

Molecular dynamics simulations of nanoparticle growth ... and beyond

Pascal Brault GREMI, UMR7344 CNRS Université d'Orléans, Orléans, France

pascal.brault@univ-orleans.fr

http://www.univ-orleans.fr/gremi/pascal-brault

Practical MD simulations

- Supported nanoparticle growth
- Free nanoparticle growth in a Gas Agregation Source
- Hydrocarbon plasma soot growth
- MD simulations of plasma processing as a whole
- Conclusions/Future works

Practical Molecular Dynamics simulation

✓ Calculate all trajectories of a set of atoms, molecules, ...
 via the Newton equation of motion
 → Suitable for processes at nanoscale (up to 10⁹ atoms)

 A rigourous approach requires the use of robust interaction potentials and initial conditions (positions, velocities) preferably matching experimental conditions

 \rightarrow appropriate velocity distribution functions can be derived from experimental conditions.

✓ Proper energy dissipation:

- Energy release during bond formation : deposition, bond formation/breaking
- Annealing
- → via friction term(s), thermostat(s)


```
Relevance/significance of MD Simulations

Flux :

Exp. 1 \ 10^{15}cm<sup>-2</sup> s<sup>-1</sup> = 10 species / nm<sup>2</sup> / s - MD 1 specie /10x10 nm<sup>2</sup> / 2 ps

Prohibit long time diffusion, except if including specific strategies (fbMC, CVHD,

hyperdynamics, ...)

Pressure/simulation box size

Solid density : Pt 65 nm<sup>-3</sup> \rightarrow Can be treated. Diffusion coefficients can be

calculated without additional approximation(s)
```

Gas density : 1 atm = 2.4 10^{-2} nm⁻³ \rightarrow Not enough species in box of size d at pressure P Solution: relevant parameter = Collision number \propto P.d

 $\rightarrow \uparrow P \downarrow d$ should work.

Thermal relaxation

- Choose a relevant specie release time: i.e. greater than thermalisation time
- Choose a relevant thermostat (region i.e. what should be thermostated) within this relevant time
- For interactions with surface, one can guess that only the substrate should be thermostated

Practical Molecular Dynamics simulation: Interactions potentials

Metals : Embedded Atom Method (EAM)

- \Rightarrow energy of a solid is a unique functional of the electron density.
- \Rightarrow uses the concept of electron (charge) density to describe metallic bonding:
- ⇒ each atom contributes through a spherical, exponentially-decaying field of electron charge, centered at its nucleus, to the overall charge density of the system.
- ⇒ Binding of atoms is modelled as embedding these atoms in this "pool" of charge, where the energy gained by embedding an atom at location r is some function of the local density.
- \Rightarrow The total energy thus writes:

$$E_{pot} = \sum_{i=1}^{N} E_i = \frac{1}{2} \sum_{i=1}^{N} \sum_{i,j,i\neq j}^{N} \phi_{ij}(r_{ij}) + \sum_{i=1}^{N} F_i(\rho_i) \quad \rho = \sum_{j,j\neq 1}^{N} f_i(r_{ij}) \quad f(r) = \frac{f_e \exp\left[-\beta\left(\frac{r}{r_e} - 1\right)\right]}{1 + \left(\frac{r}{r_e} - \lambda\right)^{20}}$$

With pairwise function:

and mixing rule:

$$\phi(r) = \frac{A \exp\left[-\alpha \left(\frac{r}{r_e} - 1\right)\right]}{1 + \left(\frac{r}{r_e} - \kappa\right)^{20}} - \frac{B \exp\left[-\beta \left(\frac{r}{r_e} - 1\right)\right]}{1 + \left(\frac{r}{r_e} - \lambda\right)^{20}} \quad \phi^{ab}(r) = \frac{1}{2} \left[\frac{f^b(r)}{f^a(r)} \phi^{aa}(r) + \frac{f^a(r)}{f^b(r)} \phi^{bb}(r)\right]$$

S.M. Foiles, M.I. Baskes Contributions of the embedded-atom method to materials science and engineering, MRS Bulletin, 37 (2012) 485-491. X. W. Zhou et al, Misfit energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69 (2004) 144113

r

Practical Molecular Dynamics simulation: Interactions potentials

ReaxFF allows for computationally efficient simulation of materials under realistic conditions, *i.e.* bond breaking and formation with accurate chemical energies. It also includes variable partial charges.

Due to the chemistry, ReaxFF has a complicated potential energy function: $E_{system} = E_{bond}$

+ E_{over} + E_{angle} + E_{tors} + $E_{vdWaals}$ + $E_{Coulomb}$ + $E_{Specific}$

Overview of the ReaxFF total energy

components

TP Senftle et al, The ReaxFF reactive force-field: development, applications and future directions, npj Computational Materials 2, (2016) 15011

Supported Pt₂PdAu nanocatalyst growth on porous carbon: Pt, Pd, Au co-deposition

Potentials used in the system: Pt-Pd-Au: EAM potentials C – C: Tersoff potential -> thermostat Metal – C: LJ potential (Steele) Model porous carbon from TEM measurements

Table 1 – EAM and average experimental surface energies of the low index faces of Pt, Pd, Au in Jm^{-2} [40].

	Pt	Pd	Au
(111)	1.44	1.22	0.79
(100)	1.65	1.37	0.92
(110)	1.75	1.49	0.98
Experimental, face averaged	2.49	2.00	1.5

Gold surface segregation

P. Brault, Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth, International Journal of Hydrogen Energy 41 (2016) 22589-22597

Supported Pt₂PdAu nanocatalyst growth on porous carbon: Sequential PdAu deposition followed by Pt deposition

\rightarrow AuPd@Pt₂ core@shell

But always Au segregation towards surface!

Molecular dynamics simulation of sputtering plasma catalysts growth: Supported Pt₂PdAu nanocatalyst growth on porous carbon

Correlations between cluster temperature evolution and morphology transform in the course of deposition of core-shell PdAu@Pt₂ nanocatalyst

- L. Xie, P. Brault, C. Coutanceau, A. Caillard, J. Berndt, E. Neyts Appl. Cat. B, 62 (2015) 21 - 26

- P. Brault, et al, International Journal of Hydrogen Energy 41 (2016) 22589-22597

- E. Neyts, P. Brault, Plasma Processes and Polymers 14 (2017) 1600145 - FP7 FCH-JU SMARTCat project #325327

Free nanoparticle growth in a Gas Agregation Source

Gas agregation source: simulation principles

Matching experimental and simulation conditions

Metal vapor density in the aggregation chamber
 N_M= (Y_{Ar} I /q) / (Φ(Ar).P_{at} /P_{Ar})
 → will give the proper ratio of N_M/N_{Ar} in the simulation box

- Collision number identical in experiments and in simulation i.e. P_{exp}.d_{exp} = P_{sim}.d_{sim}

A. Caillard et al, *PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes*, J. Phys. D: Appl. Phys. 48 (2015) 475302

E Quesnel et *al Modeling metallic nanoparticle synthesis in a magnetron-based nanocluster source by gas condensation of a sputtered vapor*, J. Appl. Phys. 107 (2010) 054309

Free Pt₃Me(Au) (Me = Ni, Cu) nanocatalyst growth

Tricks :

NVE ensemble for Pt, Ni and Au NVT ensemble for Ar : surrounding gas is the thermostat

Ratio of N_{Ar} to N_{metal} estimated from experiments: depends on discharge current, Ar pressure, ... here: N_{Ar} =128000; N_{Pt} =19200; N_{Ni} =6400; N_{Au} =6400 Box size 64x64x64 nm³; dt = 1 fs, 4. 10⁷ timesteps

Temperature evolution of the vapor and of the metal vapor and then of clusters the \rightarrow cluster growth and coalescence : breaks in the plot (green vertical sticks)

Free Pt₃Me(Au) (Me = Ni, Cu) nanocatalyst growth

- Au segregation towards cluster surface
- CuAu surface alloy for $Pt_3CuAu \rightarrow$ better efficiency for Oxygen Reduction Reaction
- Pt₃Cu(Au) more well crystallized

P. Brault, et al, Pt₃MeAu (Me = Ni, Cu) fuel cell nanocatalyst growth, shapes and efficiency: A molecular dynamics simulation approach, J. Phys. Chem. C 123 (2019) 29656 – 29664

GRE

Free Pt₃Me(Au) (Me = Ni, Cu) nanocatalyst growth

Pt_xBi_y nanocatalyst growth

Interaction potentials (V(r)

Plots of the pair part of the EAM interaction potentials: $V_{PtPt}(r), V_{BiBi}(r), V_{PtBi}(r).$

- Cluster atomic arrangements are typical of a crystalline structure of the Pt cores, with numbers of 1st nearest neighbors between 10 and 12 (i.e. consistent with fcc arrangement)

- Bi composition < 20% leads to cluster surfaces with both Pt and Bi, allowing catalytic activity enhancement.

- Pt/Bi atomic composition is not only globally preserved, but is also verified for each cluster

B.S.R. Kouamé et al, Insights on the unique electro-catalytic behavior of PtBi/C materials, Electrochimica Acta 329 (2020) 135161

Reactive free PdO nanocatalyst growth

ReaxFF reactive variable charge potentials for Pd sputtering in Ar-O₂ gas mixture

Snapshot of (a-b) the overall Pd and PdO clusters at 25 ns simulation time (c-d) of the detailed PdO clusters. First results: O addition -> no more free Pd, more PdO than Pd clusters

Ratio of N_{Ar} to N_{metal} estimated from experiments = 40 here; N_{Ar} = 20000; N_{Pd} = 500; N_O = 1000; Box size : 40 x 40 x 40 nm³ Integration time 0.25 fs \rightarrow 1. 10⁸ iterations GAS Experiments, W. Chamorro-Coral et al

Potential ReaxFF : T. Senftle et al, J. Chem Phys 139 (2013) 044109

P. Brault et al., Frontiers in Chemical Science and Engineering Frontiers of Chemical Science and Engineering 13 (2019) 324 – 329 W. Chamorro-Coral et al, Plasma Processes and Polymers 16 (2019) e1900006

μ wave plasma H₂/10% CH₄ Initial conditions for MD simulations from 0D model (*)

	1450 K	1650 K	1950K	
H ₂ (*)	1000	1000	1000	(*) au lieu o Suffisant po
н	7	30	100	
CH ₄	200	100	100	
•CH ₃	2	5	7	
C ₂ H ₄	50	20	3	
C_2H_2	400	500	600	

*) au lieu de 10000 Suffisant pour thermostat

\rightarrow Reactions can freely occur

→ Bond formation energy is transported to walls by H_2 buffer gas, as in experiment (96% of molecules are H_2). H atoms from H_2 are thermostated.

S. Prasanna, A. Michau, C. Rond, K.Hassouni, A Gicquel, Plasma Sources Sci. Technol. 26 (2017) 097001

P Brault, C Rond, unpublished

- ReaxFF potential
- NVT for $H_2 \rightarrow$ thermostat
- NVE for other species
- 4 x 4 x 4 nm³
- dt = 0.25 fs; 10⁷ timesteps
- 300h on 8 core Intel Xeon

1450 K

Negatively charged ions

#2603	#2004	#3088
q = -0.45	q = -0.2	q = -0.25

	H2	н	CH4	СНЗ	C2H4	C2H2						
initial molar fraction	94%	0.07%	2.00%	0.02%	0.50%	4.00%						
# initial molecules SB	1000	7	200	2	50	400						
	C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12
initial #molecules	202	450	0	0	0	0	0	0	0	0	0	0
final #molecules	201	330	6	15	4	9	1	5	1	1	1	1
initial #Cx	202	900	0	0	0	0	0	0	0	0	0	0
final #Cx	201	660	18	60	20	54	7	40	9	10	11	12
final fraction Cx	18.24%	59.89%	1.63%	5.44%	1.81%	4.90%	0.64%	3.63%	0.82%	0.91%	1.00%	1.09%

GREMI

	H2	Н	CH4	CH3	C2H4	C2H2						
initial molar fraction	94.00%	0.30%	1.00%	0.05%	0.20%	5.00%						
# initial molecules SB	1000	30	100	5	20	500						
	C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12
initial #molecules	105	520	0	0	0	0	0	0	0	0	0	0
final #molecules	114	380	13	19	4	15	0	3	0	1	0	1
initial #Cx	105	1040	0	0	0	0	0	0	0	0	0	0
final #Cx	114	760	39	76	20	90	0	24	0	10	0	12
final fraction Cx	9.96%	66.38%	3.41%	6.64%	1.75%	7.86%	0.00%	2.10%	0.00%	0.87%	0.00%	1.05%

GREMI

Hydrocarbon plasma and soots

	H2	н	CH4	СНЗ	C2H4	C2H2						
initial molar fraction	93.00%	1.00%	0.30%	0.07%	0.03%	6.00%						
# initial molecules SB	1000	100	100	7	3	600						
	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12
initial #molecules	107	603	0	0	0	0	0	0	0	0	0	0
final #molecules	121	415	18	40	3	13	0	2	1	0	0	0
initial #Cx	107	1206	0	0	0	0	0	0	0	0	0	0
final #Cx	121	830	54	160	15	78	0	16	9	0	0	0
final fraction Cx	9.43%	64.69%	4.21%	12.47%	1.17%	6.08%	0.00%	1.25%	0.70%	0.00%	0.00%	0.00%

MD simulations of plasma processing as a whole

1/ recovering/scaling experimental conditions

Hypothesis : Collision number are the same in experiments and simulations so, $P_{exp}d_{exp} = P_{sim}d_{sim}$ thus $N_{sim} = \frac{P_{exp}}{k_BT_g} \cdot S_{sim} \cdot d_{exp}$ and if r_{cut} is the largest cutoff radius : $d_{sim} > \frac{N_{sim}}{S_{sim}} \cdot r_{cut}^3$ (S_{sim} is the chosen smallest area of the simulation box)

2/ experimental time recovery Velocities are same in exp and simulations

$$v = \frac{d_{exp}}{t_{exp}} = \frac{d_{sim}}{t_{sim}}$$
, when d_{exp} , $d_{sim} > 2\rho$
 d_{exp}

then,
$$t_{exp} = \frac{a_{exp}}{d_{sim}}$$
. t_{sim} , when d_{exp} , $d_{sim} > 2\rho$
or, $t_{exp} = t_{sim}$, when d_{exp} , $d_{sim} \le 2\rho$

P. Brault, Multiscale Molecular Dynamics Simulation of Plasma Processing: Application to Plasma Sputtering, Front. Phys. 6 (2018) 59

MD simulations of plasma processing as a whole

New reactive and including electron interaction potential allow targeting multiscale MD simulations of operating plasma reactor

2/ combine improved force fields

Plasma factor	Possible?	Example
electric field	yes	CNT growth
atoms and hyperthermal species	yes	Si-NW oxidation
radicals	yes	a-C:H growth
ions	yes	sputtering
electronically excited states	yes	etching
vibrationally excited states	yes / no (reaxFF)	/
photons	implicit	(polymer degradation)
electrons	Yes (eFF, e-reaxFF)	/

E. Neyts, P. Brault (Review article), Molecular dynamics simulations for plasma surface interactions, Plasma Processes and Polymers 14 (2017) 1600145

MD simulations of plasma processing as a whole Application to nanocluster growth in plasma sputtering

P. Brault, Multiscale Molecular Dynamics Simulation of Plasma Processing: Application to Plasma Sputtering, Front. Phys. 6 (2018) 59

Conclusions

- MD simulations of supported and free metal alloy nanoparticle provides insight of surface composition : for Pt alloy this is well correlated with experiments on catalytic performance, especially when adding Au (expected to stabilize clusters).
- Reactive MD is very powerful since availability of reactive and variable charge reaxFF potential family. Growth of free PdO clusters is well compared with GAS experiments.
- Matching experimental conditions is a condition for successful comparisons.
- Full plasma processing modelling is reachable by MD simulations provided a cutoff distance is defined for scaling down the experimental reactor size

Future works

Nanocatalysts

- □ Non Platinum Group Catalysts for fuel cell operation TiO_{2-x}, ZrO_{2-x}
- **GAS** growth and reactivity \rightarrow OH adsorption

Plasma – liquid interactions

RONS action on Endocrine Disruptive Chemicals, Pharmaceutical residues.

Plasma chemistry

Including electrons in plasma chemistry using MD

Acknowledgements

Many thanks for your attention

Many thanks to people who contribute to the works

Staff members	PhD Candidates	Postdoc	Collaborations
Anne-Lise Thomman	Aboubakr Ennadjaoui (†)	Hervé Rabat	C. Charles, R. Boswell
Amaël Caillard	Sujuan Wu	Marjorie Cavarroc	C. Coutanceau
Yves Tessier	Mathieu Mougenot	William Chamorro-Coral	C. Corr, D. Ramdutt
Thomas Lecas	Lu Xie	Vanessa Orozco- Montes	D. B. Graves
Johannes Berndt	Stéphane Cuynet	Glenn Otakandza	E. Neyts
	Sotheara Chuon		P. & C. Andreazza

GREM