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Abstract Since decades, industrial robots are capable of grasping and manipulat-
ing rigid objects. This is possible because the geometry and position of such objects
is known beforehand by the control software. For service robots, the task is more
challenging, since it requires the robot to know all types of objects present in the
environment (e.g., in an apartment) and to recognize them on the fly to automat-
ically determine the manipulation strategy. Manipulating flexible objects is even
more difficult, since along with their position, their shape also varies depending on
the applied forces and on their physical properties. Yet, this task is paramount in
many fields, spanning from construction to food industry and surgery. This essay
reviews applications, challenges, past research works and perspectives of flexible
robot manipulation.
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1 Examples of Application

The first robots were designed for the industrial sector. Yet (Market Research
Engine, 2018) forecasts that by 2022 the service robotics market will reach almost
24 billion $, with a compound annual growth rate of more than 15%. This market
includes personal service robots for automating household tasks (e.g., cleaning or
cooking) and professional service robots (e.g., for construction, farming or medical
tasks).

To fulfill such huge demand, robots must be capable of efficiently operating in
new environments, which are not as predictable and customized as industrial ones.
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Fig. 1 Two examples of manipulation of flexible materials. Left (Cherubini, 2017): a robot
pushes some granular material (kinetic sand) to give it a desired shape, shown in the top right.
Right (Zhu et al., 2020): a dual arm robot exploits physical contacts with the environment to
position a cable for harnessing.

Manipulating flexible objects is a typical requirement of many service robotic sce-
narios. For instance, robots will have to shape granular materials for construction
and food preparation: they will have to mold clay or plaster as artisans, and dough
as bakers. In the house of the future, they will have to iron and fold clothes and
to look after the garden, by moving soil and carefully picking fruits of different
hardness. Professional service robots operating in farms must also be capable of
the latter tasks. Soft/plastic matter is very common in the healthcare field. Surgi-
cal robots should interact safely with human organs and tissue. The same applies
to robots designed for paramedic tasks, such as drug injection or massage.

While the above paragraph should have convinced the reader of the importance
of soft manipulation in service robots, it is noteworthy that the manufacturing in-
dustry has also recently turned its interest towards such problem. Soon, industrial
robots will have to automatically shape wires and metal sheets, and to insert ca-
bles, gaskets and pipes – all of which are non-rigid and cannot be handled by
classic robot controllers. Figure 1 illustrates two applications, with robots shaping
granular matter (left) and positioning a cable for harnessing (right).

Despite this broad range of applications, robotic manipulation of flexible ob-
jects is still an open research field. The next section outlines the main challenges
to be addressed within this fascinating problem.

2 Challenges

(Cambridge Dictionary, 2019) defines as flexible object one which “can be bent
easily without breaking”. External forces applied to it will deform the object, i.e.,
change its shape and appearance. Once the force is removed the deformation is
regarded – depending on the object aspect – as plastic, elastic, or elasto-plastic. A
plastic deformation is permanent: the object maintains the shape caused by the
force even after the force is removed. Elastic deformation results in the object
returning to its original shape once the force is removed. Finally, elasto-plastic
deformation combines both: the object neither returns to its original shape nor re-
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mains entirely deformed. This characterization corresponds to the property known
in rheology as viscoelasticity of materials. Viscoelasticity has inspired the pioneer
robotics works (Wada et al., 2001; Shibata and Hirai, 2006; Higashimori et al.,
2010), where the object is modeled as a mesh of spring-damper particles. These
three papers are recommended for their tutorial value.

To handle deformable objects, roboticists must address many challenges.
First, since the applied forces determine the object shape, the physical interac-

tion between robot and object are crucial. This pushes the difficulty beyond that
of most robotic tasks, which can be addressed using kinematics alone (Waldron
and Schmiedeler, 2008), and not dynamics.

A second difficulty comes from the task definition itself: while rigid manip-
ulation problems break down to placing the object in a desired pose, here the
robot should also regulate the object shape. From a control viewpoint, this leads
to an under-actuated control system, since a limited – robot-dependent – number
of control inputs must regulate an infinite number of degrees of freedom (instead
of the 6 of rigid body pose control). Such difficulty is palpable in finite element
models (such as the viscoelastic ones cited above): while providing an elegant so-
lution to the forward problem (determining the shape given the applied forces),
they are incapable of solving the inverse (finding the forces needed to obtain a
desired shape). The inverse geometric problem is solvable if one disposes of an
explicit model of the object shape, as in the work of (Roussel et al., 2015).

Obviously, to obtain a desired shape, the robot controller must be capable of
estimating online the current shape. This leads to the third challenge: observability,
i.e., proper estimation of the object state (i.e., shape), from sensor measurements.
Currently, the best way to do so is to rely on vision (Borum et al., 2014), be it 2D or
3D. Yet, non-rigid visual tracking is very demanding. While visual features of rigid
objects can be consistently detected and tracked by exploiting a prior 3D model,
on non-rigid materials features change over time. Feedback from force and tactile
sensors could be beneficial, although this also requires accurate deformation and
contact models that map force/tactile signals to the corresponding displacements
of the object surface. This mapping is often very complicated to obtain.

Finally, an open methodological research question is whether a general unique
paradigm can address all types of flexible manipulation. Such ultimate solver would
be equivalent – for non-rigid manipulation – to what inverse kinematics control
is for the rigid problem. Yet, as shown by the non-exhaustive survey that follows,
this is far from true, since current research is mainly driven by applications in a
bottom-up fashion that is doomed to be specific.

3 Key Research Findings

This section reviews the literature on robotic manipulation of flexible objects. The
interested reader can also refer to the recent rich survey (Sanchez et al., 2018).
That article follows a taxonomy based on geometry with three categories: objects
are considered linear (e.g., beams, elastic tubes, cables, ropes, strings), planar
(e.g., paper, clothes, fabric, metal sheets) or solid (e.g., food products, sponges,
plush toys). Instead, the present essay classifies the research works according to
the topic/methodology:

– works that focus on shape estimation,
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– works where the object is manipulated using path planning techniques,
– works where the object is shaped using sensor-based feedback control.

Each topic is addressed in one of the following sections.

3.1 Shape Estimation

As mentioned in Section 2, one of the main challenges in flexible manipulation
is proper estimation of the object shape from sensor data. While estimating de-
formations has been thoroughly studied within the computer vision community,
the field of robotics imposes strong computational time constraints which do not
apply to standard vision. To give an idea, closing the feedback loop of most robotic
controllers requires the sensor data to be updated roughly every tenth of a second.

Before the advent of the Microsoft Kinect, which made 3D (RGB-D) vision
easily accessible, researchers relied on stereo cameras to track the shape of a pile
for scooping (Sarata et al., 2004) and the surface of an object to be grasped (Khalil
et al., 2010). The shape deformation, estimated with vision, can also be mapped
to force and position measurements of a robotic hand, as in (Cretu et al., 2012).
The proposed mapping, obtained with a neural network, accurately captures and
predicts the shape of the object, while the robot fingers apply forces on it. Simi-
larly, the authors of (Frank et al., 2014) estimate object deformation parameters
(Young’s modulus and Poisson ratio) by relating applied forces and resulting sur-
face deformations. To this end, they rely on a volumetric Finite Element Model
(FEM). A FEM is also used in (Petit et al., 2017) for mesh-fitting, to track in
real time the shape of a 3D textureless object (a pizza dough) which undergoes
elastic deformations. RGB-D vision is the only sensor required in this work. In one
of his following works, Petit presents a method for tracking multiple interacting
deformable objects, by registering image and RGB-D point clouds on FEMs (Pe-
tit et al., 2018). The authors of (Li et al., 2019) learn a particle-based simulator
for complex control tasks. Their simulator can adapt to new environments or to
unknown dynamics within few observations.

These articles all indicate that proper shape estimation requires a 3D model
of the object, to be modified at each iteration according to the sensor output,
with a prediction/update paradigm typical of control observer theory. For optimal
performance, the developer should achieve an appropriate trade-off between the
accuracy of such model and the computational constraints mentioned above.

3.2 Manipulation Planning

Two major approaches for task execution have emerged in the robotics literature:
motion planning and sensor-based control. The planning approach breaks the task
into discrete subtasks which satisfy the system constraints and possibly optimize
some aspect of the task/mission. Low-dimensional problems are generally solved
with grid-based algorithms that overlay a grid on the robot’s configuration space.
This approach generally relies on a priori knowledge of the future robot and envi-
ronment states over a time window. On the other hand, sensor-based control closes
the perception-to-action loop and is more appropriate in dynamic, unknown envi-
ronments. The most known example is image-based visual servoing, which relies
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on visual feedback to reactively control robot motion. This section reviews works
which address flexible manipulation with motion planning, whereas the next sec-
tion will focus on sensor-based control.

One of the first works on the assembly of deformable objects (Zheng et al.,
1991) addresses the insertion of a beam into a hole, by planning a priori the
trajectory of the robot tool. (Moll and Kavraki, 2006) rely on a sampling-based
approach to deform flexible wires, subject to manipulation constraints: they com-
pute paths among minimal energy configurations. (Wakamutsu and Hirai, 2004)
present a novel approach to linear object deformation. They first model the defor-
mation (flexure, torsion, and extension) of this kind of object, and then apply path
planning to modify its shape. The optimal paths are the ones that minimize the
object potential energy. (Pham and Pham, 2018) consider robotic manipulation
of a chain that is rotating at constant angular speed around a fixed axis. Having
proved that the chain’s configuration space is homeomorphic to a two-dimensional
surface embedded in IR3, the authors devise a strategy for transiting between dif-
ferent rotation modes in a stable and controlled manner. (Pan and Manocha, 2018)
plan the motion of arbitrarily-shaped volumetric deformable bodies through com-
plex environments. To this end, they compute trajectories that satisfy the dynamic
constraints using a two-stage learning method: a multitask controller parameter-
ized using dynamic movement primitives (DMP) followed by a neural-network that
selects the DMP for driving the body while avoiding obstacles in the environment.

With the recent progress in computational power, researchers have integrated
FEM within their planning frameworks. For instance (Yoshida et al., 2015) address
the insertion of a gasket by relying on FEM to simulate its deformation. They use
a motion planning algorithm with various objective functions (e.g., collision avoid-
ance and minimum deformation), to generate the plans for extending/deforming
the gasket before inserting it. Similarly (Roussel and Täıx, 2014) incorporate a
physics engine in their motion planning algorithm. This engine represents a linear
object as a connection of nodes, with the links modeled using an FEM, and the
state space defined by the positions and velocities of all nodes. The authors sam-
ple the control commands, to find the one that moves the object towards the goal
state, according to this physics engine.

While the cited works rely on motion planning, others propose sensor-based
feedback control for object shaping. The next section reviews these works.

3.3 Sensor-based Shape Control

In contrast with manipulation planning, which is generally realized in open loop,
sensor-based control relies on feedback from sensed data to modify the object shape
online. The most popular sensors for this are force transducers and cameras.

The authors of (Higashimori et al., 2010) present a two-step framework: first
they estimate – using force sensing – the elastic parameters of a four-element
model, and then – based on the object plastic response – they compute and apply
the force required to obtain the desired shape. Recently, David Navarro-Alarcon
has designed a novel visual servoing scheme that explicitly deals with elastic defor-
mations (Navarro-Alarcon et al., 2013, 2014). By estimating online the mapping
(i.e., the interaction matrix) relating tool velocity and optical flow, he can actively
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deform compliant objects. While the results are groundbreaking, the proposed con-
troller is only stable locally, i.e., it cannot guarantee global convergence. Inspired
by these works (Laranjeira et al., 2017) derive the interaction matrix needed to
deform catenary shaped objects (e.g., tethers or slack ropes). In (Schenck et al.,
2017), the vision to action mapping is derived using a Convolutional Neural Net-
work. The target application is scooping and dumping granular materials. The
authors of (Cherubini et al., 2018) also rely on a neural network for mapping vi-
sion to action in a similar application. Yet, they train their network on data from
human users. (Berenson, 2013) uses the concept of diminishing rigidity to compute
an approximate Jacobian of the deformable object. In his work, the robot helps
humans manipulate clothes.

4 Future Directions for Research

While great progress has been made, robotic manipulation of flexible objects is
still at its early stages of development. Some of the main challenges have been
indicated in Sect. 2. This last section suggests other possible avenues of future
research.

As outlined above, both planning and feedback control approaches have been
experimented. Historically, these two schools are disjoint within the robotics com-
munity, and unfortunately the same applies within the field of flexible manipula-
tion. Yet, merging planning and feedback control methods would provide tremen-
dous progress, by guaranteeing global convergence (through planning) albeit main-
taining (through feedback control) adaptability to perturbations and unforeseen
events. A very promising work in this direction is (McConachie et al., 2017). The
authors propose a global planner that generates gross motion of the deformable
object, along with a local controller that refines its configuration. A deadlock pre-
diction algorithm determines when to use planning and when to use control.

Focusing on feedback control (Sect. 3.3) the reader will also notice that force
and vision are seldom used within the same framework. Yet, these senses are
complimentary and should be integrated; two preliminary works which do so
are (Arriola-Rios and Wyatt, 2017) and (Ficuciello et al., 2018). In (Arriola-Rios
and Wyatt, 2017), the object behavior is predicted by first classifying the material
and then using force and computer vision to estimate its plastic and elastic defor-
mations. The authors of (Ficuciello et al., 2018) identify the elasticity parameters
of the object model using an RGB-D vision system coupled with a force sensor.

Despite the recent emergence of tactile sensing on robots (e.g., on robotic
hand fingertips), very few researchers have exploited them for flexible manipula-
tion. An exception is the work (Delgado et al., 2017), which presents an adaptable
tactile-servo controller for in-hand manipulation of deformable objects. Here, tac-
tile control consists in maintaining a given force value at the contact points. The
value changes according to the object softness, which is estimated in an initial
recognition stage.

Finally, to constrain the object’s infinite degrees of freedom, the robot should
make use of the environment contacts, as proposed by (Roussel et al., 2019) and
by (Zhu et al., 2020). Dual arm robotic systems can also be used to this end. For
example, the authors of (Kosuge et al., 1995) design a strategy for dual manipu-
lation of a flexible metal sheet, based on force control. (Long et al., 2015) propose
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another approach for modeling the dynamics of two manipulators handling de-
formable objects. Here, the closed kinematic chain is divided into two subsystems
based on their characteristics, i.e., the closed kinematic chain is decomposed into
one flexible system (for the object) and one rigid system (for the manipulators).
In (Zhu et al., 2018), a dual arm robot relies on visual servoing to change the
shape of flexible cables.

In conclusion, as this essay has shown, flexible object manipulation will become
paramount with the emergence of service robots. Although important results have
been obtained, research in this field is still exploratory, promising to keep roboti-
cists busy for the upcoming years.
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