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Abstract 

Shadowgraphs, tube-source X-ray radiographs, and synchrotron X-ray radiographs from a coaxial two-fluid spray are 

analyzed to measure the liquid core length of the spray. Two flow conditions: Rel = 1,100, Reg = 21,300, We = 40, and 

Rel = 1,100, Reg = 46,700, We = 196 are investigated. The standard deviation of the fluctuating intensity values are 

calculated and analyzed to estimate the liquid core length. Additionally, the largest connected domain is used to find 

an instantaneous breakup position of the spray. The results show that the high standard deviation region is related to 

the ligament development region, and the instantaneous position identifies ligament formation in the spray. 
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1. Introduction 

Liquid sprays are widely used in industrial processes, 

such as pharmaceutical production, energy conversion, 

agriculture applications, and spray drying. Characteriz-

ing the spray is the first step to precisely control the at-

omization process and promote the efficient use of a 

spray in any industrial process. Complete atomization is 

the result of multiple mechanisms combined in a com-

plex fashion. To simplify the problem, the complete pro-

cess is divided into individual process steps: (1) internal 

flow development, (2) primary atomization, and (3) sec-

ondary atomization. 

Depending on various flow conditions, the liquid 

disintegration is dominated by different forces acting in 

or on the liquid. Therefore, various kinds of atomization 

principles have been used to divide disintegration modes 

and map breakup regimes, Chigier and Farago [1] devel-

oped the first map of breakup regimes for a liquid jet in 

a coaxial gas stream. Hopfinger [2] improved this map 

by introducing the momentum ratio between the gas and 

liquid. 

The liquid core length, also known as the breakup 

length, is taken as the distance from the nozzle exit to the 

breakup point [3]. Przekwas [4] estimated the liquid core 

length from conservation of mass fluxes. Lasheras et al. 

[5] developed a different expression based on continuity 

of the dynamic pressure at the gas-liquid interface.  

In this work, the liquid core length of a coaxial two-

fluid spray is measured by using both standard deviation 

and the instantaneous breakup position. Two flow con-

ditions are investigated: Rel = 1,100, Reg = 21,300, 

We = 40, and Rel = 1,100, Reg = 46,700, We = 196. Im-

ages from various devices of identical sprays are ana-

lyzed, including (1) high-speed shadowgraphy taken at 

Iowa State University (ISU), (2) high-speed shadow-

graphy taken at University of Washington (UW), (3) 

tube-source X-ray radiography taken at Iowa State Uni-

versity, and (4) high-speed synchrotron X-ray radiog-

raphy taken at then Advanced Photon Source (APS) at 

Argonne National Laboratory. 

2. Experimental Setup 

The two-fluid coaxial atomizer used in this research 

is an open source canonical atomizer* designed by the 

University of Washington. As Figure 1 shows, the cen-

tral axis of the atomizer defines the x-axis (vertical axis) 

with an origin corresponding to the atomizer exit plane. 

The spray spanwise coordinate defines the y-axis (hori-

zontal axis) with an origin corresponding to the central 

axis. The z-axis is the X-ray beam or visible light path 

direction. To better compare or validate data against that 

obtain in this study or others published with this system 

[6-8], the coordinate system (x, y, and z) is nondimen-

sionalized by the characteristic length (the inner diame-

ter of the water outlet, dl = 2.1 mm): 

 

X=x/dl.                                 (1) 

Y=y/dl.                                 (2) 

Z=z/dl.                                 (3) 

 

The complete experimental flow loop is introduced else-

where [9]. The tube-source broadband radiographs and 

shadowgraphs taken at ISU used the identical flow loop 

as the synchrotron radiographs taken at APS. A similar 

flow loop was used for the shadowgraphs at UW as well, 

except that the atomizer was mounted horizontally (ro-

tating 90 degrees around the z-axis) to accommodate 

their mounting system. 

 

 

Figure 1. Schematic representation of the two-fluid 

coaxial atomizer. 

Experiments were performed at 25℃, and air was 

used as the gas phase for the spray. Distilled water was 

used as the liquid phase for the APS synchrotron X-ray 

radiographs and the shadowgraphs taken both at ISU and 

at UW. For the tube-source X-ray radiographs, 20% by 

mass potassium iodide (KI) was added to increase the 

contrast in the resulting X-ray images. X-ray radiog-

raphy is an attenuation-based imaging technique [10], 

and the image quality is influenced by the intensity of the 

X-ray source and the material absorptivity. For the APS 

synchrotron X-ray radiography, the high flux and high 

energy X-ray beam provides enough intensity that it en-

ables high-speed imaging to show the inner structure of 

pure water sprays. However, for the ISU tube-source X-

ray radiography, the X-ray beam with lower intensity is 

not sensitive enough to provide clear images of pure wa-

ter sprays [9]. Therefore, 20% by mass of KI was added 

for the ISU tube-source X-ray radiography as a contrast 

enhancement agent. The KI should not significantly in-

fluence the surface tension [11] nor enhance beam hard-

ening [12]. Others have also used KI to improve contrast 

and observed no changes in the flow behavior [12,13]. 

Shadowgraphy is a light refraction-based technique that 

captures the interfaces between the liquid and gas, there-

fore, no additional contrast enhancement methods are re-

quired. 

The ISU shadowgraphs, UW shadowgraphs, and 

APS synchrotron X-ray radiographs allow for high-

speed imaging and were acquired at speeds of 10,000 

http://depts.washington.edu/fluidlab/nozzle.shtml
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FPS, 6,000 FPS, and 6,000 FPS, respectively. The ISU 

tube-source X-ray radiographs were taken at 10 FPS due 

to the limited transmission speed of the camera. Details 

about the image acquiring techniques can be found else-

where [6, 9, 10, 14]. 

The field of view of the different imaging methods 

also differ from each other. Theoretically, the ISU tube-

source X-ray radiography, and the ISU shadowgraphy 

provide whole views of the spray. However, limited by 

the contrast and resolution, the usable region of the ISU 

tube-source X-ray radiography is limited to approximate 

15 mm downstream from the atomizer exit. The UW 

shadowgraphs show the near-field and middle-field re-

gion of the spray. Due to the limitation of the X-ray 

source size, the APS synchrotron radiography only 

shows a local view of the spray of approximately 

6 mm x 4.5 mm, but were taken at multiple positions 

in the spray. 

The liquid Reynolds number (Rel) is defined as: 

 

/l l l lRe U d =                     (4) 

 

where Ul is the mean liquid velocity at the nozzle exit, 

dl = 2.1 mm is the inner diameter of the liquid needle, 

and l is the kinematic viscosity of water at 25℃. The 

liquid Reynolds number was fixed in all experiments to 

Rel = 1,100. 

The gas Reynolds number (Reg) is defined as: 

 
2 2/ /g g eff g g g l gRe U d U d D = = −       (5) 

 

where Ug is the mean gas velocity at the nozzle exit, g 

is the kinematic viscosity of air at 25℃, and deff is the 

gas effective exit diameter of the air stream at the nozzle 

exit defined as the diameter of a circle with the same exit 

area found in this study. Note dg is the inner diameter of 

the gas nozzle (dg = 10 mm), and Dl is the outer diameter 

of the liquid needle (Dl = 2.7 mm). Two gas Reynolds 

number in this study are investigated: Reg = 21,300 and 

Reg = 46,700. 

The momentum flux ratio is defined as: 

 
2 2/g g l lM U U =                       (6) 

 

where ρ is the gas and liquid density at 25℃. 

The Weber number (We) is defined as: 

 
2 /g gWe U =                     (7) 

 

where σ is the interfacial tension.  

A summary of all experimental conditions in this 

study is listed in Table 1. 

 

Rel 1,100 1,100 

Reg 21,300 46,700 

We 40 196 

M 6.2 29.7 

ISU radiograph √ √ 

APS radiograph  √ 

ISU shadowgraph √  

UW shadowgraph √ √ 

Table 1. Experimental conditions in this study. 

3. Data Analysis and Results 

3.1 Standard Deviation 

Figure 2 shows the spray at Rel = 1,100, 

Reg = 21,300, We = 40. The small Weber number indi-

cates that surface tension plays a dominant role and pre-

vents the liquid jet from breaking up into a uniform spray. 

As shown in Figure 2a, a few ligaments develop at 

X = 2.7, and break into droplets at X = 9. Figure 2b 

shows the normalized standard deviation (normalized to 

0-1) calculated from 600 frames of ISU shadowgraphs. 

Combining Figure 2a and 2b, it is obvious that the liga-

ment developing region (from X = 2.7 to 9) corresponds 

to the high standard deviation because of the large 

change in intensity due to the oscillating ligaments. 

When ligaments breakup, droplet dispersion provides for 

a more uniform intensity, reducing the standard devia-

tion. In Figure 2b, there is a small region with high stand-

ard deviation right below the exit, corresponding to the 

bright spots inside the liquid jet in Figure 2a. This region 

results from the light focused by the high curvature sur-

face of the liquid jet, and constantly changed due to sur-

face fluctuations, and hence a high standard deviation in 

intensity is recorded. Regardless of the impact of light 

focusing, there is a low standard deviation region in the 

center of the liquid jet, which indicates a relatively 

steady flow region inside the liquid core. The high stand-

ard deviation area around this region shows the oscilla-

tion range of the liquid. Note that for this low We condi-

tion, the high standard deviation is caused by the oscilla-

tion of the liquid instead of liquid shedding, and this is 

the reason why the high standard deviation region sur-

rounds the liquid core even near the nozzle exit.  

Figure 2c shows a single frame of ISU tube-source 

X-ray radiograph. The spray details such as ligaments 

and droplets are blurred out by the long exposure time. 

The standard deviation distribution of the ISU tube-

source X-ray radiographs shows similar characteristics 

as that of the shadowgraphs, except the deviation on 

sides are much lower because the fluctuations in the 

edges of the liquid were not captured due to the low 

frame rate. 
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Figure 2. Spray images at Rel = 1,100, Reg = 21,300, 

We = 40: (a) ISU shadowgraph, (b) normalized standard 

deviation of ISU shadowgraph, and (c) ISU tube-source 

X-ray radiograph. 

The standard deviation along the spray line of sym-

metry (Y = 0) indicates the behavior of the liquid core. 

As mentioned above, the high standard deviation of the 

image intensity is mainly caused by the oscillation of the 

liquid. The liquid jet stretches and breaks while oscillat-

ing at a certain frequency. The position of the highest 

standard deviation in image intensity corresponds to the 

position of maximum extent of the oscillating liquid re-

gion, where the liquid jet transforms to attached liga-

ments. Therefore, it is possible to estimate the liquid core 

length as the position where the standard deviation 

reaches its maximum.  

The plot of normalized standard deviation along 

Y = 0 is shown in Figure 3. The ISU shadowgraph nor-

malized standard deviation shows a secondary peak at 

X = 0.7, corresponding to the bright spots caused by the 

liquid focusing the light in this region (see for example 

Figure 2a). UW shadowgraphs were taken with a differ-

ent backlight and camera system, that shrank the bright 

spots as Figure 4a shows. Therefore, the UW shadow-

graph data reaches the only peak at X = 2.7. Both the ISU 

tube-source X-ray radiograph and UW shadowgraph 

standard deviation have a maximum at approximate 

X = 2.7, while the maximum of ISU shadowgraph ap-

pears at X = 3.5. The difference is caused by differing 

fields of view where the ISU shadowgraphs cover a 

larger imaging area with an accompanying lower image 

resolution as the UW shadowgraphs. 

 

 
Figure 3. Normalized standard deviation along the 

X-axis at Rel = 1,100, Reg = 21,300, We = 40. 

While Figure 3 shows the normalized standard de-

viation along the nozzle centerline, Figure 4 shows the 

maximum normalized standard deviation at each X-loca-

tion at Rel = 1,100, Reg = 21,300, We = 40. As men-

tioned above, shadowgraphs capture the movement of 

the jet boundary, showing high standard deviation from 

X = 0.3. However, ISU tube-source radiographs can only 

capture a blurring image of the spray, and the oscillation 

of the boundary on both sides is ignored. Therefore, the 

plots based on the ISU tube-source radiographs in Figure 

3 and Figure 4 are similar. In Figure 4, three plots all 
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reach their maximum, as well as an inflection point, at 

approximate X = 7. Therefore, based on the standard de-

viation, the liquid core length is estimated as 2.7dl for the 

condition of We = 40. 

 

 
Figure 4. Maximum normalized standard deviation 

at each X-location at Rel = 1,100, Reg = 21,300, We = 40. 

Figure 5 shows the spray at the condition of 

Rel = 1,100, Reg = 46,700, and We = 196. In the UW 

shadowgraph (Figure 5a), ligaments and droplets are re-

duced in size but increased in number compared to the 

We = 40 condition (Figure 2a). The ligament develop-

ment region moves from 2.7 ≤ X ≤ 7 to 1.6 ≤ X ≤ 6 with 

a large amount of liquid being shed. The APS synchro-

tron X-ray radiograph (Figure 5b) shows the inner struc-

ture of ligaments, and the correspond normalized stand-

ard deviation is shown in Figure 5c. The increased stand-

ard deviation at the bottom of Figure 5c is caused by the 

shadow of the chopper wheel when imaging.  The stand-

ard deviation from the APS imaging shows that the high-

est fluctuation moved from the central axis to two re-

gions off center because of the smaller and higher fre-

quency fluctuations of the liquid.  

Figure 6 shows the maximal standard deviation in 

each X-plane along the X-axis. Limited by the image size, 

the APS synchrotron X-ray radiograph data shows only 

that region available in Figure 5c. The increase at X = 2.5 

is caused by the chopper wheel as mentioned above. The 

ISU tube-source radiograph data near the atomizer exit 

(X ＜ 0.65) are discarded due to the influence of accu-

mulated liquid at the atomizer exit. It is hard to determine 

the maximal standard deviation based on X-ray radio-

graphic data in Figure 6, however, it is obvious that all 

three plots show a downward trend in the region X = 1.1 

to 2.5. The UW shadowgraph plot shows similar charac-

teristics as that in Figure 4, which is relatively flat in the 

region X = 0.1 to 1.2, and then declines. The liquid core 

length can be estimated by the inflection point of the UW 

shadowgraph plot at X = 1.2. 
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(c) 

 

Figure 5. Spray images at Rel = 1,100, Reg = 46,700, 

We = 196: (a) UW shadowgraph, (b) APS synchrotron 

X-ray radiograph, and (c) normalized standard deviation 

of the APS synchrotron X-ray radiographs. 



6 

 

 

Figure 6. Maximum normalized standard deviation 

at each X-location at Rel = 1,100, Reg = 46,700, 

We = 196. 

In summary, for the two conditions of this work, the 

large standard deviation region of the spray is qualita-

tively correlated to the region where ligaments are ob-

served and can be used to estimate the liquid core length. 

3.2 Instantaneous Breakup Position 

From the high-speed images, including the APS 

synchrotron radiographs, and the ISU and UW shadow-

graphs, it is possible to determine the instantaneous 

breakup position of the spray by using the maximum 

connected domain measure. To do this, the image is first 

converted to a binary image by thresholding. Then the 

binary image is filtered with a morphological opening 

with a single structure element size of 4 pixels to sup-

press the effect of ligaments on determining the con-

nected domain. A 4-connected neighborhood is used to 

identify the connected components in the binary image, 

and the entire region is then considered as the liquid core. 

Finally, the breakup position is defined as the farthest 

distance along the X-axis that the liquid core can reach. 

A sample result for a single image is shown in Figure 7. 

The image processing algorithm is then applied to all 

high-speed images. 

Figure 8a shows the instantaneous breakup position 

changes with time at Rel = 1,100, Reg = 21,300, and 

We = 40. For the UW shadowgraph plot, some peaks are 

flattened because the liquid core length goes beyond the 

field of view. One challenge with instantaneous breakup 

position tracking is that before a ligament breaks up into 

droplets, it can have considerable elongation but still be 

morphologically connected to the liquid core. Therefore, 

the minimum of the data series, instead of the average, 

should be considered as the liquid core length. The fluc-

tuation range of the instantaneous breakup position 

shows the ligament development region instead of the 

fluctuation range of liquid core length. The minimum 

value of X = 2.8 corresponds to the location where liga-

ments start to shed and matches the liquid core length 

estimated from the standard deviation. The maximum 

value of X = 9.1 corresponds to the location where liga-

ments breakup into droplets.  

To summarize, the fluctuation of the instantaneous 

breakup position in Figure 8a reflects the development 

of ligaments. The period of the fluctuation is the cycle 

for ligaments to develop and breakup. The gentle in-

creasing length with time indicates that the ligament are 

forming and stretching, and the sharp decline in length 

indicates ligament shedding.  

 

 

Figure 7. Breakup position identification using a 

UW shadowgraph at Rel = 1,100, Reg = 21,300, and 

We = 40. (a) Maximum connected domain used to deter-

mine the breakup position. (b) The original shadow-

graph. 

To have a better idea of the ligament shedding fre-

quency, a fast Fourier transform on the instantaneous 

breakup position was completed, and the result is shown 

in Figure 8b. The prominent range of the UW shadow-

graph data is 36 to 84 Hz, and that of ISU shadowgraph 

data is 66 to 100 Hz. The ISU shadowgraph data contains 

more noise due to the lower resolution (but larger field 

of view). 

Figure 9 shows the instantaneous breakup position 

for Rel = 1,100, Reg = 46,700, and We = 196. In Figure 

9a, the APS X-ray radiograph data is limited in a band 

1.1 ≤ X ≤ 3.2 because of the field of view. The fluctua-

tion range of the UW shadowgraph data is 1.8 ≤ X ≤ 5.5, 

which correlates with the ligament developing region 

(1.6 ≤ X ≤ 6) as mentioned above. The highest FFT peak 

in the UW shadowgraph data is 85 Hz, which is much 

larger than that at We = 40. 

4. Conclusions 

Both the large standard deviation region of the spray 

and the instantaneous breakup position are related to the 

development of ligaments. The position where the stand-

ard deviation reaches the maximum matches the lower 

limit of the instantaneous breakup position, which can be 

considered as the liquid core length. 
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 (a) 

 
(b) 

 

Figure 8. Rel = 1,100, Reg = 21,300, and We = 40, 

showing (a) the instantaneous breakup position tracking, 

and (b) the single-sided FFT of instantaneous breakup 

position. 
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(b) 

 

Figure 9. Rel = 1,100, Reg = 46,700, and We = 196, 

showing (a) the instantaneous breakup position tracking, 

and (b) the single-sided FFT of instantaneous breakup 

position based on the UW shadowgraphs. 
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