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Glottal Flow Synthesis for
Whisper-to-Speech Conversion

Olivier Perrotin, Member, IEEE and Ian V. McLoughlin, Senior member, IEEE

Abstract—Whisper-to-speech conversion is motivated by laryn-
geal disorders, in which malfunction of the vocal folds leads
to loss of voicing. Many patients with laryngeal disorders can
still produce functional whispers, since these are characterised
by the absence of vocal fold vibration. Whispers therefore
constitute a common ground for speech rehabilitation across
many kinds of laryngeal disorder. Whisper-to-speech conver-
sion involves recreating natural-sounding speech from recorded
whispers, and is a non-invasive and non-surgical rehabilitation
that can maintain a natural method of speaking, unlike the
existing methods of rehabilitation. This paper proposes a new
rule-based method for whisper-to-speech conversion that replaces
the noisy whisper sound source with a synthesised speech-like
harmonic source, while maintaining the vocal tract component
unaltered. In particular, a novel glottal source generator is
developed in which whisper information is used to parameterise
the excitation through a high-quality glottis model. Evaluation
of the system against the standard pulse train excitation method
reveals significantly improved performance. Since our method is
glottis-based, it is potentially compatible with the many existing
vocal tract component adaptation systems.

Index Terms—Whisper-to-speech conversion, Speech synthesis,
Vocal source excitation, Glottal Flow Model, Laryngectomy.

I. INTRODUCTION

VOICE production relies on sound excitation generated in
the glottis being transformed by the time-varying shape

of the vocal tract (VT) to articulate phonemes. Excitation
either comes from vocal fold vibration (phonated or voiced)
or from turbulent airflow through an open glottis (unvoiced).
The former situation creates sounds that are harmonic while
the latter leads to noisy/breathy sounds. Speech consists of
phonated vowels interspersed with phonated and unphonated
consonants, whereas true whispers are unphonated [1].

Among many disabilities affecting speech production, la-
ryngeal disorders describe malfunction of the vocal folds that
affect the quality of phonation. This ranges from hoarse voices,
e.g., cases of laryngitis or presence of nodules, to total loss of
phonation, for instance following laryngectomy. Recent studies
show that laryngeal disorders affect a large number of people,
e.g., 7.6% reported laryngeal issues in 2012 in the US, yet few
of those are diagnosed and treated appropriately [2]. Current
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Fig. 1. Linear source filter models for speech (top) and whisper (bottom).

rehabilitative solutions for voice restoration involve the use
of alternate vibration sources. The most common is tracheoe-
sophageal speech, which requires surgery to re-direct airflow
from the trachea to the oesophagus, using the pharyngo-
oesophageal sphincter muscles as a vibration source [3]. The
need for surgery and intensive training to master speaking
– many patients are unable to produce intelligible speech
after surgery [3] – motivates the development of alternative
methods, particularly those that are non-invasive and non-
surgical. The electrolarynx is an external vibrator that, when
held against the neck or placed into the mouth [4], excites the
vocal tract [5]. Although less invasive than tracheoesophageal
speech, electrolarynx speech has been reported less intelligible
and results in a strongly mechanical voice [6].

With advances in speech technology, research has re-
cently focused on computational transformation of impaired-
to-normal speech. Moreover, since unphonated speech is not
affected by loss of laryngeal excitation, whispers are seen as
a valid starting point for speech reconstruction – effectively
reducing the task to whisper-to-speech conversion (WSC).
This paradigm relies on linear models of speech and whisper
production [7], shown in Figure 1, featuring an excitation
followed by a series of linear filters to model the glottis, the
VT and lip radiation, respectively. The glottis filter shapes
the excitation into a glottal waveform [8] during phonation, or
adds colouration to the noise excitation in the case of whispers,
mostly attenuating high frequencies. The glottal signal then
passes through the VT, which contributes zeros and resonances
(formants) that allow the perception of vowels and consonants.
Finally, the radiation filter models lip radiation by a simple
derivative component. Distinction between speech and whisper
mainly relies on the harmonic or noisy nature of the glottal
source, yet differences have been observed in the VT [9], [10].

WSC research to date tends to reduce the problem to a
source-filter model where the source is the excitation com-
ponent, and the filter is a combination of the glottis, vocal
tract and lip radiation filters. During conversion, the whisper
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TABLE I
MACHINE LEARNING METHODS FOR WSC. TOP AND BOTTOM TABLES SHOW THE PREDICTION AND SYNTHESIS METHODS, RESPECTIVELY

Toda et al. [11] Tran et al. [12] Li et al. [13] McL. et al. [14] Janke et al. [15] Meenakshi et al. [16]
Speech feature Machine learning methods for mapping with whisper spectral envelope

Spectral envelope GMM (MFCC) GMM (MFCC) RBM (full) DNN (full) DNN (MFCC) Bi-LSTM (MFCC)
Aperiodicity GMM GMM Bi-LSTM
f0 + V/UV GMM ANN

V/UV DNN SVM SVM Bi-LSTM
f0 GMM SVR GMM Bi-LSTM

Synthesis methods
Source STRAIGHT STRAIGHT Pulse train Pulse train Pulse train Unit- STRAIGHT
Filter MLSA MLSA Spectral envelope Spectral envelope MLSA selection Spectral envelope

excitation is extracted, to be replaced by a synthetic voiced
source, while the filter part is adapted to compensate for VT
differences between whisper and speech. The main challenges
in WSC are (i) generating a high-quality phonated source; (ii)
predicting phonated source parameters such as pitch contour
and voiced/unvoiced decisions; (iii) adapting the glottis and
vocal tract filters. Most previous research has focused on
steps (ii) and (iii), namely pitch prediction [1], [11]–[22]
or vocal tract adaptation through filter modification [11]–
[14], [16], [21]–[25] while using simple pulse trains for the
replacement phonated excitation. Nevertheless, we strongly
believe that overall reconstruction quality is severely hampered
by lack of naturalness in the excitation source. Hence this
paper presents a complementary approach by focusing on step
(i): a new method of phonated source synthesis, focusing on
timbre naturalness. It proposes a new excitation source driven
by natural whisper information, along with a spectral glottis
model, to produce high quality phonated excitation.

After reviewing WSC methods, the remainder of this paper
details the proposed whisper decomposition process, excitation
synthesis and glottis filter design in Sections II to IV. Evalu-
ation in Section V is followed by a conclusion in Section VI.

A. Whisper-to-speech systems

As mentioned, existing WSC research tends to focus on
pitch prediction and VT adaptation. There are two approaches;

1) Rule-based: Standard frameworks for rule-based WSC
consist of: 1) decomposing whisper, using linear prediction
(LP) to estimate a linear filter that gives a parametric
representation of the speech spectral envelope [26], then
applying inverse filtering to get the excitation; 2) applying
rules to modify filter parameters, and predict the replacement
phonated excitation source parameters; 3) generating speech
by filtering the new excitation source with the modified
filter [1], [20]–[25]. Filter modification starts with formant
extraction from the poles of the LP coefficients [1], [20],
[23]–[25] or from line spectral pairs [21], [22]. Then formants
can be shifted to account for the formant position difference
between speech and whisper [1], [21], [24], [25]; enhanced,
i.e., make them more prominent [21]–[25]; and their frequency
trajectories are sometimes smoothed as the noisy nature of
whispers leads to higher variability than in speech [1], [21],
[23]–[25]. The simplest source for replacement excitation
is a pulse train that is fully harmonic [20]. To add more

variability, the Mixed Excitation Linear Prediction (MELP)
vocoder [27] mixes pulse train and noise spectra on different
frequency bands. The mixing coefficient per frequency band
is often called an aperiodicity component. Morris et al. used
MELP with a fixed aperiodicity component, where frequency
bands below and above 3 kHz were pulse train harmonics and
noise, respectively [21]. An alternative is using codebooks of
excitation with Code-Excited Linear Prediction (CELP) [23]–
[25]. The same authors later presented a different approach
using sine wave synthesis [1]. To control these sources,
only one study predicted voiced/unvoiced decisions, using
phoneme classification [25]. Several approaches predicted
pitch from whisper intensity [21], or formant frequencies and
bandwidths [1], [22]. The rules used for such prediction were
fully empirical, yet more recent work attempted to derive
pitch from whisper spectral information [20] by learning rules
from a pitch-annotated database of whispers, i.e., judges were
asked to attribute a perceived pitch to whispers in the database.

2) Machine learning based: Using machine learning to
predict elements of the reconstructed speech, systems are
trained from parallel databases of natural speech and whis-
pers. On the one hand, speech is decomposed into vari-
ous features (e.g., spectral envelope, aperiodic components,
voiced/unvoiced (V/UV) decisions, pitch (f0)). On the other
hand, whispers are described by spectral envelope only. For
each speech feature, a machine learning model is trained to
map to the whisper spectral envelope. Various implementations
follow this framework, summarised in Table I. Speech and
whisper spectral envelopes can be mapped via Restricted
Boltzmann Array (RBM) [13], or converted to Mel Frequency
Cepstrum Coefficients (MFCC) for regression with Gaussian
Mixture Models (GMM) [11], [12]. Deep Neural Networks
(DNN) [14], [15] and Bidirectional Long Short-Term Memory
Networks (Bi-LSTM) [16] have also been used. The f0 and
V/UV decisions are sometimes combined (where f0 = 0
means ‘unvoiced’) [11], [15], although performance improves
when they are predicted separately using DNN [12], support
vector machine (SVM), support vector regression (SVR) [13],
or Bi-LSTM [16]. Finally, the STRAIGHT vocoder [28] has
been used to generate mixed-excitation when aperiodicity
components are available [11], [12], [16], but pulse trains are
used when no aperiodicity components exist. Excitation is then
either filtered by a Mel Log Spectrum Approximation (MLSA)
filter if MFCC is used [11], [12], [15], or by a full spectral
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TABLE II
PARTITIONING MODELS FOR SOURCE AND FILTER.

Source Filter
DSP-based Excitation Glottis + Vocal Tract + Lip
Voice-based Excitation + Glottis + Lip Vocal tract

envelope if available [13], [14], [16]. Alternatively, an end-to-
end WSC system using Generative Adversarial Networks that
does not use any parametrisation of speech and whisper has
also been implemented [29]. Finally, recent research has pro-
posed electrolarynx-to-speech [30] and oesophageal speech-to-
normal speech conversion [31], using statistical methods [11].

In summary, both rule-based and machine learning-based
methods focus mainly on whisper feature adaptation via filter
modification, and on speech-related feature prediction (e.g.,
pitch contour generation or V/UV detection). Most use sim-
ple excitation sources such as alternating pulse trains and
noise, leading to buzzy and robotic speech [13]–[15], [20],
[21]. Only those which can predict an aperiodic component
per frequency band with machine learning used STRAIGHT
mixed-excitation [11], [12], [16].

B. Speech decomposition

All excitation sources used in current WSC systems and
described above have a flat spectral envelope, and excite a
filter that includes the glottis, vocal tract and lip contributions.
For shorthand we call this type DSP-based since such a
decomposition is widely used in audio and speech DSP. The
‘Source’ only includes an excitation, and all filters reside
in the ‘Filter’ part. However, it is possible to group these
linear model components differently. For example, Voice-based
source-filter decomposition, shown in Table II, follows the
natural production of speech by defining the ‘Source’ as a
combination of excitation and glottis filter, and the ‘Filter’ as
the vocal tract contribution. It is also common to group the
lip radiation filter (a simple derivative) with the glottis filter to
output the glottal flow derivative (GFD) instead of the glottal
flow source. A time-domain parametric model of the GFD is
often used, such as the widespread LF model [32]. Solutions
to jointly estimate the glottal source and the vocal tract filter
from speech have been proposed [33], [34]. Other methods first
estimate a glottal model from the speech signal, deconvolve the
model from the signal and apply linear prediction to estimate
the vocal tract [35], [36]. An alternative is to make use of
a natural glottal pulse library [37]–[39] or perform principal
component analysis on the library [40]. In each case, the
source consists of the temporal GFD waveforms.

The WSC methods of section I-A are DSP-based vocoding
techniques. Yet voice-based decomposition using GFD seems
more appealing for high quality WSC since the decoupling of
glottis and VT filter increases the flexibility of source parame-
terisation without affecting the VT components. In particular,
voice quality parameters such as tension of vocal force that are
typical of phonated speech and essential for expressivity can
be generated by modifying the glottis filter [41]. Furthermore,
as we have stated, WSC is primarily an excitation+glottis filter
reconstruction task rather than a VT filter modification task.

Hence, we propose synthesising a speech glottal source model,
including an excitation, glottis filter and lip radiation filter,
directly from whisper parameters.

C. Proposed system

The proposed WSC system aims to replace the whisper
excitation and glottis filter by generating a new voiced ex-
citation, and creating a new glottis filter adapted for speech.
To increase naturalness, both the excitation and glottis filter
are dynamically generated from the whisper decomposition.
The following sections describe, in turn, the whisper decom-
position, replacement excitation and glottis filter syntheses.

A full diagram of the proposed WSC system is shown in
Figure 2. This begins with whisper input at the top right.
The GFM-IAIF method [42] (Glottal Flow Model-based It-
erative Adaptive Inverse Filtering, explained in section II-B)
extracts the VT and glottis filters to be used in the whisper
decomposition process in the top left panel. Successive inverse
filtering of the vocal tract and glottis provides the GFD and
the excitation, respectively. The whisper excitation is input
to the speech excitation synthesis block in the middle left
panel (detailed in section III). Similarly, the whisper glottis
filter and GFD drive the glottis filter synthesis in the middle
right panel (described in section IV). The bottom panel shows
the speech reconstruction process. The synthesised excitation
passes through the synthesised glottis filter, providing a voiced
GFD. In order to control the alternation of voiced and unvoiced
phones in speech, the synthesised voiced GFD and the whisper
unvoiced GFD are mixed as detailed in section IV-B. Finally,
the whisper VT filter is applied to the synthesised GFD to
obtain the reconstructed speech. Previous studies have shown
the importance of VT modification [11], [21], [25] for WSC;
however, no VT adjustment is used in this paper, so the method
is compatible with existing WSC systems that modify the
VT; all of our performance gains are achieved by improved
glottal/excitation modelling alone. Analysis uses a sliding
window of size Wwin advancing by Wshift each frame with
corresponding overlap-add at the output.

II. PROPOSED WHISPER DECOMPOSITION PROCESS

The challenge in whisper decomposition and speech recon-
struction is to find coherent models for whisper and speech VT
filters, and whisper and speech glottis filters. We first discuss
models for speech and whispers, then present a common
framework for their analysis-resynthesis.

A. Speech and whisper modelling

1) Speech production model: In a frequency domain glottal
flow model [8], [43], the opening and closing phases of the
vocal fold vibration are described by a resonance close to the
fundamental frequency, called ‘glottal formant’ as an analogy
to the VT resonances [8], and a high-frequency attenuation,
respectively. The glottal formant is modelled by a second
order resonant filter with frequency Fg and bandwidth Bg ,
that are directly correlated to vocal fold oscillation asymmetry
and open duration relative to the fundamental period. Fg is
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Fig. 2. Flow chart of the proposed WSC system. Thick plain arrows and thick-contoured boxes represent time-domain signals. Thick dashed arrows and
dashed-contoured boxes represent filter frequency responses. Dark boxes with white text are the parameter inputs of the system. Grey boxes are functions.

usually located between the 1st and 2nd harmonic [8]. The
high-frequency attenuation, called spectral tilt [8], is modelled
by a first order low-pass filter with a cut-off frequency Fst,
and is linked to the abruptness of vocal fold closure. The more
tensed the voice, the quicker the folds close, increasing high-
frequency amplitude through a positive shift of Fst, and vice
versa. In summary, the glottis spectral envelope is modelled
by a third order filter with a pair of conjugate poles {a, a∗}
(glottal formant) and a real pole b (spectral tilt):

G(z) = {(1− az−1)(1− a∗z−1)(1− bz−1)}−1 (1)

Varying section areas in the pharynx and oral cavity caused
by the moving articulators (tongue, jaw, lips) introduce cascade
resonances in the glottis spectrum [7]. Although the nasal
cavity attenuates some frequencies, these are commonly ap-
proximated with additional resonances [44]. An all-pole model
of Nv pairs of complex conjugate poles describes the VT:

V (z) =

{
Nv∏
i=1

(1− ciz−1)(1− ci∗z−1)

}−1
(2)

Finally, the lip radiation is modelled with a simple derivative
filter with a coefficient d close to 1 [7].

L(z) = 1− dz−1 (3)

In summary, the speech glottis filter encompasses a
low-frequency resonance and a spectral tilt. Conversely, the
VT response is globally flat across the frequency range, with

generally higher frequency resonances than the glottal formant.

2) Whisper production model: To our knowledge, previous
research did not study the whisper glottis and VT spectral
shapes separately. Nevertheless, studies of the overall spectral
envelope show that whispers present higher spectral balance
and centre of gravity than speech [45]. This translates into
an absence of low-frequency resonance, and reduced high-
frequency tilt [46]–[48]. Moreover, whisper vocal tract for-
mants have higher positions and bandwidths than speech [9],
[10]. To ensure coherence between whisper and speech mod-
els, we assume that whispers follow the same speech glottis
filter model, with extremely high glottal formant bandwidth
and high spectral tilt cut-off frequency. Likewise, we will use
a similar model for speech and whisper VT filters, differing
in terms of pole angles and magnitudes.

B. Source-filter separation of speech and whisper

The glottis-based voice coding techniques presented in sec-
tion I-B are able to accurately predict the glottis and VT filters
from a speech signal [34]–[36]. Nevertheless, their use of a
time-domain model of the glottal pulse makes them unsuitable
for whisper decomposition. Conversely, other methods such
as Iterative Adaptive Inverse Filtering (IAIF) [49] focus on
estimating both glottis and VT filter frequency responses from
the signal regardless of its harmonicity. A variant called Glottal
Flow Model (GFM)-IAIF [42] has been recently developed
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Fig. 3. Source-filter decomposition using GFM-IAIF on speech (black curves)
and whisper (grey curves) for the vowel in “is”. In the right panel the vertical
lines mark the glottal formant (left) and spectral tilt cut-off frequency (right).

to ensure that the extracted glottis filter follows the model
described in eqn. 1. Compared to IAIF, GFM-IAIF has been
shown to more accurately extract glottal formant and spectral
tilt features [42], key parameters for distinguishing whisper
from speech glottis filters. Figure 3 shows an example of
speech and whisper decomposition. From the left panel (spec-
tral envelope), one can see that the whisper spectral envelope
tends to be less tilted in high frequencies than for speech. The
middle panel shows that whisper and speech VT envelopes
appear approximately flat over the full spectrum, meaning that
most of the spectral tilt has been removed. Similar formant
repartition is observed between both signals, although the first
formant in whispers is higher than for speech [9]. Most of
the difference between speech and whisper spectral envelopes
evidently lies in the glottis spectrum (right panel). The whisper
glottal formant is higher in frequency and larger than in
speech, and has less spectral tilt [46], [47]. To conclude, GFM-
IAIF allows separate extraction of whisper and speech glottis
and VT filters, permitting independent modification of each,
necessary in the proposed system (see architecture in Fig. 2).

III. SYNTHESIS OF REPLACEMENT EXCITATION

Most previous WSC methods use a simple pulse train or a
mixture of pulse train plus noise as excitation source for the
phonated part of the signal [13]–[15], [20], [21]. However,
the high regularity of the pulse train is unnatural, with a
characteristic “buzziness”. Yet it is known that preserving
the speech excitation phase leads to a major reduction in
buzziness [50]. Attempts to add irregularities to the pulse train
were conducted in speech synthesis frameworks, either based
on rules [28], [51], on natural excitation libraries [52] or by
encompassing glottal pulse phase characteristics in statistical
parametric synthesis [53]. In our application, we have at our
disposal a whisper excitation input which already contains
many natural variations. We therefore propose extracting
some of those irregularities to increase the naturalness of the
phonated excitation source.

1) Additive synthesis: Firstly, a pulse train is generated
through additive synthesis, as a sum of N harmonics:

e�(t) =

N∑
i=1

cos

(
2π

∫ Ttot

0

fi(t)dt+ φi

)
(4)

where Ttot is the duration of the signal, fi and φi are the instan-
taneous frequency and phase of harmonic i, respectively. The

number of harmonics N is chosen to be maximum, extending
to the Nyquist frequency, since the subsequent glottis filter
will naturally attenuate the high frequency harmonics.

In a perfect pulse train, each harmonic is a multiple of the
fundamental frequency f0 with zero phase, and all harmonics
have the same amplitude. In order to add variability to the
pulse train, random variations are added to frequency, phase,
and amplitudes of harmonics. The whisper excitation does
not contain harmonics. Hence, frequency and phase variations
cannot be estimated from it and must be modelled using
rules. However, harmonic amplitudes can be derived from the
whisper excitation amplitude on frequency bands. The next
two sections detail firstly the addition of phase and frequency
variability, and secondly the addition of amplitude variability.

2) Phase and frequency variability: Random phase and
frequency variation in the pulse train are based on rules:{

φi = π [1 +AφNi(0, σ)]

fi(t) = if0(t)
[
1 +AfNi(0, σ)u(if0 − Fvuv)

] (5)

where f0 is the mean f0 value over the total duration of the
signal and u is the step function defined as:{

u(if0 − Fvuv) = 1 if if0 ≥ Fvuv

u(if0 − Fvuv) = 0 if if0 < Fvuv
(6)

The first factors of each product of eqn. 5 are the expected
values for a perfect pulse train. In particular, the speech glottal
flow derivative presents negative valleys of maximum magni-
tude. To comply with this model, the phases of each harmonic
are set to π so the pulses are negative. The second factors of
the products are the added random variations. Raitio et al. used
a uniform noise distribution to generate random phase signals
that led to completely inharmonic sounds [50]. To keep the
excitation periodic, the noise variations are centred by the use
of zero-mean Gaussian noises Ni(0, σ) for each harmonic. We
choose σ = 0.3 so that 99.9% of the noise values fall into the
interval [-1,1]. The phase and frequency noises are weighted
by the coefficients Aφ and Af , respectively. Moreover, it
has been shown that only the addition of random variations
to high-frequency harmonics is perceived as the expected
roughness, while inharmonicity in low frequencies results in
the perception of individual partials [54]. Therefore, only
harmonics above a frequency threshold are altered with the
help of the step function u (eqn. 6). In a similar fashion to the
Harmonic-plus-Noise Model [55], we denote this frequency
threshold the voiced/unvoiced frequency Fvuv.

The three values Af , Aφ and Fvuv along with the
fundamental frequency f0 are system calibration parameters.
Increasing values of Af , Aφ and a smaller value of Fvuv will
reduce the harmonicity of the excitation and lead to rougher
speech. A default of Aφ = 0.5 is chosen for experiments.
This allows the phase to approximately vary within a range
of π ± π/2, the limit above which the harmonics would be
in phase opposition. A value of Af = 1% is chosen for
frequency variation, above the threshold of perception of
inharmonicity [54]. Finally, a typical value of Fvuv = 4 kHz,
as reported in [55], is chosen in this study.



6 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020

3) Amplitude variability: Due to the approximately log-
arithmic frequency resolution of human hearing over much
of its range [54], we did not add amplitude variability to
individual harmonics but to harmonic groups belonging to
the same Mel-frequency band. Moreover, we aim to provide
variation of amplitude over time, by using the sub-band tem-
poral envelopes (STE) of the whisper excitation, calculated as
follows. First, we are only interested in the relative amplitude
variation between different frequency bands for each instant.
Therefore, the overall amplitude of the whisper excitation for
each frame is removed by normalising the signal by its RMS
value (see top-left of panel “Speech excitation synthesis” in
Fig. 2). Then, both whisper excitation ew and pulse train
excitation e� are passed through a Mel filter bank. We use 24
triangular filters with centre frequencies {Fmeli}i=1:24 equally
spaced from 0 to Fs/2 on the Mel scale with 50% bandwidth
overlap. Finally, the time-dependent amplitude envelopes of
each of the 24 narrowband whisper excitation signals (i.e., the
STE) are derived from the RMS of a sliding time window of
size Fs/{Fmeli}i=1:24 on each signal, as shown on the “Speech
excitation synthesis” panel in Figure 2.

The extracted STE show high variability for each frequency
band. Nevertheless, as stated above, introducing high variabil-
ity on the low-frequency harmonics of the pulse train severely
degrades signal harmonicity. As a consequence, the high
variations of STE are filtered with different gains depending
on the frequency band by means of high-shelf filters1 [56]
shown in the left part of Fig. 4. We empirically define the
filter transition at 5 Hz with the gain GBF of frequencies
below this set to one, i.e., the low variations of the ampli-
tude envelopes remain unchanged for all bands. The gains
{GHFi}i=1:24 of amplitude variation frequencies above 5 Hz
increase with frequency band. In other words, high-frequency
amplitude variations are removed on low-frequency bands, and
left unchanged on the highest frequency bands. The gains
{GHFi}i=1:24 are derived from the frequency response of a
first order Butterworth high-pass filter with cut-off frequency
Fvuv, as shown in the right part of Fig. 4, and are defined as
the amplitude of the frequency response of the filter evaluated
at the centre frequencies of each band {Fmeli}i=1:24.

Finally, each narrow-band pulse train excitation signal is
multiplied by the corresponding filtered STE. The modulated
narrowband pulse train excitations are then summed to give
the final synthesised speech excitation.

IV. HIGH QUALITY GLOTTAL FLOW SYNTHESIS

Glottal flow synthesis comprises two parts. First, as ex-
plained in section II-A2, the whisper glottis filter tends to show
higher glottal formant frequency and bandwidth and spectral
tilt cut-off frequency than in speech. Consequently, a speech
glottis filter is synthesised to replace the whisper glottis filter.
Second, a voiced/unvoiced alternation is introduced according
to the sequence of vowels and consonants (unlike the input
which is continuously unvoiced). Previous studies showed few
spectral differences between spoken and whispered unvoiced

1A high shelf filter equally attenuates or boosts all frequencies above the
cut-off frequency and leaves unaffected the frequencies that are below.
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consonants [47], [48]. Hence, the whisper glottal flow deriva-
tive is used for unvoiced consonants while voiced synthetic
speech serves for the vowels and voiced consonants. The
process of mixing between the two is described at the end
of this section.

A. Glottis filter synthesis

1) Linear model of source production: Most existing
glottis models are defined in the time-domain [51], [57]
and are therefore incompatible with our excitation plus filter
decomposition of speech and whisper paradigm. Feugère et al.
introduced the linear model (LM) of source production [58]
that models the glottis as a linear filter following eq. 1 and
which we adopt here. The model is driven by three parameters:
vocal effort and tension levels E ∈ [0, 1] and T ∈ [0, 1],
respectively, and the fundamental frequency f0. T drives the
timbre differences between a relaxed (T=0) and a tensed
voice (T=1), by increasing the frequency Fg and bandwidth
Bg of the glottal formant. E drives the timbre differences
between a soft voice (E=0) and a loud voice (E=1) by
adding high frequencies in the spectrum in increasing the
frequencies of the glottal formant Fg and the spectral tilt Fst.
Relations between E, T , Fg , Bg , and Fst can be found in [58].

2) Glottis amplitude: In their LM implementation, Feugère
et al. had direct user input control on vocal effort parameter
E. In this paper, E is derived from the whisper GFD through
an intensity parameter Ig . To assign a specific vocal effort
range to the signal w.r.t. the intensity range requires a mapping
between intensity and vocal effort:

E(t) = (Emax − Emin)Ig(t)/max (Ig) + Emin (7)

From this mapping, E ranges from Emin to Emax when
Ig evolves from 0 to its maximum. For instance, setting
[Emin, Emax] = [0.5, 1] synthesises a loud voice, while setting
[Emin, Emax] = [0, 0.5] synthesises a softer voice from the
same whisper intensity input. To summarise, Emin, Emax, T
and f0 are inputs of the system, while Ig is extracted from the
whisper, as shown on the middle panel of Fig. 2.

In particular, synthesised glottis amplitude Ig is computed
from the RMS value of the whisper GFD on each analysis
frame, and is processed before driving the glottis filter because
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the whisper amplitude has high-frequency variations that need
to be smoothed. Also, the amplitude of different whispered
vowels in an utterance presents high variability, requiring some
homogenisation of the amplitude envelope.

Smoothing uses a mean filter of size Wwin applied forward
and backward across frames to avoid distorting the phase of the
signal. Igw is the whisper glottis intensity while < Igw > is
its smoothed version. Homogenisation follows the observation
that normal speech intensity standard deviation (STD) should
be about 3 dB [59]. So the STD of the full whisper intensity
contour Isw is computed on the intensity in decibels:

STDIsw
= STD [20 log10(Isw)] (8)

Then the standard deviation of the smoothed whisper glottis
intensity contour is set to 3 dB by:

Ig(t) =
[
< Igw(t) >

] 3
STDIsw (9)

In practice, the frame-based real time paradigm used in our
system does not allow computation of standard deviation over
a full sentence. Therefore, we adopt a simple calibration pro-
cess to compute whisper intensity STD over several sentences
uttered by the user before initiating WSC.

Fig. 5 illustrates glottis amplitude envelope synthesis.
Smoothing of the whisper glottis amplitude (left panel) allows
low-frequency variations to be maintained, at the phone rate.
The variability reduction (right panel) keeps relative variations
across time so that the global prosody is preserved, while
making the amplitude contour smoother.

B. Mixing synthesised and whisper glottis

To avoid having a constant harmonic source across the
signal, it is necessary to alternate between voiced and
unvoiced sources depending on the phonemic pattern. We
thus derive a time-dependent mixing coefficient that allows
us to define the weight of the synthesised voiced and whisper
unvoiced sources accordingly, to form the final glottis signal.

1) Mixing coefficient: Information must be obtained from
whisper analysis to indicate transitions from what must be
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Fig. 6. Mixing coefficient computed from whisper spectrum centre of gravity
for the sentence “Nothing is as offensive as innocence”. Top-left: whisper
spectrum centre of gravity plotted over the spectrogram. Right: mapping
function. Dotted lines indicate Fvuv and Fuv. Bottom-left: mixing coefficient.

voiced phones and unvoiced phones. We have found that a
good indicator is the spectrum centre of gravity defined by:

FCoG =

∫ Fs/2

0
f |S(f)|2df∫ Fs/2

0
|S(f)|2df

(10)

where S(f) is the spectrum of the full whisper on a time
frame, f is the frequency, and Fs is the sampling frequency.
The top-left of Fig. 6 shows an example of whisper spectrum
centre of gravity. One can see that the latter follows the
alternation between broadband sounds (consonants) and low-
frequency energy regions (vowels). In particular, the most
prominent formants produced during voiced speech tend to lie
below 4 kHz [10]. Therefore, we expect that whisper vocalic
sounds have a centre of gravity below this threshold. Con-
versely, unvoiced consonants fill the high-frequency spectrum,
and we expect their centre of gravity to be much higher than
this threshold. For coherence with the previous parts, we again
use the voiced/unvoiced frequency Fvuv to distinguish between
vowels and consonants and want the mixing coefficient to be
0 below this threshold. Then, the centre of gravity reaches dif-
ferent peak heights depending on the consonant. For instance,
the highest peak in Fig. 6 corresponds to a /f/ which contains
more high-frequency energy than most of the other peaks
(e.g., /s/). Nevertheless, we expect all peaks to be classified
as unvoiced regardless of the consonant. For this sake, we
define the unvoiced frequency Fuv as the geometric mean of
the values of the centre of gravity above Fvuv. Both Fuv and
Fvuv are displayed in Fig. 6. We want the mixing coefficient
to be 1 above Fuv. As for the computation of the whisper
intensity standard deviation (section IV-A2), we suggest that
Fuv is estimated during the same simple calibration process.

Variations of centre of gravity from vocalic sounds to
consonants are sometimes slower than what we would expect
from a voiced/unvoiced transition, which are usually binary
decisions [44]. Therefore, a direct linear mapping from [Fvuv,
Fuv] to [0,1] yields transitions that are not sharp enough in
practice. Hence, we propose a non-linear mapping (shown on
the right of Fig. 6) based on the sigmoid function:

m(t) = 0.5
eλ log(FCoG(t)−

√
FvuvFuv) − 1

eλ log(FCoG(t)−
√
FvuvFuv) + 1

+ 0.5 (11)
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The sigmoid is applied on the log-frequency scale to account
for the logarithmic perception of frequencies, and is centred
on the geometric mean of Fvuv and Fuv. λ is the slope at
mid-range and is computed so that the mixing function fulfils
τr = 99% of this range between Fvuv and Fuv:

λ =
2

log(Fuv/Fvuv)
log

{
1 + τr
1− τr

}
(12)

2) Mixing the glottis filters: An example mixing coefficient
is displayed on the bottom-left of Fig. 6. It shows several
non-binary values, implying the simultaneous presence of
both voiced and unvoiced signals. In the case of unvoiced
phones (coefficient close to 1), the slight presence of a voiced
component introduces strong buzziness in the signal because
the voiced energy is mainly distributed on low frequencies
while the unvoiced component energy is at high frequencies
and thus cannot mask the voiced energy. To mitigate this effect,
the synthesised LM filter is also mixed with the whisper glottis
filter, so that both voiced and unvoiced components share a
similar spectral envelope for unvoiced phones, enabling the
unvoiced component to mask the voiced component. Mixing
occurs in the line spectral pair (LSP) domain [60] due mainly
to the high stability of LSPs, making them well suited for
mixing filters. LSPs are derived from both pairs of complex
conjugate poles of the whisper glottis filter (LSPw) and the
LM filter (LSPLM ). These poles model the glottal formant
only, as spectral tilt is not included. A geometric mix of LSPs
is then performed, according to mixing coefficient m:

LSPs(t) = LSPLM (t)
(1−m(t)) × LSPw(t)m(t) (13)

A new pair of complex conjugate poles is derived from the
mixed LSP (LSPs), and associated with the LM spectral tilt
real pole to synthesise the final glottis filter, as shown on the
bottom of the middle panel of Fig. 2.

3) Mixing the glottal flow derivatives: Finally, the synthe-
sised voiced glottal flow derivative gv is obtained by filtering
the synthesised excitation by the synthesised glottis filter. It
is then normalised to the same energy as the whisper glottal
flow derivative gw, and mixed with the latter according to the
mixing coefficient m:

gs(t) = {1−m(t)}gv(t) +m(t)Kwgw(t) (14)

A gain Kw controls the energy balance between voiced and
unvoiced components. We empirically define Kw = 0.1 to
have vowels 20 dB louder than consonants on average [61].

V. EVALUATION

We first evaluate the overall contribution of our new speech
glottal source in a perceptual experiment, then assess the
mixing coefficient and source-filter separation independently.

A. Subjective experiment

The major novelty of this paper is the new source model,
including novel excitation plus glottis filter, later called glottal
source. The first experiment aims to compare this glottal
source against previous methods in terms of reconstructed

TABLE III
SYSTEMS USED FOR THE EVALUATION

Source Vocal tract
Baseline Pulse train + Whisper Glottis Whisper VT
Glottal Synthetic Excitation + Synthetic Glottis Whisper VT
Reference Speech Excitation + Speech Glottis Whisper VT
Baseline Pulse train + Whisper Glottis Speech VT
Glottal Synthetic Excitation + Synthetic Glottis Speech VT
Reference Speech Excitation + Speech Glottis Speech VT

speech naturalness. The choice of the baseline to compare our
system against is a critical aspect and is discussed here. In
the field of parametric speech generation (e.g., text-to-speech
synthesis or statistical voice conversion), the STRAIGHT
vocoder is widely used [62]–[64], being a common refer-
ence to compare new systems with [65]. However, this is
possible only because most recent speech generation systems
make use of machine learning techniques that allow them to
predict the large number of STRAIGHT parameters, partic-
ularly the aperiodic components that describe the degree of
aperiodicity included in various frequency bands (typically
25 parameters [66], [67]). By contrast, as summarised in
section I-A, many WSC systems are rule-based, and cannot
use this aspect of the STRAIGHT vocoder. Moreover, among
machine learning-based methods, only a few predict the ape-
riodic components required by STRAIGHT [11], [12], [16].
The alternatives to STRAIGHT are CELP [25], MELP [21],
sinusoidal synthesis [1], and pulse trains [13]–[15], [20], [25].
To our knowledge, pulse trains are the most used method for
excitation synthesis in WSC publications. As a result, most
authors baseline against either natural signals (e.g., original
whispers [11], electrolarynx [1], [25]), or against pulse train
generation [13], [15], [16]. Only [12], [16] used a STRAIGHT-
based system as a baseline, which is logical because their aim
was to improve the STRAIGHT system they compared against.

It would be possible to replace the prediction of aperiodic
components in a rule-based system by empirically defining a
constant degree of aperiodicity. However, it has been shown
that speech excitation generated by STRAIGHT with multi-
band aperiodicity components is similar in terms of quality to
a standard pulse train [67]. We hypothesise that the difference
between STRAIGHT excitation and a pulse train would be
even smaller with an invariant aperiodicity. Therefore, for all
these reasons, we follow the majority of rule-based WSC
system authors and employ a baseline that uses a pulse train
for voiced excitation, combined with the whisper glottis filter.
The mixing between synthesised and whisper glottis detailed
in section IV-B is applied to both baseline and proposed glottal
sources.

We also compare both sources to a natural source called
reference (i.e., natural speech excitation and natural speech
glottis filter). As the whisper vocal tract is not processed, this
severely alters the quality of the reconstructed speech. To
isolate the contribution of our new source model, whispers
are reconstructed both using the whisper and the natural
speech VT. To do this, the latter are aligned to whisper VT
using dynamic time warping (DTW) [68] based on manual
annotation of phones in speech and whisper with Praat [69].



PERROTIN et al.: GLOTTAL FLOW SYNTHESIS FOR WHISPER-TO-SPEECH CONVERSION 9

TABLE IV
SIGNIFICANCE OF THREE FACTORS ON MUSHRA SCORES ASSESSED BY A

KRUSKAL-WALLIS RANK SUM TEST USING A χ2 DISTRIBUTION.

Factor df χ2 p
Speaker 3 1.51 0.68
System 5 3668 < 10−15

Sentence 8 19.0 0.015

The alignment was applied to the LSPs of the normal speech
VT. Finally, speech and whisper VTs are used with the three
sources (baseline, glottal and reference). Table III summarises
the cross-synthesis combinations used to generate the stimuli.
Finally, we ensured that all stimuli had identical natural f0
trajectories so that any artefacts in the synthesised signals are
due to the glottal source generation only.

1) Stimuli: The wTIMIT database [70] provides pairs of
450 phonetically balanced sentences uttered with normal
speech and whisper by 48 speakers. 9 sentences uttered by
4 native US speakers (2 females, 2 males) were selected
from the database for this experiment, sampled at 44.1 kHz.
In total, 6 signals were compared for each sentence and
subject. Overall, 216 stimuli were generated (4 speakers ×
9 sentences × 6 systems)2. The parameters used for speech
reconstruction were Emin = 0 and Emax = 1 so that the full
range of vocal effort is used, and the tension level was set
to T = 0.4. The f0 trajectories of all speech signals were
manually extracted with Praat, aligned with the same DTW
alignments used for the speech VT, and used as an input
parameter. The parameters STDIsw

and Fuv were evaluated
for each subject on all sentences in the test. A Hanning
window of Wwin = 1024 samples with a shift of Wshift = 64
samples was used for the frame-based analysis and synthesis.

2) Protocol: A MUSHRA-based test [71], [72] was
used to assess the preferences of listeners for the different
reconstruction methods. The test started with a training
session where subjects could listen freely to any of the 216
stimuli to get an overview of the range of naturalness of
the reconstructed speech. The training session was limited
to 5 min per subject and they were asked to listen to as
many stimuli as they could during that time. During the
evaluation, subjects were presented with 36 screens (one for
each sentence and speaker). On each screen, the subjects
could listen to the 6 reconstructed speech types and were
asked to rate their naturalness on a continuous scale from 0 to
100. A natural speech reference was also given, and subjects
were free to listen to the reference and the 6 stimuli as much
as they wanted. As one of the 6 stimuli was actually natural
speech (reference source + speech vocal tract), the subjects
were asked to rate one of the 6 signals as being 100 on
the naturalness scale, but were not told which one. Screens,
and the stimuli on each screen, were presented in random
order. Sounds were played to subjects using a Sennheiser
HD205 headset in a quiet room. Rests were allowed after

2Examples of the 6 stimuli generated for one male and one female speaker
are given as supplementary material available at http://ieeexplore.ieee.org
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Fig. 7. MUSHRA scores comparing the 6 methods across all listeners,
speakers and sentences. Each box represents the interquartile range of the
distributions and the thick horizontal lines are the medians. The whiskers
include the full distribution omitting outliers represented by the circles.

any screen and the full evaluation took around 45 mins per
subject. 21 listeners (5 female, 16 male, average age 31,
with self-reported normal hearing) participated. 9 subjects
had some experience of audio processing but none of speech
reconstruction. They were compensated with a £10 gift card.

3) Results: A Kruskal-Wallis rank sum test was used to
assess the significance of the factors Speaker (4 levels), System
(6 levels), and Sentence (9 levels). Table IV displays the
analysis results. We first observe that the Speaker factor does
not significantly explain the difference between the listeners’
scores (χ2 = 1.51, p = 0.68), indicating that over all sen-
tences, all WSC systems apply the same way to all speakers.
The number of speakers was small but balanced, suggesting
that reconstruction works with both male and female voices.

The main difference between scores is explained by the
System factor (χ2 = 3668, p < 10−15). Figure 7 depicts the
overall listeners’ ratings for each system, across all speak-
ers and sentences. A Wilcoxon rank-sum test assessed the
difference between each pair of distributions relative to the
synthesis method, and all were judged significantly different
(p < 10−15). First, we can notice that all listeners recognised
the natural speech example for all sentences and speakers,
without exception. The perceptive difference between the
reference speech and the other signals was therefore clear.
Then, we note an effect of the source, where the reference
source was given the best scores (medians of 100 and 69 for
the speech and whisper VT, respectively); the baseline source
was rated with the lowest scores (medians of 11 and 5 for
the speech and whisper VT, respectively); the glottal source
was rated in-between with medians of 50 and 36 for speech
and whisper VT, respectively. We infer from these results that
while our new glottal source does not match the quality of
the natural source, it significantly outperforms the commonly
used pulse train excitation. We also observe an effect of
the VT. Looking at the reference source, the application of
whisper VT on a natural speech source significantly degrades
speech naturalness. This justifies the need for VT adaptation
in WSC. Nevertheless, the improvement gained by using the
speech VT (difference between baseline source distributions)
is much smaller than that gained by applying our glottal source
(difference between baseline and glottal sources with whisper
VT distributions). This corroborates our belief that source
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reconstruction is more beneficial than VT adaptation.
Finally, the Sentence factor has a small but significant effect

on the listeners’ score (χ2 = 19.0, p = 0.015). Median scores
of distributions for each sentence range from 34 to 46. The
best results were obtained for the sentences having the fewest
unvoiced consonants, suggesting that the output speech quality
may be sensitive to voiced/unvoiced (V/UV) decisions.

B. Evaluation of the voiced/unvoiced decisions

The V/UV decisions are fully dependent on the mixing
coefficient, and were evaluated for all the stimuli from the
subjective experiment. Since the manually annotated V/UV
ground truth is binary for each phone, we needed to convert
the continuous mixing coefficient values to binary. To do this
we identified segments of consecutive 1 or 0 mixing coefficient
values on each phone. If the longest segment was 1, the phone
was classified as unvoiced, else it was classified as voiced.

Over all stimuli, the V-to-UV error rate was 7.6% and
UV-to-V error rate was 10.1%, leading to a total V/UV
error rate of 17.7%. Among the reviewed rule-based WSC
methods, only one implements a voicing decision based on
a phoneme classifier, but was not evaluated objectively [25].
Conversely, most machine learning based methods include a
voicing classifier, with best reported V/UV error rates about
9% using GMMs [13], [17] and 6.8% using neural networks
[17]. Those classifiers were all trained from parallel databases
of speech and whisper of about 150 to 200 utterances. Our
untrained voicing prediction, by contrast, is obtained from a
single function of the spectrum centre of gravity. Therefore,
while its performance has not yet reached that of machine
learning methods, the results are highly encouraging given its
efficiency of implementation.

To assess the effect of voicing prediction on perceived qual-
ity, we computed Pearson’s correlations between the medians
of the MUSHRA scores per sentence from the subjective
experiment, the V-to-UV error rate per sentence (r = 0.35,
p = 0.34) and UV-to-V error rate per sentence (r = −0.76,
p = 0.018), respectively, shown in Fig. 8. No significant corre-
lation is observed between V-to-UV error rate and MUSHRA
scores, indicating that when the system fails to add voicing, it
has little effect on listeners’ scores. By contrast, a significant
negative correlation exists between UV-to-V error rate and
MUSHRA scores (the higher the error, the lower the scores).
This suggests that speech quality is sensitive to the presence

of wrong-voiced phones, causing buzziness in the output
signal. This indicates that future work should focus primarily
on reducing UV-to-V error rate by including more whisper
information in the mixing coefficient computation.

C. Evaluation of the source-filter decomposition

The authors previously evaluated GFM-IAIF on static
phones [42], but the current paper is its first use with contin-
uous speech and whispers. Thus, we need to demonstrate that
GFM-IAIF correctly decomposes the glottis and VT elements
for those signals – specifically that the glottal parameters
account for the main difference between V and UV versions of
the same phone, while VT parameters remain broadly similar.
To assess this, we computed VT spectral tilt for whispered
and corresponding voiced phones on a frame-by-frame basis.
Across all test speakers and utterances, this showed a mean
difference of just 0.40 dB/decade, and a standard deviation of
5.58 dB/decade, providing a clear indication that both VTs
derive from the same model, and that the whisper/speech
difference is largely encoded in the glottal component.

VI. DISCUSSION AND CONCLUSION

This paper has presented a new rule-based WSC method
that focuses on the generation of a high quality phonated
glottal source. The system employs GFM-IAIF to achieve
consistent source-filter decomposition to accurately separate
VT components from whisper glottis signals. A high-quality
spectral glottis model is used to shape an excitation signal,
while whisper variability is incorporated into the speech exci-
tation, via a small set of empirically-defined parameters that
drive reconstruction naturalness in a way inspired by the high-
quality Cantor Digitalis singing synthesiser [58]. We note that
a full range of values for these parameters is likely to provide
satisfying sound quality, but allow different degrees of voice
quality (e.g., roughness). Eventually, the design of a mapping
between whisper features and all voice quality parameters
(i.e., the excitation roughness, and the glottis filter tension
and effort parameters) would help to increase the reconstructed
speech naturalness further. Overall, the entire WSC system was
evaluated using a MUSHRA-based test, yielding results that
show a statistically significant improvement over the baseline
reconstruction method.

To conclude, this paper presented a system for whisper-
to-speech conversion that perceptively improves on state-of-
the-art methods that use pulse train glottal sources. The use
of a voice-oriented source-filter model allows synthesis of a
high-quality glottis signal, independent of the VT. Whisper
variability is introduced in the harmonic generation, allied with
a linear glottis model. There has been much recent research
on VT adaptation and absolute pitch frequency prediction for
WSC, but none to our knowledge on glottal source reconstruc-
tion. Since those components are independent in a source-filter
model of speech, the glottal source proposed in this paper has
the potential to enhance the performance of a wide variety of
different VT adaptation + f0 prediction methods.
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“Whispered-to-voiced alaryngeal speech conversion with generative ad-
versarial networks,” in Proceedings of IberSPEECH. Barcelona, Spain:
ISCA, November 21-23 2018, pp. 117–121.

[30] K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “Speaking-
aid systems using GMM-based voice conversion for electrolaryngeal
speech,” Speech Communication, vol. 54, no. 1, pp. 134–146, 2012.

[31] H. Doi, T. Toda, K. Nakamura, H. Saruwatari, and K. Shikano, “Alaryn-
geal speech enhancement based on one-to-many eigenvoice conversion,”
IEEE Trans. Audio, Speech, Lang. Proc., vol. 22, no. 1, pp. 172–183,
2014.

[32] G. Fant, A. Kruckenberg, J. Liljencrants, and M. Bavegard, “Voice
source parameters in continuous speech. transformation of LF-
parameters,” in Int. Conf. on Spoken Language Processing (ICSLP),
Yokohama, Japan, September 18-22 1994, pp. 1451–1454.

[33] P. Hedelin, “A glottal lpc-vocoder,” in IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), San Diego, CA, USA, March
19-21 1984, pp. 21–24.

[34] D. Vincent, O. Rosec, and T. Chonavel, “A new method for speech
synthesis and transformation based on an ARX-LF source-filter decom-
position and HNM modeling,” in IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), vol. 4, Honolulu, Hawaii, USA, April
15-20 2007, pp. 525–528.

[35] J. P. Cabral, K. Richmond, J. Yamagishi, and S. Renals, “Glottal spectral
separation for speech synthesis,” IEEE Journal of Selected Topics in
Signal Processing, vol. 8, no. 2, pp. 195–208, 2013.

[36] G. Degottex, P. Lanchantin, A. Roebel, and X. Rodet, “Mixed source
model and its adapted vocal tract filter estimate for voice transformation
and synthesis,” Speech Communication, vol. 55, no. 2, pp. 278–294,
2013.

[37] D. G. Childers and H. T. Hu, “Speech synthesis by glottal excited linear
prediction,” J. Acoust. Soc. Am., vol. 96, no. 4, pp. 2026–2036, 1994.

[38] Y.-L. Shue, J. Kreiman, and A. Alwan, “A novel codebook search
technique for estimating the open quotient,” in Proc. of Interspeech,
Brighton, UK, September 6-10 2009, pp. 2895–2898.

[39] T. Raitio, A. Suni, H. Pulakka, M. Vainio, and P. Alku, “Utilizing glottal
source pulse library for generating improved excitation signal for HMM-
based speech synthesis,” in IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), Prague, Czech Republic, May 22-27 2011,
pp. 4564–4567.

[40] T. Raitio, A. Suni, M. Vainio, and P. Alku, “Comparing glottal-flow-
excited statistical parametric speech synthesis methods,” in IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vancou-
ver, Canada, May 26-31 2013, pp. 7830–7834.

[41] O. Perrotin and I. McLoughlin, “Gfm-voc: A real-time voice quality
modification system,” in Proceedings of Interspeech, Graz, Austria,
September 15-19 2019, pp. 3685–3686.

[42] O. Perrotin and I. V. McLoughlin, “A spectral glottal flow model for
source-filter separation of speech,” in IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), Brighton, UK, May 12-17
2019, pp. 7160–7164.

[43] D. G. Childers, “Vocal quality factors: Analysis, synthesis and percep-
tion,” J. Acoust. Soc. Am., vol. 90, no. 5, pp. 2394–2410, 1991.

[44] D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials, vol. 7,
no. 1, pp. 29–32, 1988.

[45] W. F. L. Heeren, “Vocalic correlates of pitch in whispered versus normal
speech,” J. Acoust. Soc. Am., vol. 138, no. 6, pp. 3800–3810, 2015.



12 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020

[46] M. F. Schwartz, “Power spectral density measurements of oral and
whispered speech,” Journal of Speech, Language, and Hearing Research,
vol. 13, no. 2, pp. 445–446, 1970.

[47] T. Itoh, K. Takeda, and F. Itakura, “Acoustic analysis and recognition
of whispered speech,” in IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), Orlando, FL, USA, May 13-17 2002, pp.
429–432.

[48] T. Ito, K. Takeda, and F. Itakura, “Analysis and recognition of whispered
speech,” Speech Communication, vol. 45, no. 2, pp. 139–152, 2005.

[49] P. Alku, “Glottal wave analysis with pitch synchronous iterative adaptive
inverse filtering,” Speech Communication, vol. 11, no. 2–3, pp. 109–118,
1992.

[50] T. Raitio, L. Juvela, A. Suni, M. Vainio, and P. Alku, “Phase perception
of the glottal excitation and its relevance in statistical parametric speech
synthesis,” Speech Communication, vol. 81, pp. 104–119, 2016.

[51] D. H. Klatt and L. C. Klatt, “Analysis, synthesis, and perception of voice
quality variations among female and male talkers,” J. Acoust. Soc. Am.,
vol. 87, no. 2, pp. 820–857, 1990.

[52] T. Drugman and T. Raitio, “Excitation modeling for hmm-based speech
synthesis: Breaking down the impact of periodic and aperiodic compo-
nents,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), Florence, Italy, May 4-9 2014, pp. 260–264.

[53] R. Maia, M. Akamine, and M. J. Gales, “Complex cepstrum for
statistical parametric speech synthesis,” Speech Communication, vol. 55,
no. 5, pp. 606–618, 2013.

[54] B. C. J. Moore, R. W. Peters, and B. R. Glasberg, “Thresholds for
the detection of inharmonicity in complex tones,” J. Acoust. Soc. Am.,
vol. 77, no. 5, pp. 1861–1867, 1985.

[55] Y. Stylianou, “Harmonic plus noise models for speech combined with
statistical methods, for speech and speaker modification,” Ph.D. dis-
sertation, Ecole Nationale Supérieure des Télécommunications, Paris,
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