗Np −Nk−p−1 ⊗Np−1 ⊗ I)dy

= (−1)p+1

∫
Y

((−2∂jN
p ⊗ ej −Np−1 ⊗ I)⊗Nk−p−1 +Nk−p−2 ⊗Np ⊗ I)dy

= (−1)p+1

∫
Y

((∆yyN
p+1 +Mp+1)⊗Nk−p−1 +Nk−p−2 ⊗Np ⊗ I)dy.

�

3.4. Simplifications for the tensors X k∗ and Mk in case of symmetries

In this last part, we analyze how the homogenized tensors X k∗ and Mk reduce to small number of
effective coefficients when the obstacle ηT is symmetric with respect to axes of the unit cell P . Such results
are classical in the theory of homogenization; our methodology follows e.g. section 6 in [13].

In all what follows, we denote by S := (Sij)1≤i,j≤d an arbitrary orthogonal symmetry (satisfying S = ST

and SS = I). We shall specialize S in corollary 3 below to either of the following cell symmetries:

• for 1 ≤ l ≤ d, Sl denotes the symmetry with respect to the hyperplane orthogonal to el:

Sl := I − 2ele
T
l ; (3.24)
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• for 1 ≤ m 6= l ≤ d, Slm denotes the symmetry with respect to the diagonal hyperplane that is
orthogonal to el − em:

Slm := I − ele
T
l − emeTm + ele

T
m + emeTl . (3.25)

Recall the Laplace operator is invariant under such orthogonal symmetries S: for any smooth scalar field X ,

−∆(X ◦ S) = −(∆X ) ◦ S. (3.26)

Proposition 9. If the cell Y = P\ηT is invariant with respect to a symmetry S, i.e. S(Y ) = Y , then the
following identity holds for the components of the solutions X k to the cell problem (3.2):

X ki1...ik ◦ S = Si1j1 . . . SikjkX kj1...jk , (3.27)

where we recall the implicit summation convention over the repeated indices j1 . . . jk.

Proof. The result is proved by induction on k. For k = 0, it holds

−∆yy(X 0 ◦ S) = 1 ◦ S = 1

and the symmetry of Y implies that X 0 ◦ S also satisfies the boundary conditions of (3.2). This implies
X 0 ◦ S = X 0. For k = 1, we write

−∆yy(X 1
i1 ◦ S) = 2(∂i1X 0) ◦ S = 2∂j1(X 0 ◦ S)Si1j1 = 2∂j1X 0Si1j1 ,

which implies similarly X 1
i1
◦ S = Si1j1X 1

j1
. Finally, if the result holds till rank k + 1 with k ≥ 0, then

−∆yy(X k+2
i1...ik+2

◦ S) = 2(∂ik+2
X k+1
i1...ik+1

) ◦ S + δik+1ik+2
X ki1...ik ◦ S

= 2Sik+2jk+2
∂jk+2

(X k+1
i1...ik+1

◦ S) + Sik+1jk+1
Sik+2jk+2

δjk+1jk+2
X ki1...ik ◦ S

= −Si1j1 . . . Sikjk+2
∆yyX k+2

j1...jk+2
,

whence the result at rank k + 2. �

Corollary 2. If the cell Y = P\ηT is invariant with respect to a symmetry S, then the components of the
tensors X k∗ and Mk of respectively (3.8) and (3.12) satisfy:

X k∗i1...ik = Si1j1 . . . SikjkX k∗j1...jk (3.28)

Mk
i1...ik

= Si1j1 . . . SikjkM
k
j1...jk

(3.29)

where we recall the implicit summation over the repeated indices j1 . . . jk.

Proof. Equality (3.28) results from the previous proposition and from the following change of variables:

X k∗i1...ik =

∫
Y

X ki1...ikdy =

∫
Y

X ki1...ik ◦ Sdy.

Equality (3.29) can be obtained by using (3.28) in the formula (3.15). �

Corollary 3. (1) If the cell Y is symmetric with respect to all cell axes el, i.e. Sl(Y ) = Y for any
1 ≤ l ≤ d, then

X k∗i1...ik = 0 and Mk
i1...ik

= 0

whenever there exists a number r occurring with an odd multiplicity in the indices i1 . . . ik, i.e.
whenever

∃r ∈ {1, . . . , d}, Card{j ∈ {1, . . . , k} | ij = r} is odd .

(2) If the cell Y is symmetric with respect to all diagonal axes orthogonal to (el−em), i.e. Sl,m(Y ) = Y
for any 1 ≤ l < m ≤ d, then for any permutation σ ∈ Sd,

X k∗σ(i1)...σ(ik) = X k∗i1...ik .

Mk
σ(i1)...σ(ik)

= Mk
i1...ik

.
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Proof. (1) The symmetry Sl is a diagonal matrix satisfying Slel = −el and Sleq = eq for q 6= l. Hence,
replacing S by Sl in (3.28), it holds

X k∗i1...ik = (−1)δi1l+···+δiklX k∗i1...ik ,

which implies the result.
(2) Applying (3.28) to the symmetry Sl,m yields the result for σ = τ where τ is the transposition

exchanging l and m. Since this holds for any transposition τ ∈ Sd, this implies the statement for
any permutation σ ∈ Sd.

�

Let us illustrate how the previous corollary reads for the tensors M2 and M4:

• if Y is symmetric with respect to the cell axes (el)1≤l≤d, then only the coefficients M2
ii, M

4
iijj , M

4
iiii

with 1 ≤ i, j ≤ d and i 6= j are non zeros (in particular M2 is diagonal).
• if in addition Y is symmetric with respect to the hyperplane orthogonal to el − em, then these

coefficients do not depend on the values of the distinct indices i and j. As a result, M2 is a multiple
of the identity and M4 reduces to two effective coefficients: there exists constants α, β, ν ∈ R such
that

M2 · ∇2 = ν∆ and M4 · ∇4 = α

d∑
i=1

∂4iiii + β
∑

1≤i 6=j≤d

∂4iijj .

4. Homogenized equations of order 2K + 2: tensors D2k
K

This section details the steps (4) and (5) of section 2.2 concerned with the process of truncating the infinite
order homogenized equation (2.10) so as to obtain well-posed effective models of finite order. Recall that
this process is needed because (1.10) is in general ill-posed, since the tensors Mk do not have any particular
sign (in view of (3.15)).

The first section 4.1 introduces the main technical results which allow to derive error estimates. More
particularly we show in section 4.1 that for any integer K ′ ∈ N, any family of non-oscillating functions
(v∗ε )ε>0 yields an error estimate of order O(εK

′+3) provided (i) v∗ε is of order O(ε2) and (ii) v∗ε solves the

infinite order homogenized equation (1.9) up to a remainder of order O(εK
′+1):

K′∑
k=0

εk−2Mk · ∇kv∗ε = f +O(εK
′+1). (4.1)

In particular, this result reminds us that higher order models are generally not unique, they differ by the
choice of extra differential operators of order greater than K ′ which turn (4.1) into a well-posed model.

Leaving momentarily these considerations aside, we propose in section 4.2, a “variational” method inspired
from [52, 23] which allows to construct a well-posed effective model (1.6) of order 2K+2 for any K ∈ N. The
procedure relies on an energy minimization principle based on the criminal ansatz (1.11); the coefficients
D2k
K are inferred from an effective energy J∗K (definition 4) and are a priori distinct from the tensors M2k.

These properties enable us to establish that the obtained model is elliptic (in particular, well-posed), hence
amenable to numerical computations.

Finally, we obtain in section 4.3 that surprisingly, it holds D2k
K = M2k for any 0 ≤ 2k ≤ K, which implies

that (4.1) is satisfied by the solution v∗ε ≡ v∗ε,K with K ′ = 2K + 1 (recall M2k+1 = 0 for any k ∈ N from

corollary 1). The error estimate (1.14) of order O(ε2K+4) follows in corollary 5.

4.1. Sufficient conditions under which an effective solution yields higher order approximations

The main result of this part is proposition 10 where we provide sufficient conditions under which a
sequence of sequence of macroscopic functions v∗ε ∈ C∞(D) (depending on ε, K and f) yields a high order
approximation of uε. The proof is based on the properties of the tensors Nk stated in proposition 8 and the
next three results.
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Lemma 1 (see e.g. Lions (1981) [41]). There exists a constant C independent of ε such that for any
φ ∈ H1(Dε) satisfying φ = 0 on the boundary ∂ωε of the holes, the following Poincaré inequality holds:

||φ||L2(Dε) ≤ Cε||∇φ||L2(Dε,Rd).

Corollary 4. For any h ∈ L2(Dε), let rε ∈ H1(Dε) be the unique solution to the Poisson problem
−∆rε = h in Dε

rε = 0 on ∂ωε

rε is D–periodic.

(4.2)

There exists a constant C independent of ε and h such that

||rε||L2(Dε) + ε||∇rε||L2(Dε,Rd) ≤ C||h||L2(Dε)ε
2. (4.3)

Proof. This result is classical; it is a consequence of lemma 1 and of the energy estimate∫
Dε

|∇rε|2dx =

∫
Dε

hrεdx ≤ ||h||L2(Dε)||rε||L2(Dε) ≤ Cε||h||L2(Dε)||∇rε||L2(Dε,Rd)

which implies ||∇rε||L2(Dε,Rd) ≤ C||h||L2(Dε)ε, then (4.3). �

Lemma 2. Assume that the boundary of obstacle ηT is smooth. Then, for any k ∈ N, the tensor X k is
well-defined and is smooth, namely it holds X k ∈ C∞(Y ). In particular, X k ∈ L∞(Y ) ∩H1(Y ).

Proof. Since the constant function 1 is smooth, standard regularity theory for the Laplace operator −∆yy

(see [35, 22, 31]) implies X 0 ∈ C∞(Y ). The result follows by induction by repeating this argument to X 1

and X k+2 for any k ≥ 0. �

Proposition 10. Let v∗ε ∈ C∞(D) be a D–periodic function depending on ε (and possibly on K ′ and f)
satisfying the following two hypotheses:

1. for any m ∈ N, there exists a constant CK′,m(f) depending only on m, K ′ and f ∈ C∞(D) such that

||v∗ε ||Hm(D) ≤ CK′,m(f)ε2 (4.4)

2. v∗ε solves the infinite order homogenized equation (1.9) up to a remainder of order O(εK
′+1):∣∣∣∣∣∣

∣∣∣∣∣∣
K′∑
k=0

εk−2Mk · ∇kv∗ε − f

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(D)

≤ CK′(f)εK
′+1. (4.5)

Then the reconstructed function Wε,K′(v
∗
ε ) of (1.12) approximates the solution uε of the perforated Poisson

problem (1.1) at order O(εK
′+3), viz. there exists a constant CK′(f) independent of ε such that

||uε −Wε,K′(v
∗
ε )||L2(Dε) + ε||∇(uε −Wε,K′(v

∗
ε ))||L2(Dε,Rd) ≤ CK′(f)εK

′+3.

Proof. Let us compute

−∆Wε,K′(v
∗
ε ) =

K′∑
k=0

εk−2(−∆Nk − 2∂lN
k−1 ⊗ el −Nk−2 ⊗ I)(·/ε) · ∇kv∗ε

− εK
′−1(2∂lN

K′ ⊗ el +NK′−1 ⊗ I)(·/ε) · ∇K
′+1v∗ε − εK

′
NK′(·/ε)⊗ I · ∇K

′+2v∗ε

=

K′∑
k=0

εk−2Mk · ∇kv∗ε

− εK
′−1(2∂lN

K′ ⊗ el +NK′−1 ⊗ I)(·/ε) · ∇K
′+1v∗ε − εK

′
NK′(·/ε)⊗ I · ∇K

′+2v∗ε ,

where we have used (3.21) to obtain the second equality. Since the functions (Nk)k∈N are smooth (lemma 2

and (3.19)), assumption (4.4) implies that the last two terms are lower than εK
′+1:∣∣∣∣∣∣εK′−1(2∂lN

K′ ⊗ el +NK′−1 ⊗ I)(·/ε) · ∇K
′+1v∗ε + εK

′
NK′(·/ε)⊗ I · ∇K

′+2v∗ε

∣∣∣∣∣∣
L2(Dε)

≤ CK′(f)εK
′+1.

Using now assumption (4.5) and applying corollary 4 to rε := uε −Wε,K′(v
∗
ε ) yields the result. �
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4.2. Construction of a well-posed higher order effective model by mean of a variational principle

Leaving momentarily aside the result of proposition 10, we now detail the construction of our effective
model (1.6) of finite order which is inspired from the works [15, 52, 23]. The construction of the coefficients
D2k
K from an effective energy is exposed in section 4.2.1, and the well-posedness of the effective model is

established in section 4.2.2.

4.2.1. The method of Smyshlyaev and Cherednichenko [52]

According to the ideas outlined in step (4) of section 2.2, we consider truncations Wε,K(v) of the “criminal”
ansatz (2.12) of the form:

Wε,K(v)(x) :=

K∑
k=0

εkNk(x/ε) · ∇kv(x), x ∈ D, (4.6)

where we seek a function v ∈ HK+1(D) which does not depend on the fast variable x/ε and which approxi-
mates the formal homogenized average u∗ε of (2.8). The tensors Nk(y) is extended by 0 in P\Y for (4.6) to
make sense in D\Dε.

For any u ∈ H1(D) and f ∈ L2(D), we denote by J(u, f) the energy

J(u, f) :=

∫
D

(
1

2
|∇u|2 − fu

)
dx.

Following the lines of the point (4) of section 2.2, we consider the problem (2.15) of finding a minimizer of
v 7→ J(Wε,K(v), f). The key step of the strategy is to eliminate the fast variable x/ε in J(Wε,K(v), f) so as
to obtain an effective energy J∗K(v, f, ε) ' J(Wε,K(v), f) which does not involve oscillating functions. The
main technical tool which allows us to perform this operation is the following classical lemma of two-scale
convergence (see e.g. Appendix C. of [52] or [6]).

Lemma 3. Let φ be a P = [0, 1]d–periodic function and f ∈ C∞(D) be a smooth D–periodic function. Then
for any k ∈ N arbitrarily large, the following inequality holds:∣∣∣∣∫

D

f(x)φ(x/ε)dx−
∫
D

∫
P

f(x)φ(y)dydx

∣∣∣∣ ≤ Ld/2

|2π|p

∣∣∣∣∣∣∣∣φ− ∫
P

φdy

∣∣∣∣∣∣∣∣
L2(P )

||f ||Hp(D)ε
p. (4.7)

Proof. See Lemma 7.3 in [32] for a proof of this exact statement. �

Before providing the definition of J∗K based on the application of lemma 3, we introduce several additional
tensors that arise in the averaging process.

Definition 3 (Tensors Bl,mK ). For any K ∈ N, 1 ≤ j ≤ d and 0 ≤ k ≤ K + 1, let Ñk
j (y) (with implicit

dependence with respect to K) be the k-th order tensor defined by

Ñk
j (y) =


∂jN

0(y) if k = 0

∂jN
k(y) +Nk−1(y)⊗ ej if 1 ≤ k ≤ K

NK(y)⊗ ej if k = K + 1.

(4.8)

We define a family of constant bilinear tensors Bl,mK of order l +m by the formula

Bl,mK :=

∫
Y

Ñ l
j(y)⊗ Ñm

j (y)dy, for any 0 ≤ l,m ≤ K + 1, (4.9)

where the Einstein summation convention is still assumed over the repeated subscript index 1 ≤ j ≤ d.

Definition 4 (Approximate energy J∗K). For any f ∈ L2(D) and periodic function v ∈ HK+1(D), we define

J∗K(v, f, ε) :=

∫
D

1

2

K+1∑
l,m=0

εl+m−2Bl,mK ∇
lv∇mv − fv

 dx. (4.10)

where we recall (2.5) for the definition of Bl,mK ∇lv∇mv.
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The definition of the energy J∗K(v, f, ε) is motivated by the following asymptotic—provided by lemma 3—
which holds with any p ≥ 0 arbitrarily large

J(Wε,K(v), f) = J∗K(v, f, ε) + o(εp).

More precisely, we have the following result:

Proposition 11. Assume f ∈ C∞(D) is D–periodic. Let v ∈ C∞(D) be a smooth D–periodic function and
Wε,K(v) ∈ C∞(Dε) be the truncated ansatz of the form of (4.6). The following estimate holds true with p ≥ 0
arbitrarily large:

|J(Wε,K(v), f)− J∗K(v, f, ε)| ≤ CK,p(||v||2Hp+2(D) + ||f ||2Hp(D))ε
p.

for a constant CK,p depending only on p and K (and η).

Proof. For any 1 ≤ j ≤ d, the partial derivative ∂xjWε,K(v) reads

∂xjWε,K(v) =

K∑
k=0

(
εk−1∂yjN

k(·/ε) · ∇kv + εkNk(·/ε)⊗ ej · ∇k+1v
)

=
K+1∑
i=0

εk−1Ñk
j (·/ε) · ∇kv,

by the definition (4.8) of the tensors Ñk
j . The computation of the energy J(Wε,K(v), f) yields then

J(Wε,K(v), f)

=

∫
D

1

2

K+1∑
l,m=0

εl+m−2(Ñ l
j(·/ε) · ∇lv)(Ñm

j (·/ε) · ∇mv)−
K∑
l=0

εl(N l(·/ε) · ∇lv)f

dx.
(4.11)

The result follows by estimating both term after applying lemma 3:

∀0 ≤ l,m ≤ K + 1,

∣∣∣∣∫
D

εl+m−2
(

(Ñ l
j(·/ε) · ∇lv)(Ñm

j (·/ε) · ∇mv)− Bl,mK ∇
lv∇mv

)
dx

∣∣∣∣
≤ Cpεp||∇lv ⊗∇mv||Hp−(l+m−2)(D,Rdl+m )

≤ C ′pεp
(
||∇lv||2

Hp−(l+m−2)(D,Rdl ) + ||∇mv||2Hp−(l+m−2)(D,Rdm )

)
≤ C ′′p εp||v||2Hp+2(D),

(4.12)

∀0 ≤ l ≤ K,
∣∣∣∣∫
D

εl
(
N l(·/ε) · ∇lvf − fv

)
dx

∣∣∣∣ ≤ Cpεp||f∇lv||Hp−l(D,Rdl )
≤ C ′pεp(||f ||2Hp−l(D) + ||v||2Hp(D)) ≤ C

′
pε
p(||f ||2Hp(D) + ||v||2Hp(D)),

(4.13)

where we used that N l is of average 1 if l = 0 and 0 otherwise (point 1. of proposition 8). �

The approximate energy (4.10) is used (instead of J(Wε,K(v), f) in (2.15)) in order to construct our higher
order homogenized model.

Definition 5. For any K ∈ N, we call homogenized equation of order 2K + 2 the Euler–Lagrange equation
associated with the minimization problem

min
v∈HK+1(D)

J∗K(v, f, ε)

s.t. v is D–periodic.
(4.14)

This equation reads explicitly in terms of a higher order homogenized solution v∗K ∈ HK+1(D) as
K+1∑
k=0

ε2k−2D2k
K · ∇2kv∗ε,K = f

v∗ε,K is D–periodic,

(4.15)
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where the constant tensors D2k
K are defined for any 0 ≤ 2k ≤ 2K + 2 by:

D2k
K :=

2k∑
l=0

(−1)lBl,2k−lK , (4.16)

assuming the convention Bl,mK = 0 for any l > K + 1 or m > K + 1.

Proof. Let us detail slightly the derivation of (4.15). The Euler–Lagrange equation of (4.14) reads, after an
integration by parts:

K+1∑
l,m=0

εl+m−2
1

2
((−1)mBl,mK + (−1)lBm,lK )∇l+mv∗ε,K = f. (4.17)

Since Bl,mK = Bm,lK and (−1)l + (−1)m vanishes when l and m are not of the same parity, only terms such
that l +m is even are possibly not zero in the above equation. Hence, (4.17) rewrites as (4.15) with

D2k
K =

∑
l+m=2k

1

2
((−1)l + (−1)m)Bl,mK =

2k∑
l=0

1

2
((−1)l + (−1)2k−l)Bl,2k−lK , for any 0 ≤ 2k ≤ 2K + 2,

which eventually yields the desired expression (4.16). �

Remark 3. As announced in the introduction, (4.15) turns out to be a simple correction of (1.10), see
proposition 13 below.

4.2.2. Well-posedness of the homogenized model of order 2K + 2

We now establish the well-posedness of the high order homogenized model (4.15). More precisely, we prove
its ellipticity, which implies the existence and the uniqueness of the effective solution v∗ε,K . Before stating
the result, let us stress the following observation which is obvious, but a somewhat important consequence
of the definition (4.9).

Lemma 4. The dominant tensor BK+1,K+1
K is symmetric and non-negative.

Proposition 12. Assume further that the dominant tensor BK+1,K+1
K is non-degenerate, viz. there exists a

constant ν > 0 such that

∀ξ = ξi1...iK+1
∈ Rd

K+1

, BK+1,K+1
K · ξξ ≥ ν|ξ|2. (4.18)

Then (4.15) is elliptic and there exists a unique solution v∗K ∈ HK+1(D) to the homogenized equation (4.15)
of order 2K + 2.

Proof. Let us consider the space VK := {v ∈ HK+1(D) | v is D–periodic } and introduce a : VK × VK → R
and b : VK → R the respective bilinear and linear forms defined for any v ∈ VK by

a(v, v) =

∫
D

K+1∑
l,m=0

εl+m−2Bl,mK ∇
lv∇mvdx, (4.19)

b(v) =

∫
D

fvdx. (4.20)

The homogenized equation (4.15) reduces to the following variational problem:

find v∗ε,K ∈ VK such that ∀v ∈ VK , a(v∗ε,K , v) = b(v). (4.21)

From there, one could directly rely on the theory of Fredholm operators [42] to conclude to the existence
of a solution v∗ε,K . However we are going to show that a is coercive (meaning (4.15) is elliptic), which will

allow us to apply Lax–Milgram theorem [30].
Under the non-degeneracy assumption (4.18), it is readily obtained that there exists a constant Cε (depending
on ε) such that

∀v ∈ VK(D), a(v, v) ≥ (ε2Kν)||∇K+1v||2L2(D,Rd) + ε−2M0||v||2L2(D) − Cε||v||HK+1(D)||v||HK(D).
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Remembering M0 > 0 and applying the following Young’s inequality

∀x, y ∈ R, |xy| ≤ x2

2γ
+
γy2

2

for a sufficiently small γ > 0, we obtain the existence of two constants αε,K > 0 and βε,K > 0 (that depend
on ε and K) such that

∀v ∈ VK(D), a(v, v) ≥ αε,K ||v||2HK+1(D) − βε,K ||v||
2
HK(D). (4.22)

Furthermore, (4.9) together with the proof of proposition 11 allow to rewrite a(v, v) as

a(v, v) =

∫
D

∫
Y

∣∣∣∣∣(ε−1∇y +∇x)

(
K∑
k=0

εkNk(y) · ∇kv(x)

)∣∣∣∣∣
2

dx. (4.23)

Then,
∫
D

∫
Y
u(x, y)2dydx ≥

∫
D

∣∣∫
Y
u(x, y)dy

∣∣2 dx and point 1. of proposition 8 imply the the following
inequality:

∀v ∈ VK , a(v, v) ≥ ||∇v||2L2(D,Rd). (4.24)

We now prove that (4.22) and (4.24) together imply the coercivity of a on the space VK , that is we claim
there exists a constant cε,K > 0 such that

∀v ∈ VK , a(v, v) ≥ cε,K ||v||2HK+1(D). (4.25)

Assume the contrary is true, then one can find a sequence (vn) of functions satisfying ||vn||HK+1(D) = 1
and such that a(vn, vn)→ 0. Up to extracting a relevant subsequence, we may assume that vn ⇀ v weakly
in HK+1(D) and vn → v strongly in HK(D). Then the polarization identity together with (4.22) and the
positivity of a allow to show that (vn) is a Cauchy sequence in VK :

∀p, q ∈ N, αε,K ||vp−vq||2HK+1(D) ≤ a(vp − vq, vp − vq) + βε,K ||vp − vq||2HK(D)

= 2a(vp, vp) + 2a(vq, vq)− a(vp + vq, vp + vq) + βε,K ||vp − vq||2HK(D)

≤ 2a(vp, vp) + 2a(vq, vq) + βε,K ||vp − vq||2HK(D)

p,q→∞−−−−−→ 0.

Therefore vn → v strongly in VK . Using the continuity of a, we infer then a(v, v) = limn→+∞ a(vn, vn) = 0.
The property (4.24) yields then that v is a constant. Therefore, 0 = a(v, v) = ε−2M0||v||2L2(D), which implies

v = 0. This is in contradiction with the fact that ||vn||HK+1(D) = 1 for any n ≥ 0 and the strong convergence

of (vn) in HK+1(D).
Finally, the coercivity (4.25) and the continuity of a and b over VK ensure that all the assumptions of the

Lax–Milgram theorem are fulfilled, which yields existence and uniqueness to the problem (4.21). �

Remark 4. It is always possible to add to D2K+2
K a small perturbation making (4.18) satisfied while keeping

an “admissible” higher order homogenized equation. Indeed, since the other 2K + 1 coefficients are kept
unaffected, the error estimate provided by proposition 10 and corollary 5 below remain valid. Let us remark,
however, that this non-degeneracy condition is automatically fulfilled for any shape of obstacle ηT when
K = 0 because it is easily shown that D2

0 = −(M0)2
∫
Y
|X 0(y)|2dy > 0 (see (4.29)). In the general case

K ≥ 1, it could fail to be satisfied for particular obstacle shapes (e.g. in case of invariance of ηT along some
of the cell axes).

4.3. Asymptotic surprise: D2k
K = M2k; error estimates for the homogenized model of order 2K+2

We terminate this section by verifying the assumptions of proposition 10 which ensure the validity of the
error estimate (1.14) claimed in the introduction. The next proposition establishes the point 1.

Lemma 5. Assume the non-degeneracy condition (4.18). The solution v∗ε,K of (4.15) belongs to C∞(D) and
for any m ∈ N, there exists a constant Cm,K that does not depend on ε such that

||v∗ε,K ||Hm(D) ≤ Cm,K ||f ||Hm(D)ε
2. (4.26)
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Proof. We solve (4.15) explicitly with Fourier expansions in the periodic domain D = [0, L]d. Let f̂(ξ) be
the Fourier coefficients of f and c(ξ, ε) the symbol of the differential operator of (4.15), namely:

c(ξ, ε) =

K+1∑
k=0

(−1)k|2π/L|2kε2k−2D2k
K · ξ2k,

where ξ0 = 1 by convention and where we have used the short-hand notation D2k
K · ξ2k := D2k

i1...i2k
ξi1...i2k .

For ξ ∈ Zd, the Fourier coefficients v̂∗ε,K of v∗K read:

v̂∗ε,K(ξ) =
f̂(ξ)

c(ξ, ε)
. (4.27)

Applying Parseval’s identity to the bilinear form (4.23), we obtain

∀ξ ∈ Zd, ∀ε > 0, c(ξ, ε) =

∫
Y

∣∣∣∣∣(ε−1∇y + (2iπ/L)ξ)

(
K∑
k=0

(2iπ/L)kεkNk(y) · ξk
)∣∣∣∣∣

2

dy

= ε−2Φ(εξ).

where Φ is the function defined by:

Φ :Rd −→ R

λ 7−→
∫
Y

∣∣∣∣∣(∇y + (2iπ/L)λ)

(
K∑
k=0

(2iπ/L)kNk(y) · λk
)∣∣∣∣∣

2

dy.

In order to obtain (4.26), it is enough to prove the existence of some positive constant CK > 0 such that
Φ(λ) ≥ CK for any λ ∈ Rd. The function Φ is clearly continuous, nonnegative and satisfies Φ(λ) → +∞
when |λ| → +∞ because of (4.18). Therefore it admits a minimum point λ0 ∈ (R+)d. Let us assume that
Φ(λ0) = 0. Using the Cauchy-Schwartz inequality, we obtain

0 = Φ(λ0) ≥

∣∣∣∣∣
∫
Y

(∇y + (2iπ/L)λ0)

(
K∑
k=0

(2iπ/L)kNk(y) · λk0

)
dy

∣∣∣∣∣
2

= 4π2/L2|λ0|2.

Therefore it must hold λ0 = 0, however this is not possible because

Φ(0) =

∫
Y

∣∣∇yN0(y)
∣∣2 dy = M0 > 0.

Consequently, ∀λ ∈ Rd, Φ(λ) ≥ Φ(λ0) > 0 which concludes the proof. �

The point 2 of proposition 10 is the object of the next result. More precisely, we prove that surprisingly,
the coefficients D2k

K and M2k coincide for 0 ≤ 2k ≤ 2K. A similar fact was also observed for the (scalar)
antiplane elasticity model considered in [52], but only for the first half 0 ≤ 2k ≤ K of the coefficients (and
without providing a proof).

Proposition 13. All the coefficients of the homogenized equation (1.6) of order 2K + 2 (defined in (4.15))
coincide with those of the formal infinite order homogenized equation (1.9), except the leading order one:

D2k
K = M2k for any 0 ≤ 2k ≤ 2K, (4.28)

D2K+2
K = (−1)K+1

∫
Y

NK ⊗NK ⊗ Idy. (4.29)

Proof. First of all, (4.29) is only a rewriting of (4.16). We show the following, slightly more general, result:

∀0 ≤ k ≤ 2K, Mk =

k∑
l=0

(−1)lBl,k−lK , (4.30)

which is enough for our purpose because of (4.16). We distinguish two cases.
22



1. Case 0 ≤ k ≤ K. For 0 ≤ k, l ≤ K, the coefficient Bl,k−lK is given by (from (4.8))

Bl,k−lK =

∫
Y

(∂jN
l +N l−1 ⊗ ej)⊗ (∂jN

k−l +Nk−l−1 ⊗ ej)dy, (4.31)

where we use the convention N−1 = N−2 = 0. After an integration by parts, we rewrite Bl,k−lK as follows:

Bl,k−lK =

∫
Y

(−∆N l − 2∂jN
l−1 ⊗ ej −N l−2 ⊗ I)⊗Nk−ldy

+

∫
Y

(∂jN
l ⊗Nk−l−1 ⊗ ej +N l−1 ⊗Nk−l−1 ⊗ I + ∂jN

l−1 ⊗Nk−l ⊗ ej +N l−2 ⊗Nk−l ⊗ I)dy

=

∫
Y

(M l ⊗Nk−l)dy +Bk,l +Bk,l−1

(4.32)

where Bk,l is the k-th order tensor defined by

Bk,l :=

∫
Y

(∂jN
l ⊗Nk−l−1 ⊗ ej +N l−1 ⊗Nk−l−1 ⊗ I)dy.

Using now the point 1. of proposition 8 and recognizing a telescopic series, we obtain

k∑
l=0

(−1)lBl,k−lK = (−1)kMk +

k∑
l=0

((−1)lBk,l − (−1)l−1Bk,l−1)

= (−1)kMk + (−1)kBk,k − (−1)−1Bk,−1.

This implies (4.30) by using the facts that Mk = 0 when k is odd and Bk,k = Bk,−1 = 0 owing to our
convention N−1 = 0.
2. Case K + 1 ≤ k ≤ 2K. The equality (4.31) is valid for any K + 1 ≤ k ≤ 2K and 0 ≤ l ≤ k if we assume
by convention (in this part only) that Nm = 0 whenever m > K, because of the definition (4.9). Then (4.32)
remains true provided 0 ≤ l ≤ K. Therefore, recognizing the same telescopic series, we are able to compute

K∑
l=0

(−1)lBl,k−lK = (−1)KBk,K = (−1)K
∫
Y

(∂jN
K ⊗Nk−K−1 ⊗ ej +NK−1 ⊗Nk−K−1 ⊗ I)dy.

Remembering that Bl,mK = 0 whenever l > K + 1 or m > K + 1, we eventually obtain

k∑
l=0

(−1)lBl,k−lK =

K∑
l=0

(−1)lBl,k−lK + (−1)K+1BK+1,k−K−1
K

= (−1)K
∫
Y

(∂jN
K ⊗Nk−K−1 ⊗ ej +NK−1 ⊗Nk−K−1 ⊗ I)dy

+ (−1)K+1

∫
Y

(NK ⊗ ej)⊗ (∂jN
k−K−1 +Nk−K−2 ⊗ ej)dy

= (−1)K
∫
Y

((2∂jN
K ⊗ ej +NK−1 ⊗ I)⊗Nk−K−1 −NK ⊗Nk−K−2 ⊗ I)dy

= (−1)K
∫
Y

((−∆yyN
K+1 −MK+1)⊗Nk−K−1 −NK ⊗Nk−K−2 ⊗ I)dy,

(4.33)

where we have used (3.21) in the last equality. We now consider two cases:

• if k = K + 1, then the above expression reads

K+1∑
l=0

(−1)lBl,K+1−l
K = (−1)K

∫
Y

((−∆yyN
K+1 −MK+1)⊗N0)dy

= (−1)K+1MK+1 + (−1)K
∫
Y

NK+1 ⊗M0dy = (−1)K+1MK+1 = MK+1,

where the last equality is a consequence of corollary 1.
• if K + 2 ≤ k ≤ 2K, then (4.33) coincides with Mk by using (3.23) (with p = K + 1).
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Remark 5. As is highlighted by the proof proposition 13, the “surprising” fact that D2k
K = M2k even for

K + 1 ≤ 2k ≤ 2K is partly due to the fact that for any p ∈ N, the tensor M2p can be computed from the
first p homogenized tensors (X i(y))0≤i≤p only (point 4. of proposition 8).

Since we have verified that all the requirements of proposition 10 are satisfied with v∗ε ≡ v∗ε,K and

L ≡ 2K + 1 (remember M2K+1 = 0 from corollary 1), we are in position to state our main result.

Corollary 5. The error estimate (1.14) holds for the reconstructed solution Wε,2K+1(v∗ε,K) where v∗ε,K is

the solution of (4.15).

5. Retrieving the classical regimes: low volume fraction limits when the size of the
obstacles tends to zero

The goal of this section is to show that our higher order homogenized models (1.6) have the potential of
being valid in any regime of size of holes. For this purpose, we obtain asymptotics for the tensors X k∗ and
Mk in the low volume fraction limit when the scaling η of the obstacle vanishes to zero: η → 0. Our main
results are stated in corollaries 6 and 7; they imply that both the infinite order homogenized equation (3.14)
as well as the effective model (1.6) of order 2K + 2 converge coefficient-wise to either of the three classical
regimes of the literature (namely, to the original Laplace equation (1.1), or to the analogue of the Brinkman
or Darcy equation (1.3) and (1.4)) if K = 0, and to either of (1.3) or (1.4) for K ≥ 1 if η remains greater or
comparable to the critical size ηcrit ∼ η2/(d−2).
In this whole subsection, it is assumed, for simplicity, that the space dimension is greater than 3:

d ≥ 3. (5.1)

We do not consider the case d = 2 which requires a specific treatment, although very similar results could
be stated (see e.g. [4]).

In all what follows, the hole ηT is assumed to be strictly included in the unit cell for any η ≤ 1 (it does not
touch the boundary): ηT ⊂⊂ P . Functions of the rescaled cell η−1P are indicated by a tilde ˜notation. For
a given function ṽ ∈ L2(η−1P ), we denote by 〈ṽ〉 the average 〈ṽ〉 := ηd

∫
η−1P

ṽ(y)dy. With a small abuse

of notation, when ṽ ∈ L2(η−1P\T ), we still denote by 〈ṽ〉 this quantity where we implicitly extend ṽ by 0
within T .

Let us recall that for any v ∈ H1(P\(ηT )), if ṽ is the rescaled function defined by ṽ(y) := v(ηy) in the
rescaled cell η−1P\T , then the L2 norms of v and ṽ and their gradients are related by the following identities:

||v||L2(P\(ηT )) = ηd/2||ṽ||L2(η−1P\T ) and ||∇v||L2(P\(ηT ),Rd) = ηd/2−1||∇ṽ||L2(η−1P\T,Rd).

We follow the methodology of [4] (and also [37]), which relies extensively on the use of the next two
lemmas:

Lemma 6. Assume d ≥ 3. There exists a constant C > 0 independent of η > 0 such that for any ṽ ∈
H1(η−1P\T ) which vanishes on the hole ∂T and which is η−1P periodic, the following inequalities hold:

||ṽ||L2(η−1P\T ) ≤ Cη−d/2||∇ṽ||L2(η−1P\T,Rd), (5.2)

|〈ṽ〉| ≤ C||∇ṽ||L2(η−1P\T,Rd), (5.3)

||ṽ − 〈ṽ〉||L2(η−1P\T ) ≤ Cη−1||∇ṽ||L2(η−1P\T,Rd), (5.4)

||ṽ − 〈ṽ〉||L2d/(d−2)(η−1P\T ) ≤ C||∇ṽ||L2(η−1P\T,Rd). (5.5)

Proof. See [4, 38]. �

Lemma 7. Consider h̃ ∈ L2(η−1P\T ) and let ṽ ∈ H1(η−1P\T ) be the unique solution to the Poisson
problem: 

−∆ṽ = h̃ in η−1P\T
ṽ = 0 on ∂T

ṽ is η−1P\T–periodic.

(5.6)
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There exists a constant C > 0 independent of η and h̃ such that

||∇ṽ||L2(η−1P\T,Rd) ≤ C(η−1||h̃− 〈h̃〉||L2(η−1P\T ) + η−d|〈h̃〉|). (5.7)

Proof. An integration by parts and the use of lemma 6 yields

||∇ṽ||L2(η−1P\T,Rd) =

∫
η−1P\T

h̃ṽdy =

∫
η−1P\T

(h̃− 〈h̃〉)(ṽ − 〈ṽ〉)dy +

∫
η−1P\T

〈h̃〉〈ṽ〉dy

≤ C(||h̃− 〈h̃〉||L2(η−1P\T )||ṽ − 〈ṽ〉||L2(η−1P\T ) + η−d|〈h̃〉| |〈ṽ〉|)

≤ C(η−1||h̃− 〈h̃〉||L2(η−1P\T ) + η−d|〈h̃〉|)||∇ṽ||L2(η−1P\T,Rd).

(5.8)

�

We also need to consider the so-called Deny-Lions space D1,2(Rd\T ) whose definition is recalled below (the
reader is referred to [4, 3, 5] and also [44], p.59. for more details).

Definition 6 (Deny-Lions space). The Deny-Lions space D1,2(Rd\T ) is the completion of the space of
smooth functions by the L2 norm of their gradients:

D1,2(Rd\T ) := D(Rd\T )
||∇·||

L2(Rd\T,Rd) .

When d ≥ 3, it is admits the following characterization:

D1,2(Rd\T ) = {φ measurable | ||φ||L2d/(d−2)(Rd\T ) < +∞ and ||∇φ||L2(Rd\T,Rd) < +∞}.

We introduce Ψ the unique solution to the exterior problem
−∆Ψ = 0 in Rd − T

Ψ = 0 on ∂T

Ψ→ 1 at ∞,
(5.9)

and we denote by F the normal flux

F :=

∫
Rd\T

|∇Ψ|2dx = −
∫
∂T

∇Ψ · nds, (5.10)

where n is the normal pointing inward T . The condition Ψ→ 1 at ∞ is to be understood in the sense that
Ψ− 1 ∈ D1,2(Rd\T ).

The following result provides asymptotics for the tensors X k and their averages X k∗. It extends Theorem
3.1 of [4] (see also [37]) where the special case k = 0 was obtained for the Stokes system.

Proposition 14. Assume d ≥ 3. For any k ≥ 0, denote by X̃ 2k and X̃ 2k+1 the rescaled tensors in η−1P\T
defined by:

∀x ∈ η−1P\T, X̃ 2k(x) := η(d−2)(k+1)X 2k(ηx) and X̃ 2k+1(x) := η(d−2)(k+1)X 2k+1(ηx).

Then:

(1) there exists a constant C > 0 independent of η > 0 such that:

∀η > 0, ||∇X̃ 2k||L2(η−1P\T,Rd) ≤ C and ||∇X̃ 2k+1||L2(η−1P\T,Rd) ≤ C; (5.11)

(2) the following convergences hold as η → 0:

X̃ 2k ⇀
Ψ

F k+1
J2k, weakly in H1

loc(Rd\T ) (5.12)

X̃ 2k+1 ⇀ 0 weakly in H1
loc(Rd\T ) (5.13)

X 2k∗ ∼ 1

η(d−2)(k+1)F k+1
J2k, (5.14)

where we recall J2k :=

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I (definition (2.4)).

Remark 6. Let us recall that we already know X 2k+1∗ = 0 for any k ∈ N (proposition 3).
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Proof. The result is proved by induction.

(1) Case 2k with k = 0. The tensor X̃ 0 satisfies

−∆X̃ 0 = ηd in η−1P\T (5.15)

as well as the other boundary conditions of (5.6), hence lemma 7 yields

||∇X̃ 0||L2(η−1P\T,Rd) ≤ Cη−dηd|〈1〉| ≤ C.

From (5.3), the average 〈X̃ 0〉 is bounded. Therefore, there exists a constant c0 ∈ R and a function

Ψ̂0 such that, up to extracting a subsequence,

〈X̃ 0〉 → c0 and X̃ 0 ⇀ Ψ̂0 weakly in H1
loc(Rd\T ) when η → 0.

Furthermore, the lower semi-continuity of the H1
loc(Rd\T ) norm and (5.5) imply that Ψ̂0−c0 belongs

to D1,2(Rd\T ) (see [4] for a detailed justification). Multiplying (5.15) by a compactly supported test
function Φ ∈ C∞c (Rd\T ) and integrating by part yields∫

η−1P\T
∇X̃ 0 · ∇Φdy = ηd

∫
η−1P\T

Φdy. (5.16)

Passing to the limit when η → 0 entails that Ψ̂0 is solution to the exterior problem
−∆Ψ̂0 = 0 in Rd\T

Ψ̂0 = 0 on ∂T

Ψ̂0 → c0 at ∞.

(5.17)

By linearity, the unique solution to this problem is given by Ψ̂ = c0Ψ where Ψ is the solution
to (5.9). Finally, the constant c0 can be identified by integrating (5.15) against the constant test
function Φ = 1, which implies

c0F = −
∫
∂T

∇(c0Ψ0) · nds = lim
η→0
−
∫
∂T

∇X̃ 0 · nds = 1.

Therefore, c0 = 1/F from where (5.12) follows for k = 0. Since the obtained limit is unique, the
convergence holds for the whole sequence. Then (5.14) follows from a simple change of variable.

(2) Case 2k + 1 with k = 0. A simple computation yields

−∆X̃ 1 = 2η∂jX̃ 0 ⊗ ej . (5.18)

Applying lemma 7 and remarking that 〈2η∂jX̃ 0〉 = 0, we obtain

||∇X̃ 1||L2(η−1P\T,Rd) ≤ Cη−1η||∇X̃ 0|| ≤ C ′.

Integrating (5.18) against a compactly supported test function Φ ∈ C∞c (Rd\T ) and passing to the
limit as η → 0, we obtain with similar arguments the existence of a constant tensor c1 (of order 1)
such that, up to the extraction of a subsequence,

X̃ 1 ⇀ c1Ψ weakly in H1
loc(Rd\T ) and 〈X̃ 1〉 → c1.

From proposition 3, it holds that 〈X̃ 1〉 = 0 which implies c1 = 0, hence (5.13) for k = 0.
(3) General case. We now complete the proof by induction on k. Assuming the result holds till rank

k ≥ 0, we compute

−∆X̃ 2k+2 = 2ηd−1∂jX̃ 2k+1 ⊗ ej + ηdX̃ 2k ⊗ I,

−∆X̃ 2k+3 = 2η∂jX̃ 2k+2 ⊗ ej + ηdX̃ 2k+1 ⊗ I.
Applying lemmas 6 and 7 and (5.11) at rank k, we obtain

||∇X̃ 2k+2||L2(η−1P\T,Rd)

≤ C(ηd−2||∇X̃ 2k+1||L2(η−1P\T,Rd) + ηd−1||X̃ 2k − 〈X̃ 2k〉||L2(η−1P\T ) + ||〈X̃ 2k〉||L2(η−1P\T ))

≤ C(ηd−2||∇X̃ 2k+1||L2(η−1P\T,Rd) + ηd−2||∇X̃ 2k||L2(η−1P\T,Rd) + ||∇X̃ 2k||L2(η−1P\T,Rd)) ≤ C ′,

(5.19)
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||∇X̃ 2k+3||2L2(η−1P\T,Rd)

≤ C(||∇X̃ 2k+2||L2(η−1P\T,Rd) + ηd−1||X̃ 2k+1 − 〈X̃ 2k+1〉||L2(η−1P\T ) + |〈X̃ 2k+1〉|)

≤ C(||∇X̃ 2k+2||L2(η−1P\T,Rd) + ηd−2||∇X̃ 2k+1||) ≤ C ′.
This implies (5.11) at rank k + 1. Using similar arguments as previously, we infer the existence of
constant tensors c2k+2 and c2k+3 such that

X̃ 2k+2 ⇀ c2k+2Ψ weakly in H1
loc(Rd\T ) and 〈X̃ 2k+2〉 → c2k+2

X̃ 2k+3 ⇀ c2k+3Ψ weakly in H1
loc(Rd\T ) and 〈X̃ 2k+3〉 → c2k+3.

Since we know from proposition 3 that 〈X̃ 2k+3〉 = 0, we obtain c2k+3 = 0 which yields (5.13) at rank
k+ 1. Finally, we integrate (5.19) by parts against the test function Φ = 1 in order to identify c2k+2:

c2k+2F = −
∫
∂T

∇(c2k+2Ψ) · nds = lim
η→0
−
∫
∂T

∇X̃ 2k+2 · nds = lim
η→0
〈X̃ 2k〉 ⊗ I = c2k ⊗ I.

This implies c2k+2 = J2k+2/F k+2 and c2k+3 = 0, which concludes the proof.

�

Remark 7. The convergence (5.13) seems to indicate that we may have not found the optimal scaling for
the odd order tensors X 2k+1 since we are able to identify only a zero weak limit in (5.13). A more elaborate
analysis could be carried on by different techniques, see e.g. the use of layer potentials in [37].

We are now able to identify the asymptotic behavior of the constant tensors Mk. Recall already know
that M2k+1 = 0 from corollary 1.

Corollary 6. Assume d ≥ 3. The following convergences hold for the tensors Mk as η → 0:

M0 ∼ ηd−2F, (5.20)

M2 → −I, (5.21)

∀k > 1, M2k = o

(
1

η(d−2)(k−1)

)
. (5.22)

Proof. We replace the asymptotics of proposition 14 in the explicit formula (3.15) for the tensor Mk. (5.20)
is a consequence of the definition M0 = (X 0∗)−1. (5.21) is obtained by writing

M2 = −((X 0∗)−1)2X 2∗ ∼ −η
2(d−2)F 2

η2(d−2)F 2
I = −I.

Let us now prove (5.22). By eliminating terms of odd orders in (3.15), we may write for any k ≥ 1,

M2k =

2k∑
p=1

(−1)p

(X 0∗)p+1

∑
i1+···+ip=k
1≤i1...ip≤k

X 2i1∗ ⊗ · · · ⊗ X 2ip∗

=

2k∑
p=1

(−1)pη(p+1)(d−2)F p+1
∑

i1+···+ip=k
1≤i1...ip≤k

J2i1

η(d−2)(i1+1)F i1+1
⊗ · · · ⊗ J2ip

η(d−2)(ip+1)F ip+1
+ o

(
1

η(k−1)(d−2)

)

=
J2k

η(k−1)(d−2)F k−1

 2k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1...ip≤k

1

+ o

(
1

η(k−1)(d−2)

)
.

Then (5.22) results from the last summation being zero:

∀k > 1,

k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1...ip≤k

1 = 0. (5.23)
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There are several ways to obtain the latter formula. A rather direct argument in the spirit of the proof of
proposition 6 is to apply the identity (3.16) to the power series 1/(1− z) =

∑
k∈N z

k which yields

1− z = 1 +

+∞∑
k=1

 k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1...ip≤k

1

 zk,

from where (5.23) follows by identifying the powers in zk. �

Remark 8. We retrieve formally in corollary 6 the different classical asymptotic regimes (1.3) to (1.5) for
the perforated problem (1.1) (at least for K = 0), because the coefficients of (1.9) read, as η → 0:

ε−2M0 ∼ ηd−2

ε2
F,

ε0M2 → −I,

ε2k−2M2k = o

((
ε2

ηd−2

)k−1)
for k ≥ 1.

These asymptotics bring into play the ratio ε2/ηd−2 and so the critical scaling η ∼ ε2/(d−2) corresponding to
the “Brinkman” regime (1.3) (which implies ε−2M0 → F and ε2k+2M2k = o(1)). The Darcy regimes (1.4)
and (1.5) correspond to the situation where ηd−2/ε2 → +∞; in that case the zeroth order term ε−2M0 is
dominant. The Stokes regime (1.2) is found for K = 0 and η = o(ε2/(d−2)) (which implies ε−2M0 → 0).
Note that ε0M2 → −I whatever the scaling η → 0. Unfortunately, the inverse of the critical ratio ε2/ηd−2

could blow up as η vanishes at the rate η = o(ε2/(d−2)): a more elaborate analysis shall be performed in
future works to determine whether ε2k−2M2k with k > 1 still converges to zero in this regime.

We conclude this paper with the statement that the regimes (1.4) and (1.5) are also captured in the
low volume fraction limit η → 0 by the homogenized equation (1.6) of finite order 2K + 2. Because of

proposition 13, it is enough to establish that D2K+2
K satisfies the same asymptotics than M2K+2 (hence all

the coefficients D2k
K for 0 ≤ 2k ≤ 2K + 2 because of proposition 13). The proof of this result requires the

following asymptotic bounds for the tensors Nk:

Proposition 15. Assume d ≥ 3. For any k ≥ 0, denote Ñ2k and Ñ2k+1 the rescaled tensors in η−1P\T
defined by:

∀y ∈ η−1P\T, Ñ2k(y) := η(d−2)kN2k(ηy) and Ñ2k+1(y) := η(d−2)kN2k+1(ηy).

Then there exists a constant C independent of η > 0 such that

∀η > 0, ||∇Ñ2k||L2(η−1P\T ) ≤ C and ||∇Ñ2k+1||L2(η−1P\T ) ≤ C. (5.24)

Moreover, the following convergences hold as η → 0:

Ñ0 ⇀ Ψ weakly in H1
loc(Rd\T ) (5.25)

∀k ≥ 1, Ñk ⇀ 0 weakly in H1
loc(Rd\T ). (5.26)

Proof. Using the definition (3.19) of the tensors Nk and eliminating odd order terms, the tensors Ñ2k and

Ñ2k+1 can be rewritten as:

Ñ0 =
M0

ηd−2
X̃ 0,

∀k ≥ 1, Ñ2k =
M0

ηd−2
X̃ 2k +M2 ⊗ X̃ 2k−2 +

k∑
p=2

η(d−2)(p−1)M2p ⊗ X̃ 2(k−p),

∀k ≥ 0, Ñ2k+1 =
M0

ηd−2
X̃ 2k+1 +M2 ⊗ X̃ 2k−1 +

k∑
p=2

η(d−2)(p−1)M2p ⊗ X̃ 2(k−p)+1.
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By using the results of proposition 14 and corollary 6, we obtain

Ñ0 = F X̃ 0 + oD1,2(Rd\T )(1)

∀k ≥ 1, Ñ2k = F X̃ 2k − X̃ 2k−2 ⊗ I + oD1,2(Rd\T )(1)

∀k ≥ 1, Ñ2k+1 = F X̃ 2k+1 − X̃ 2k−1 ⊗ I + oD1,2(Rd\T )(1),

where oD1,2(Rd\T ) → 0 in D1,2(Rd\T ). This implies (5.24) to (5.26) by using once again proposition 14. �

Corollary 7. It holds, as η → 0:

D2
0 → −I (5.27)

D2K+2
K = o

(
1

η(d−2)K

)
= o

(
1

η(d−2)((K+1)−1)

)
for any K ≥ 1. (5.28)

Proof. According to (4.29), D2
0 = −

∫
Y
N0 ⊗N0 ⊗ Idy. Then, proposition 14 and corollary 6 imply

−
∫
Y

N0 ⊗N0 ⊗ Idy = −(M0)2
∫
Y

|X 0|2dyI = −(M0)2η−2(d−2)ηd
∫
Y

|X̃ 0|2dyI ∼ −F 2〈X̃ 0〉2I → −I.

Finally, for K ≥ 1 we estimate D2K+2
K as follows:

D2K+2
K = (−1)Kηdη−(d−2)2bK/2c

∫
η−1P\T

(ÑK − 〈ÑK〉)⊗ (ÑK − 〈ÑK〉)dy

= O(η−(d−2)(2bK/2c−1)) = o(η−(d−2)K).

�
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