
HAL Id: hal-02518252
https://hal.science/hal-02518252

Submitted on 18 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-OCR Error Detection by Generating Plausible
Candidates

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickaël Coustaty, Nhu-Van Nguyen,
Antoine Doucet

To cite this version:
Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickaël Coustaty, Nhu-Van Nguyen, Antoine Doucet. Post-
OCR Error Detection by Generating Plausible Candidates. 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR), Sep 2019, Sydney, Australia. pp.876-881, �10.1109/IC-
DAR.2019.00145�. �hal-02518252�

https://hal.science/hal-02518252
https://hal.archives-ouvertes.fr


Post-OCR Error Detection by Generating Plausible Candidates

Thi-Tuyet-Hai Nguyen∗, Adam Jatowt†, Mickael Coustaty∗, Nhu-Van Nguyen∗ and Antoine Doucet∗
∗L3i, University of La Rochelle

Email: {hai.nguyen, mickael.coustaty, nhu-van.nguyen, antoine.doucet}@univ-lr.fr
†Graduate School of Informatics, Kyoto University

Email: adam@dl.kuis.kyoto-u.ac.jp

Abstract—The accuracy of Optical Character Recognition
(OCR) technologies considerably impacts the way digital doc-
uments are indexed, accessed and exploited. Post-processing
approaches detect and correct remaining errors to improve the
quality of OCR texts. However, state-of-the-art approaches still
need to be improved. Most of the existing post-OCR techniques
use predefined error position lists or apply simple techniques
to detect errors. In this paper, we describe a novel error
detector using different features from character-level (including
character noisy channel, index of peculiarity) to word-level
(such as frequencies of n-grams, skip-grams, part-of-speech)
Experimental results show that our approach outperforms the
best performing techniques in the ICDAR 2017 Competition
on Post-OCR text correction.

Keywords-OCR error detection, post-OCR, OCRed text

I. INTRODUCTION

In an effort to preserve and enable easy access to
ancient documents, Optical Character Recognition (OCR)
techniques have been continuously developed to transform
paper-based documents into digital ones. However, various
layouts and poor physical quality of degraded documents
pose significant challenges to OCR engines. The last step in
the OCR pipeline, OCR post-processing, makes an attempt
to improve the quality of OCR documents by detecting and
correcting errors.

OCR post-processing consists of two parts, error detection
and error correction. Most of the prior post-processing ap-
proaches focus on the correction part; they use a predefined
list of error positions or they detect errors in fairly simple
ways. Nonetheless, it does not mean that the error detection
part is not important as naturally one cannot correct errors
without knowing their positions. In this paper, we focus on
the error detection task.

Based on the kinds of errors to be detected, error detection
approaches can be divided into two main types: non-word
error detection and real-word error detection [1]. Note that
there are also detection approaches without the explicit focus
on particular types of errors, which we regard as the third
type, mixed error detection. The first type simply detects
misspelled tokens by using character n-gram analysis and
lexicon look-up therefore, it cannot detect errors related
to the context. The second type allows to overcome the
context mismatch problem by taking into account word n-
gram frequency, part-of-speech and semantic information.

Finally, approaches under the mixed error detection type
apply the same method for both the error types.

Our approach belongs to the third type. The main idea
is that an OCR token proves itself as the correct one in
view of its feature values computed and normalized by the
highest value of the plausible candidate set. Besides com-
mon features for statistical error detection (word, n-grams,
skip-grams, part-of-speech), we suggest two novel features
including an adapted version of the index of peculiarity [2]
and a frequency of an OCR token in its candidate sets.
Experimental results reveal that our method reaches higher
performance on the English datasets than the top performing
teams of the ICDAR 2017 competition on Post-OCR text
correction [3].

The remainder of this paper is organized as follows.
Section II discusses the related work. Details of our approach
and the experimental results are described in Section III
and IV, respectively. Finally, we conclude the paper and
outline our future work in Section V.

II. RELATED WORK

This section discusses the three main types of error
detection approaches: non-word error detection, real-word
error detection, and mixed error detection.

A. Non-word error detection

Approaches of non-word error detection type concentrate
on character frequencies and dictionary entries, therefore
they cannot deal with context-sensitive errors.

1) Character n-gram analysis: Various forms of charac-
ter n-gram tables (from non-positional to positional table,
or from binary to frequency table) have been employed to
detect errors. Zamora et al. [4] reported that the frequency
trigram table was ineffective in distinguishing between
valid/invalid words. Morris et al. [2] examined the frequency
n-gram table from the document itself. They indicated that
misspellings often contained trigrams which were peculiar to
the checked document. Moreover, they suggested a fomular
to calculate the index of peculiarity of each token.

2) Lexicon look-up techniques: Lexicon look-up tech-
niques check each token of the input text in a lexicon.
If the token does not match any lexicon entries, it is
flagged as an error. However, a lexicon needs to be carefully



tuned to the application domain. Too small a lexicon can
cause many false rejections of valid tokens. In contrast, too
large a lexicon may contribute to a high number of false
acceptances.

One of the ICDAR 2017 competition’s approaches,
(EFP) [3], explored lexicon look-up techniques and regular
expression to preprocess and detect errors.

B. Real-word error detection

The second type overcomes the problems of the non-word
error detection type by considering word context, such as
Part-of-Speech (POS).

A method called Trigrams [5] encoded the context by part-
of-speech (POS) trigrams. This method replaced an OCR
token by each of its candidates. The probability of the
resulting phrase was computed for each substitution. The
candidate with the highest probability was suggested as the
correction. However, this method cannot distinguish among
words with the same POSs.

C. Mixed error detection

Approaches of this type apply the same techniques to de-
tect non-word and real-word errors. Some prior approaches
utilized frequencies of word and word ngrams to detect
errors. A token is viewed as an error if its frequency or its
ngram frequencies are less than a threshold [6]. Similarly,
Khirbat [7] combined ngram frequencies with a presence of
non alphanumeric text within a token to classify whether the
token is an error or not.

Using word frequency, Taghva et al. [8] divided words
into two sets: highly frequent words (centroids) and the
rest (centroids’ complement), then clustered centroids com-
plement according to centroids using local information of
checked documents and confusion matrix. A word which is
a centroids’ complement is an error if it belongs to more than
one clusters. This approach was also used in the Manicure
document processing system [9]. Another work of Taghva et
al. [10] generated candidates by static/dynamic mappings
and scored them using Bayesian function on frequencies of
collocations and character ngrams. In addition, a heuristic
was designed to create candidates for words containing
unrecognized characters. The ranked list of candidates was
then suggested to users. These approaches ignored POS
contextual information.

Regarding the top competition approaches, there is a wide
range of applied techniques. The best performing detector in
the competition (WFST-PostOCR) [3] compiled probabilistic
character error models into weighted finite-state edit trans-
ducers (WFST). Bigram language models and the lattice of
candidates generated by the error model were used to decide
the best token sequence. This approach disregarded some
important contextual information, such as POS features and
skip-grams.

Along with the development of machine translation tech-
niques, some approaches considered OCR post-processing
as machine translation (MT), which translates OCR text
into the correct one in the same language. Two approaches
(CLAM, Char-SMT/NMT) applied MT techniques at char-
acter level to detect and correct OCR errors. Another ap-
proach MMDT [11] combined many modules for candidate
suggestion. Then, the decision module of MT technique was
used to rank candidates.

In the 2-pass RNN competition approach [3], erroneous
tokens were detected based on two recurrent neural network
(RNN) models. Features of character level model were used
as the input of the next model at word level.

Most of the prior approaches search for the best word
candidates for each OCR token position. If the alternatives
differ from the OCR token, then the token is erroneous and
the best alternative is suggested to correct this error. The
advantage of these approaches is to detect and correct errors
at the same time. However, the performance of the detection
task depends on that of a more difficult task - the correction.

In contrast to the above-discussed approaches, ours mainly
focuses on detecting incorrect tokens. We exploit features
at character level as well as word level and suggest two
novel ones (the adapted version of the peculiar index and a
frequency of an OCR token in its candidate generation sets)
to classify the OCR token into incorrect/correct class. An
OCR token needs to prove to be a valid word via feature
values computed from its plausible candidate set.

III. POST-OCR ERROR DETECTION USING BINARY
CLASSIFICATION

Our approach identifies whether an OCR token is cor-
rect/incorrect via binary classification. Feature values of
each OCR token are computed relying on its candidate
set. Therefore, our approach has one more step - candidate
generation before typical steps of statistical approaches. In
the following sections, we discuss each step in detail.

A. Candidate generation

In this section, we focus on generating possible candidates
for each token position in OCR documents.

In order to produce candidates, we utilize information
related to an OCR token at character (character error model)
and word level. We consider character level as important as
word level, therefore the same number of top candidates
(k = 5) are used for each level.

At character level, we implement the approach similar
to the one described in [12] to suggest candidates for each
OCR token. In that work, candidates are generated from a
character candidate graph and are ranked by the probabilistic
character error model. For example, an OCR token “comes”
can have its candidate set {“comes”, “cones”, “comas”}.

At word level, we make a use of local context to generate
candidates. Word trigrams related to an OCR token are



considered. Let us assume the phrase w−2 w−1 w w+1 w+2.
The three trigrams involving the OCR token w are w−2 w−1

w (denoted as left-trigram), w−1 w w+1 (denoted as middle-
trigram), and w w+1 w+2 (denoted as right-trigram).

In case of the left-trigram, we keep w−2, w−1 and select
candidate w0 for replacing the OCR token w. Then, we
choose top k candidates based on the trigram frequency
w−2, w−1, w0. Similarly with the middle-trigram and right-
trigram, top k possible candidates are chosen for the OCR
token position.

For example, with the OCR token “the” in the phrase
“his friend comes from the north we.t”, its three related
trigrams include “comes from the”, “from the north”, “the
north we.t”. Regarding the left-trigram “comes from the”,
we keep “comes from” and select candidates for the OCR
token “the”. Three trigrams with the highest frequency are
“comes from the”, “comes from a”, “comes from an”. Thus,
top k candidates {“the”, “a”, “an”} of the left-trigram are
chosen for the token position.

Similarly, we get word candidates for the OCR token
position from the middle-trigram and right-trigram, which
are, {“the”, “up”, “a”} and the empty set, respectively.

B. Feature extraction

Several features are extracted at character and word level.
They can be divided into four groups: character n-gram
frequency, word n-gram frequency, part-of-speech, and the
frequency of OCR token in its candidate generation sets. It
should be noted that due to shared characteristics between
our datasets and the Corpus of Historical American English
(COHA) [13], we use frequencies of n-grams and parts-of-
speech (POS) of this largest corpus of historical English
text. The CLAWS tagset is applied for all POS tags of this
corpus.

1) Character n-gram frequency: The index of peculiarity
(or the peculiar index) of a token is recommended for detect-
ing OCR errors [1], therefore we consider the peculiar index
as a classifier feature. In our work, we reuse the formula of
computing the peculiar index on frequency statistics of the
historical corpus COHA.

The key idea of the peculiar index is that if strings
contain non-existent or very infrequent n-grams (like “jtg”
or “bkm”), they are detected as potential erroneous tokens.
The peculiar index of a token is the root-mean-square of the
indices of its trigrams.

score(w) =

√∑
x∈trilist index(x)

2

n
(1)

where trilist is the list of trigrams of the OCR token w, n
is the size of trilist, and index(x) is the index of trigram
x which is computed as follows:

index(x) =

∑
y∈bilist log(freq(y))

2
− log(freq(x)) (2)

where bilist is the list of bigrams of trigram x.

For example, we reuse the OCR phrase “his friend comes
from the south we.t” with the OCR token “we.t” and its two
trigrams {“we.”, “e.t”}, the peculiar index of this token is:

score(“we.t”) =

√
index(“we.”)2 + index(“e.t”)2

2

index(“we.”) =
log(freq(“we”)) + log(freq(“e.”))

2
− log(freq(“we.”))

Tokens with a higher index of peculiarity tend to be
incorrect tokens [2]. However, it is unfair to compare the
index of the peculiarity of long tokens and that of short
tokens. Our analysis on the training part of our datasets
suggests that long tokens tend to have a higher index of
peculiarity. Therefore, we adapt the peculiar index to token
length. In particular, for each dataset, we group the indices
according to the length of their corresponding tokens; for
each group, the peculiar index is normalized by the highest
peculiar index of that group. The adapted index of peculiar-
ity (denoted as pe-index) and the corresponding token length
(denoted as tok-len) are used as classifier features.

By catching frequent character n-grams, the character
level features have potential to correctly recognize out-of-
vocabulary (OOV) words, which are often considered as
errors because they are not present in the dictionary.

2) Word n-gram frequency: At word level, several fea-
tures are extracted from contiguous ngrams to skip-ngrams.

Word frequency: The frequency of the OCR token w is
normalized by the maximum frequency of its candidate set
C, and is utilized as one feature value (denoted as word-
freq).

score(w) =
freq(w)

maxci∈C(freq(ci))
(3)

For example, for the OCR token “comes”, its candidates with
corresponding frequencies {“comes”: 300, “cones”: 100,
“comas”: 200}, the feature score of “comes” is calculated
as follows:

score(“comes”) =
300

max(300, 100, 200)
= 1

Bigram frequencies of the OCR token and its neigh-
bours: The bigram frequency of the OCR token and its
previous token is normalized by the maximum bigram
frequency of the OCR token’s candidates and its previous
token’s candidates, and then is used as one feature (denoted
as pre-bi-freq).

score(w) =
maxi∈C−1 freq(i, w)

maxi∈C−1,j∈C freq(i, j)
(4)

where C, C−1 are the candidate set of the OCR token, and
that of its previous token.

For example, there are the OCR token “the” in the phrase
“from the north”, the candidate set C−1 {“from”, “front”},
and the candidate set C {“the”, “he”, “she”}. The occurrence
frequencies between “from”, “front” and each candidate of



set C are {100, 2, 1}, {105, 2, 3}. The feature score of the
OCR token “the” is computed as follows:

score(w) =
max(100, 105)

max(100, 105, 2, 2, 1, 3)
= 1

Similarly, the bigram frequency of the OCR token and its
next word is normalized by the maximum bigram frequency
of the OCR token’s candidates and its next token’s candi-
dates, and is used as a feature (denoted as next-bi-freq).

score(w) =
maxj∈C+1 freq(w, j)

maxi∈C,j∈C+1 freq(i, j)
(5)

where C, C+1 are the candidate set of the OCR token, and
that of its next token, respectively.

In addition, the product of the previous bigram frequency
and next bigram frequency (denoted as prod-bi-freq) is also
considered as one feature.

Skip-gram frequencies: In order to reduce the data
sparsity problem, skip-grams [14] are examined beside con-
tiguous n-grams. Since COHA provides only 4-gram word
frequencies, we focus on 2-skip-bigrams of an OCR token
and its neighbors.

Frequencies of 2-skip-bigrams of the OCR token and three
left/right words are calculated. The sum of these concurrent
frequencies is normalized by the number of OCR token
frequencies (i.e. divided by six in our work), and is then
used as the skip-gram feature value. In particular, for an
OCR token w in the phrase w−3 w−2 w−1 w w+1 w+2 w+3,
the score of skip-gram feature is calculated as follows:

score(w) =

∑
wi∈L1

freq(wi, w) +
∑

wj∈L2
freq(w,wj)

6 ∗ freq(w)
(6)

where the list L1 is {w−3, w−2, w−1}, the list L2 is
{w+1, w+2, w+3}.

For example, for the OCR token w “from” in the phrase
“his friend comes from the north we.t”, the skip-gram feature
is computed as follows:

sumfreq = freq(“his”, w) + freq(“friend”, w)

+ freq(“comes”, w) + freq(w, “the”)

+ freq(w, “north”) + freq(w, “we.t”)

score(w) =
sumfreq

6 ∗ freq(w)

Split-word feature: While run-on errors are easily found
by non-word error detection techniques, incorrect split er-
rors are more challenging to identify. In order to deal with
incorrect split errors (e.g. “made” vs. “ma lie”), we generate
a split-word candidate list Cs from the OCR token w and its
next token. For each candidate, we compute a score based on
word frequency and bigram frequency, then use the highest
score as a classifier feature (denoted as split-word), as shown
in Eq. 7.

score = max
ci∈Cs

(α ∗ x(ci, w) + (1− α) ∗ y(ci, w)) (7)

where w−1 is the previous word, x(ci, w) is 1 if
freq(ci) > freq(w) else 0, y(ci, w) is 1 if freq(w−1, ci) >
freq(w−1, w) else 0, α is the contribution rate between
word frequency and bigram frequency, which was selected
by keeping all other parameters same and trying different
values between 0 and 1 with a step of 0.1. Our experiments
showed that α = 0.5 is the best level.

Consider, for example, the OCR phrase “they main tain
good relations”, two adjacent OCR tokens “main tain” and
the previous token “they”. The split-word candidate set Cs

of “main tain” is {“maintain”, “maintan”, “niaintain”}. The
OCR token “main” has the highest frequency in comparison
to the candidates and only “maintain” has higher bigram
frequecy than “main”, hence the feature score is as below:

score = max(0.5, 0, 0) = 0.5

3) Part-Of-Speech (POS) features: POS is considered as
the general form of ngram feature. Our work utilize POS
tag in length 3 as a classifier feature.

Let us assume that there are the OCR token w in the
phrase w−2 w−1 w w+1 w+2, and its candidate set C
{c1, c2, c3}. The tri-POSs related to the OCR token w are
pos−2 pos−1 pos, pos−1 pos pos+1, and pos pos+1 pos+2

denoted as the left-POS/mid-POS/right-POS, respectively.
We first get a list of POS tags of each token

w−2, w−1, w, w+1, w+2 from COHA corpus, denoted as
L−2, L−1, L, L+1, L+2, respectively. OCR token’s can-
didates c1, c2, c3 also have the POS lists Lc1 , Lc2 , Lc3 ,
respectively.

As to the left-POS, all possible tri-POSs of the OCR token
and its candidates are created by combining POS tags of
L−2, L−1 and each POS list of {L,Lc1 , Lc2 , Lc3}.

The maximum frequency of the left-POS of OCR token
is computed, then normalized by the maximum frequency
of tri-POSs created from L−2, L−1 and each POS list of
{Lc1 , Lc2 , Lc3}. The normalized left-POS frequency of OCR
token is used as one feature.

score(w) =
maxi∈L−2,j∈L−1,k∈L freq(i, j, k)

maxLci
∈Lc maxi∈L−2,j∈L−1,k∈Lci

freq(i, j, k)
(8)

with Lc = {Lc1 , Lc2 , Lc3}.
We reuse the same OCR phrase to illustrate this fea-

ture, “his friend comes from the north we.t”. The OCR
token w is “comes”, and its candidate set is {“comes”,
“cones”, “comas”}. The POS lists of two previous words
“his”,“friend” are {appge, ppge}, {nn1, np1}, respectively.
The POS lists of “comes”, “cones”, “comas” are {vvz},
{nn2}, {nn2}, respectively. The possible left-POS of the
OCR token “comes” include {appge nn1 vvz, ppge nn1
vvz, appge np1 vvz, ppge np1 vvz} and their maximum
frequency is 10625. Similarly, the maximum frequencies of
the left-POS of the candidates “comes”, “cones”, “comas”
are 10625, 16425, 16425. Consequently, the feature score is:
score(“comes”) = 10625/16425 = 0.65.



Similarly, the normalized mid-POS, right-POS frequen-
cies of OCR token are computed. In total, there are four
features scores extracted from POS, including left-POS, mid-
POS, right-POS, and their product (denoted as prod-POS).

4) OCR token frequency in candidate generation sets: As
mentioned in Sec III-A, there are four sources to generate
error candidates: character error model, local word context
(left-trigram, middle-trigram, and right-trigram). The num-
ber of appearances of the OCR token in the candidate sets is
normalized by the number of candidate sets, then it is used
as a feature (denoted as tok-freq).

While other features are built from individual words or
word context, the tok-freq feature is designed from both of
them. Therefore, we think that this combined feature can
deal with non-word as well as real-word errors.

For example, the OCR token “the” in the phrase “his
friend comes from the north we.t” has the noisy channel
candidate set {“the”, “she”, “he”}. The local context candi-
date sets include the left-trigram set {“the”, “a”, “an”}, the
middle-trigram set {“the”, “up”, “a”}, and the empty right-
trigram set. As a result, the feature score is score(“the”) =
3/4.

C. Error classification

If the OCR token is an error, then its feature vector is
labeled as 1, otherwise 0. Gradient Tree Boosting is one of
the best performing classifiers [15], therefore we use it to
train and classify OCR errors. In our experiments, we use
the scikit-learn library [16] with the maximum of 5 nodes
in the tree, 800 boosting stages, and default parameters.

IV. EXPERIMENTS

A. Evaluation metrics

Our results are evaluated by the same metrics (Precision,
Recall, F-measure) and the same evaluation tool as the ones
used in the ICDAR 2017 competition1.

B. Results

We compare our proposed approach with the six top
performing approaches of the competition (CLAM, Char-
SMT/NMT, EFP, MMDT, WFST-PostOCR, 2-pass RNN),
which were presented in Sec. II. The performance shown in
Table I indicates that our method outperforms the highest
performing approaches in the competition, with 6% and 2%
greater F-measure than the state-of-the-art (WFST-PostOCR)
on Monograph and Periodical, respectively.

Furthermore, the performance on different error types
(non-word vs. real-word) is clarified. In our opinion, due
to the sparsity problem, our context features are not really
effective in detecting real-word errors. In fact, despite apply-
ing possible features at word level (from ngram, skip-gram
to part-of-speech) our approach enables to identify 43% of
them on Monograph and 49% on Periodical.

1https://sites.google.com/view/icdar2017-postcorrectionocr/

Table I
EXPERIMENTAL RESULTS OF OCR ERROR DETECTION TASK IN

ENGLISH DATASETS OF THE COMPETITION

Monograph Periodical

Approaches P R F P R F

CLAM 94% 52% 67% - - -
Char-SMT/NMT 98% 51% 67% 89% 50% 64%

EFP 63% 77% 69% 53% 55% 54%
MMDT 83% 55% 66% 70% 32% 44%

WFST-PostOCR 67% 82% 73% 68% 68% 68%
2-pass RNN 58% 77% 66% 64% 68% 66%

Proposed approach 82% 76% 79% 81% 61% 70%

In case of non-word errors, our approach correctly detects
the majority of non-word errors (96% of them on Monograph
and 85% on Periodical). Most of the unidentified non-word
errors are erroneous tokens related to numbers. In addition,
we also take out-of-vocabulary (OOV) words into account.
On average, 46% of OOV words in our datasets are correctly
recognized.

C. Feature analysis

In total, our approach relies on 13 features to classify
OCR errors. Three features (pe-index, tok-len, word-freq)
built from individual words mainly focus on detecting non-
word errors. The features created from word context (bigram
frequencies, skip-grams, POS tags) concentrate on identify-
ing real-word errors. Regarding the combined feature tok-
freq, it has potential to deal with both of non-word and real-
word errors. The remaining feature split-word is designed to
handle incorrect-split errors.

Each feature contributes differently to predicting the tar-
get. The more frequently a feature is used in the split points
of a decision tree, the more important that feature is. In
ensemble classifier like Gradient Tree Boosting, the feature
importance is the average one of each tree [16]. As our
approach detects more non-word errors than real-word ones,
we believe that the features based on individual words (pe-
index, tok-len, word-freq) and the combined feature tok-
freq are more important than the features relying on word
context. The relative importance of the features shown in
Fig. 1 supports our assumption. In particular, tok-freq is the
most important one (36.8% on Monograph and 52.3% on
Periodical) and pe-index is the third one (15% on Monograph
and 9.4% on Periodical).

The importance of our novel features are evaluated sepa-
rately in Table II. In overall, pe-index and tok-freq help to
increase recall on Monograph and precision on Periodical.
This trend can be partly explained by characteristics of these
features and different rates of non-word/real-word errors of
the two datasets. In fact, pe-index and tok-freq mainly detect
non-word errors, and the rates of non-word/real-word in
Monograph are higher than in Periodical (1.5 vs. 0.5).



Figure 1. The relative importance of the features

Table II
PERFORMANCE OF OUR MODELS WITHOUT SOME NOVEL FEATURES

Monograph Periodical

Models P R F P R F

11 features 87% 31% 46% 76% 59% 66%
11 features+pe-index 91% 48% 63% 80% 61% 69%
11 features+tok-freq 82% 74% 78% 80% 58% 67%

All features 82% 76% 79% 81% 61% 70%

V. CONCLUSIONS

This work examined a novel OCR error detection ap-
proach, which has better performance than the state of the
art. The main idea of our method is to check whether an
OCR token is a correct one using feature values computed
from its plausible candidate set. Moreover, two novel fea-
tures (pe-index, tok-freq) are found to play important roles
in the detection of incorrect OCR tokens. Our future work
will concentrate on correcting OCR errors with the detected
error list. In addition, we will reuse these classifier features
to suggest the best candidate correction of each OCR error.

ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under
grant 770299 (NewsEye).

REFERENCES

[1] K. Kukich, “Techniques for automatically correcting words
in text,” Acm Computing Surveys (CSUR), vol. 24, no. 4, pp.
377–439, 1992.

[2] R. Morris and L. L. Cherry, “Computer detection of typo-
graphical errors,” IEEE Transactions on Professional Com-
munication, pp. 54–56, 1975.

[3] G. Chiron, A. Doucet, M. Coustaty, and J.-P. Moreux, “Ic-
dar2017 competition on post-ocr text correction,” in Docu-
ment Analysis and Recognition (ICDAR), 2017 14th IAPR
International Conference on, vol. 1. IEEE, 2017, pp. 1423–
1428.

[4] E. Zamora, J. J. Pollock, and A. Zamora, “The use of trigram
analysis for spelling error detection,” Information Processing
& Management, pp. 305–316, 1981.

[5] A. R. Golding and Y. Schabes, “Combining trigram-based
and feature-based methods for context-sensitive spelling cor-
rection,” in Proceedings of the 34th annual meeting on
Association for Computational Linguistics, 1996, pp. 71–78.

[6] J. Mei, A. Islam, Y. Wu, A. Moh’d, and E. E. Milios,
“Statistical learning for ocr text correction,” arXiv preprint
arXiv:1611.06950, 2016.

[7] G. Khirbat, “Ocr post-processing text correction using simu-
lated annealing (opteca),” in Proceedings of the Australasian
Language Technology Association Workshop 2017, 2017, pp.
119–123.

[8] K. Taghva, J. Borsack, B. Bullard, and A. Condit, “Post-
editing through approximation and global correction.”

[9] K. Taghva, A. Condit, J. Borsack, J. Kilburg, C. Wu, and
J. Gilbreth, “Manicure document processing system,” in Doc-
ument Recognition V, vol. 3305. International Society for
Optics and Photonics, 1998, pp. 179–185.

[10] K. Taghva and E. Stofsky, “Ocrspell: an interactive spelling
correction system for ocr errors in text,” International Journal
on Document Analysis and Recognition, vol. 3, no. 3, pp.
125–137, 2001.

[11] S. Schulz and J. Kuhn, “Multi-modular domain-tailored OCR
post-correction,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2017,
pp. 2716–2726.

[12] T.-T.-H. Nguyen, M. Coustaty, A. Doucet, A. Jatowt, and N.-
V. Nguyen, “Adaptive edit-distance and regression approach
for post-ocr text correction,” in International Conference on
Asian Digital Libraries, 2018, pp. 278–289.

[13] M. Davies, “The corpus of contemporary american english
as the first reliable monitor corpus of english,” Literary and
linguistic computing, pp. 447–464, 2010.

[14] A. Reyes, P. Rosso, and T. Veale, “A multidimensional
approach for detecting irony in twitter,” Language resources
and evaluation, pp. 239–268, 2013.

[15] J. Wainer, “Comparison of 14 different families of classi-
fication algorithms on 115 binary datasets,” arXiv preprint
arXiv:1606.00930, 2016.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, pp. 2825–2830, 2011.


