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Points and lines configurations for perpendicular
bisectors of convex cyclic polygons

Paul Melotti Sanjay Ramassamy Paul Thévenin

March 24, 2020

Abstract

We characterize the topological configurations of points and lines that
may arise when placing n points on a circle and drawing the n perpen-
dicular bisectors of the sides of the corresponding convex cyclic n-gon.
We also provide a functional central limit theorem describing the shape
of a large realizable configuration of points and lines taken uniformly at
random among realizable configurations.

1 Introduction
Let n ≥ 3 and let P1, . . . , Pn be n distinct points on the unit circle, arranged in
the positive cyclic order. For all i between 1 and n denote by Li the perpendic-
ular bisector of the segment [Pi, Pi+1], with indices taken modulo n. We assume
that the points are in generic position, meaning that these lines are all distinct
and no point lies on a line. Then these n lines all go through the center of the
circle, hence divide the plane into 2n regions. What are the configurations of
points and lines that can be realized?

We number the regions in counterclockwise order, the first one being the
one containing 1 (or, if 1 is on a boundary, eiε for all ε > 0 small enough). For
every 1 ≤ i ≤ 2n, we set vi to be the number of points inside the ith region.
It is not hard to see that each region contains at most one point. The word
v = (v1, . . . , v2n) ∈ {0, 1}2n is called the occupancy word of the collection of
points P1, . . . , Pn. In order to characterize the occupancy words that may arise
as one varies the positions of the points, we introduce the notion of signature
of a word in {0, 1}2n. If v = (v1, . . . , v2n) ∈ {0, 1}2n is an arbitrary word, its
signature σ = (σ1, . . . , σ2n) ∈ {0, 1, 2}2n is defined by σi = vi + vi+n for every
1 ≤ i ≤ 2n, with indices taken modulo 2n. Clearly, it satisfies σi = σi+n. See
an example in Figure 1.

We introduce a notion of cyclic interval of integers. Let N ≥ 1 be an integer
and let 1 ≤ i, j ≤ N be two integers. Define

IN (i, j) =
{
{i+ 1, i+ 2, . . . , j − 1} if i ≤ j
{1, 2, . . . , j − 1} ∪ {i+ 1, i+ 2, . . . , N} if i > j.

A word u = (u1, . . . , u2n) ∈ {0, 1, 2}2n is called interlacing if it satisfies the
following two properties:
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Figure 1: An example with n = 9. The black dots are the points P1, . . . P9
and the white dots are their symmetric relative to the center of the cir-
cle. Here v = (0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1) is the occupancy word
(which counts the number of black dots in each region) and its signature is
σ = (1, 0, 1, 1, 2, 1, 1, 0, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2).

1. there exist two distinct integers 1 ≤ i, j ≤ 2n such that ui = uj = 0 ;

2. for every pair of distinct integers with 1 ≤ i, j ≤ 2n such that ui = uj = 0
and uk 6= 0 for all k ∈ I2n(i, j), there exists a unique k0 ∈ I2n(i, j) such
that uk0 = 2.

Note that an interlacing word takes the values 0 and 2 an equal number of times.
We can now characterize the words that may arise as the occupancy word of
some collection of points P1, . . . , Pn, we call such words realizable.

Theorem 1.1. A word u = (u1, . . . , u2n) ∈ {0, 1}2n is realizable if and only if
its signature is interlacing.

Even in the case n = 3 the result seems to be new. We state a finer version
of Theorem 1.1 in the case n = 3, the proof of which is omitted, since it may
be given as an exercise to a bright elementary school student.

Proposition 1.2. Let A,B,C be three points in the plane with AB < BC <
CA. Then the three perpendicular bisectors of the triangle ABC divide the plane
into six regions satisfying the following properties:

• A and B lie in two consecutive regions;

• the regions containing B and C are separated by one empty region;

• the regions containing A and C are separated by two empty regions.
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Figure 2: For n = 3, there is only one configuration up to cyclic shifts and rever-
sal, shown on the left. The topological configuration on the right is impossible
to achieve with lines being perpendicular bisectors of the segments.

In particular, Proposition 1.2 implies that the word (0, 1, 0, 1, 0, 1) is not
realizable, see Figure 2.

A necklace is an equivalence class of words up to cyclic shifts, and a bracelet
is an equivalence class of necklaces up to reversal [2]. We denote by Wn (resp.
Nn,Bn) the set of realizable words (resp. necklaces, bracelets) of length 2n. We
deduce the following asymptotic enumerative result from Theorem 1.1. It is to
be compared with the total number of words of length 2n containing n ones and
n zeros, which is

(2n
n

)
= 4n(1+o(1)).

Corollary 1.3. The number of realizable words is

]Wn = 3n − 2n+1 + 1.

The exponential growth rate of the number of realizable bracelets and necklaces
is equal to 3, that is,

lim
n→∞

1
n

log ]Nn = lim
n→∞

1
n

log ]Bn = 3.

The first few values of the sequence (Bn)n≥1 are listed in Table 1.

n 3 4 5 6 7 8 9 10
Bn 1 5 9 30 69 203 519 1466

Table 1: First terms of the sequence (Bn)n≥3 counting the number of realizable
configurations up to cyclic shifts and reversal.

We also study the typical shape of a realizable word, in the following sense.
Let w(n) be a random word taken uniformly in the set of realizable words of
length 2n. Consider the word ŵ(n) of length n on the alphabet {00, 10, 01, 11},
whose letter in position i is the concatenation w

(n)
i w

(n)
i+n. For c ∈ [0, 1] and

a ∈ {00, 11, 10, 01}, denote by Sacn the number of letters a in ŵ(n) between
positions 0 and bcnc. Then the following holds:
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Theorem 1.4. (i) [Law of large numbers] The following holds in probability:(
S00
n

n
,
S11
n

n
,
S10
n

n
,
S01
n

n

)
→

n→∞

(
1
6 ,

1
6 ,

1
3 ,

1
3

)
.

(ii) [Functional central limit theorem] We have the functional convergence :

2√
n

(
S00
cn −

cn

6 , S11
cn −

cn

6 , S10
cn −

cn

3 , S01
cn −

cn

3

)
0≤c≤1

(d)→
n→∞

(
W (2)
c ,W (2)

c ,W (1)
c −W (2)

c ,−W (1)
c −W (2)

c

)
0≤c≤1

where W (1),W (2) are two independent Brownian motions of respective
variances 2/3 and 2/9.

Theorem 1.4 holds also if we replace a uniformly random realizable word by
a uniformly random realizable necklace or bracelet (see Remark 5.4).

We emphasize that studying a realizable word taken uniformly at random
is a priori very different from letting the points P1, . . . , Pn be i.i.d on the circle
and studying their occupancy word. The latter may be deemed a more natural
procedure, but we do not have any result in the vein of Theorem 1.4 for it so
far.

Organization of the paper
In Section 2, we prove one direction of Theorem 1.1: the interlacement condition
is necessary for a realizable word. The converse is proved in Section 3, using an
explicit procedure to construct points from a word with interlacing signature.
In Section 4 we enumerate realizable words and prove Corollary 1.3. Finally,
Section 5 is concerned with the probabilistic aspect of a random realizable word,
and the proof of Theorem 1.4.

2 Necessary condition for a realizable word
The unit circle may be identified to the half-open interval (0, 1] via the inverse of
the map x 7→ e2iπx. Denote by p1, . . . , pn the n elements of (0, 1] corresponding
to P1, . . . , Pn. For every 1 ≤ i ≤ n define li = pi+pi+1

2 mod 1, where the
representative is taken to be in (0, 1] and the indices are considered modulo n.
Up to applying a rotation of the circle, one may assume that ln = 1. Then we
have

0 < p1 < l1 < p2 < l2 < · · · < ln−1 < pn < ln = 1.

Define also for every 1 ≤ i ≤ n, p′i = pi+ 1
2 mod 1 and l′i = li+ 1

2 mod 1. Write
P = {p1, . . . , pn}, P ′ = {p′1, . . . , p′n}, L = {l1, . . . , ln} and L′ = {l′1, . . . , l′n}. Let
(mi)1≤i≤2n be the reordering of the li and l′i, that is,

{mi}1≤i≤2n = L ∪ L′

and
0 < m1 < m2 < · · · < m2n−1 < m2n = 1.
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We also set m0 = 0. Similarly, let (qi)1≤i≤2n be the reordering of P ∪ P ′. For
any 1 ≤ i ≤ 2n, the signature σ of the occupancy word associated to P satisfies

σi = ] ([mi−1,mi] ∪ [mi+n−1,mi+n]) ∩ P,

with indices taken modulo 2n. Note that for every 1 ≤ i ≤ n, σi = σi+n =
][mi−1,mi] ∩ (P ∪ P ′).

For any (a, b) ∈ (0, 1]2 define

d(a, b) = min(|b− a|, 1− |b− a|)

to be the distance between a and bmeasured on the circle obtained by identifying
the two endpoints of the interval [0, 1]. We also introduce a notion of interval
on the circle defined as follows. Let a and b be two elements of (0, 1]2 and define

I(a, b) =
{

(a, b) if a ≤ b
(0, b) ∪ (a, 1] if a > b.

We also define the closed and half-closed intervals I[a, b], I[a, b), I(a, b] in the
obvious way.

Let p ∈ P. We define C(p) to be the element x′ ∈ P ′ which minimizes
d(p, x′). By the genericity assumption C(p) is uniquely defined. Similarly, for
any p′ ∈ P ′, we define C(p′) to be the element x ∈ P which minimizes d(p′, x).
For any q ∈ P ∪ P ′, when C(q) belongs to I(q, q + 1

2 ) (resp. I(q − 1
2 , q)), we

say that q looks to its right (resp. left) and we denote it by D(q) = R (resp.
D(q) = L).

L R L L R R R LRL

11 0 2 1 0 1 1 1 2

Figure 3: A configuration on a portion of (0, 1]. The black (resp. white) dots
represent elements of P (resp. P ′), and the vertical solid (resp. dashed) lines
represent elements of L (resp. L′). From each dot q, the arrow is directed
towards C(q), and above it is written the value of D(q). Below each region, the
corresponding letter in σ is indicated.

In the remainder of this section, the indices of q and σ will be considered
modulo 2n and the real numbers of the form q− 1

2 and q+ 1
2 should be understood

as the representative in (0, 1] of an equivalence class modulo 1.
Our aim in this section is to prove the following.

Proposition 2.1. Let u be the occupancy word associated to the collection of
points P1, . . . , Pn. Then its signature σ is alternating.

In the next two lemmas, we show that the occurrences of 2 in σ exactly corre-
spond to occurrences of the patternRL in the successive values of (D(qi))i=1,...,2n.
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Lemma 2.2. Let 1 ≤ i ≤ 2n and assume that D(qi) = R and D(qi+1) = L.
Then exactly one of qi and qi+1 belongs to P and we have C(qi) = qi+1 and
C(qi+1) = qi.

Proof. Up to performing a rotation of the circle, one may assume that qi < qi+1
(this is needed to take into account the case i = 2n). Reason by contradiction
and assume that both qi and qi+1 are in P. Since qi+1 ∈ P, we cannot have
C(qi) = qi+1, and it follows from the fact that I(qi, qi+1)∩P ′ = ∅ that C(qi) ∈
I(qi+1, qi+1 + 1

2 ). The element of P ′ in I(qi+1, qi+1 + 1
2 ) which is closest to qi

is also the closest to qi+1, hence C(qi+1) = C(qi), so that C(qi+1) belongs to
I(qi+1 − 1

2 , qi+1) ∩ I(qi+1, qi+1 + 1
2 ) = ∅, contradiction. Similarly, qi and qi+1

cannot both be in P ′. The last two statements of the lemma follow from the
fact that I(qi, qi+1) ∩ (P ∪ P ′) = ∅.

Lemma 2.3. Let p ∈ P and p′ ∈ P ′ be such that p′ = C(p) and p = C(p′).
Let also 1 ≤ i ≤ 2n be such that p ∈ [mi−1,mi]. Then σi = 2. Conversely,
let 1 ≤ i ≤ 2n be such that σi = 2 and denote by p ∈ P and p′ ∈ P ′ the two
elements of [mi−1,mi] ∩ (P ∪ P ′). Then p′ = C(p) and p = C(p′).

Proof. Assume that p′ = C(p) and p = C(p′) and that i is such that p ∈
[mi−1,mi]. The point p is the element of P which is closest to p′, hence no
element of L can separate p′ from p. Similarly, since p′ is the element of P ′ which
is closest to p, no element of L′ can separate p from p′. Thus p′ ∈ [mi−1,mi]
and σi = 2.

Conversely, let 1 ≤ i ≤ 2n be such that σi = 2 and denote by p ∈ P and
p′ ∈ P ′ the two elements of [mi−1,mi] ∩ (P ∪ P ′). If we had C(p′) 6= p, then
the perpendicular bisector of C(p′) and p would separate p′ from p, which is not
the case. So C(p′) = p and similarly C(p) = p′.

In the next lemma, we show that the occurrences of 0 in σ exactly correspond
to occurrences of LR in the successive values of (D(qi))i=1,...,2n.

Lemma 2.4. Let 1 ≤ i ≤ 2n be such that D(qi) = L and D(qi+1) = R. Then
there exists a unique 1 ≤ j ≤ 2n such that (mj ,mj+1) ∈ I(qi, qi+1)2, and this
j satisfies σj+1 = 0. Conversely, assume 1 ≤ j ≤ 2n is such that σj+1 = 0.
Denote by qi the largest element of Q smaller than mj. Then D(qi) = L and
D(qi+1) = R.

Proof. Let 1 ≤ i ≤ 2n be such that D(qi) = L and D(qi+1) = R. We distinguish
three cases.

The first case is when qi and qi+1 are of different types, that is, one belongs to
P and the other to P ′. By symmetry we may assume that qi ∈ P ′ and qi+1 ∈ P.
An example can be seen around the left-most empty region in Figure 3. Since
D(qi) = L, we have that C(qi) and qi+1 are two consecutive elements in P,
hence M = C(qi)+qi+1

2 ∈ L. Since qi is closer to C(qi) than to qi+1, we have
that M ∈ I(qi, qi+1) and M is the only element of L in I(qi, qi+1). A similar
argument shows that M ′ = qi+C(qi+1)

2 is the only element of L′ in I(qi, qi+1).
Hence I(qi, qi+1) contains exactly two elements of L∪L′, denoting them by mj

and mj+1 we conclude that σj+1 = 0.
The second case is when qi and qi+1 both belong to P (see for example the

configuration around the second 0 in Figure 3). Then qi+qi+1
2 is the only element

of I(qi, qi+1) ∩ L. Furthermore, C(qi) and C(qi+1) are consecutive elements in
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P ′, so M ′′ = C(qi)+C(qi+1)
2 ∈ L′. Since qi is closer to C(qi) than to C(qi+1), we

have that M ′′ ∈ I(qi, qi + 1
2 ). Since qi+1 is closer to C(qi+1) than to C(qi), we

have that M ′′ ∈ I(qi+1− 1
2 , qi+1). So M ′′ is the only element of I(qi, qi+1)∩L′.

The conclusion follows as in the first case.
The third case is when qi and qi+1 both belong to P ′, it is treated like the

second case.
Conversely, assume 1 ≤ j ≤ 2n is such that σj+1 = 0. Since two consecutive

elements of L (resp. of L′) must be separated by an element of P (resp. of
P ′), we deduce that among mj and mj+1, one belongs to L and the other to
L′. Denote by qi the largest element of Q smaller than mj . Then qi+1 is bigger
than mj+1. If qi ∈ P, consider the unique element of L′ ∩ {mj ,mj+1}. It is the
bisector of two points of P ′, and these points cannot be in I(qi, qi+1), moreover,
qi is to the left of the bisector. This implies that D(qi) = L. This works also in
the case qi ∈ P ′, and similarly, it shows that D(qi+1) = R.

Lemma 2.5. There exists 1 ≤ i ≤ 2n such that σi = 2.

Proof. Consider a pair (p, p′) achieving the minimum

min
p∈P
p′∈P′

d(p− p′).

Let 1 ≤ i ≤ 2n be such that p ∈ [mi,mi+1]. Since C(p) = p′ and C(p′) = p, we
deduce from Lemma 2.3 that σi = 2.

Lemma 2.6. Assume that σ1 = 0 and that there exists 2 ≤ i ≤ 2n such that
σi = 0. Then there exists 2 ≤ j ≤ i− 1 such that σj = 2.

Proof. Since σ1 = 0, we have q1 > m1 and by Lemma 2.4 we have that D(q1) =
R. Denote by qr the largest element of Q smaller than mi−1. By Lemma 2.4 we
have that D(qr) = L. Denote by k the smallest integer such that D(qk) = L.
We have that 2 ≤ k ≤ r. Furthermore, D(qk−1) = R, hence by Lemma 2.2 we
have that C(qk−1) = qk and C(qk) = qk−1. Let j be such that qk ∈ [mj−1,mj ].
Clearly 2 ≤ j ≤ i− 1 and by Lemma 2.3 we have that σj = 2.

Proof of Proposition 2.1. Let P1, . . . , Pn be n points in cyclic order on the circle
and let (σ1, . . . , σ2n) ∈ {0, 1, 2}2n be the signature of their occupancy word.
Define s0, s1 and s2 to be respectively the number of occurrences of the values
0, 1 and 2 in the signature. Then 2n = s0 + s1 + s2 and since each point is
counted twice in the signature, we also have

2n =
2n∑
i=1

σi = s1 + 2s2.

Combining these two equations we obtain that s0 = s2. From Lemma 2.5 we
deduce that s2 ≥ 1, and even s2 ≥ 2 since σ is invariant by a translation of n.
Therefore s0 ≥ 2. Assume that 1 ≤ i < j ≤ 2n are such that σi = σj = 0 and
σk > 0 for all i < k < j. Up to applying a translation, one may assume that
i = 1. By Lemma 2.6 we deduce the existence of some k such that i < k < j and
σk = 2. Given that s0 = s2, such a k is necessarily unique. Hence we conclude
that σ is interlacing.
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3 Realizing a word with interlacing signature
In this section we construct an explicit configuration of points from a word
whose signature is alternating.

Proposition 3.1. Let n ≥ 3 and let v = (v1, . . . , v2n) ∈ {0, 1}2n such that
its signature σ = (σ1, . . . , σ2n) ∈ {0, 1, 2}2n is interlacing. Then there exists a
configuration of points on the circle having v as an occupancy word.

Proof. We fix n ≥ 3 and such a word v. Up to applying a rotation one may
assume that σ1 = 0.

Denote by T (resp. Z) the subset of all 1 ≤ i ≤ 2n such that σi = 2 (resp.
σi = 0) and set s = ]T = ]Z. The set {1, . . . , 2n} \ (T ∪ Z) is composed
of several connected components, which are the intervals of integers between
two consecutive elements of T ∪ Z (note that some of these intervals may be
empty). We call such a connected component an ascending component (resp. a
descending component) if it is of the form I2n(i, j) with i ∈ Z and j ∈ T (resp.
i ∈ T and j ∈ Z) and for all k ∈ I2n(i, j) we have σk = 1. Let i1 < · · · < is be
the ordering of T . Let j1 < · · · < js be the ordering of Z, with j1 = 1.

To each 1 ≤ i ≤ 2n we associate a position pi in (0, 1]; in the end this will
be the position of a point if vi = 1. First, for all 1 ≤ k ≤ s we set

pik = k

s
,

pjk =
pik−1 + pik

2 = 2k − 1
2s .

Let η > 0 be small enough (η < 1
s2n+2 will suffice for our purposes). The

following construction is motivated by the definitions of Section 2: on descending
(resp. ascending) components, we want to define positions of points that look to
the left (resp. right). For 1 ≤ k ≤ s, consider the k-th descending component,
that is I2n(ik, jk+1). For every h ∈ I2n(ik, jk+1) we set

ph = pik + η
(
2h−ik − 1

)
= k

s
+ η

(
2h−ik − 1

)
.

For 1 ≤ k ≤ s, consider the k-th ascending component, that is I2n(jk, ik). For
every h ∈ I2n(jk, ik) we set

ph = pik − η
(
2ik−h − 1

)
= k

s
− η

(
2ik−h − 1

)
.

pik−1 pikpjk

η 2η 4η 2η ηη 2η

1/s

Figure 4: Schematic construction of the values of ph, on a descending component
I2n(ik−1, jk) and an ascending component I2n(jk, ik). The multiples of η written
below are distances.
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By the symmetry of the word, there cannot be more than n points in a
component, therefore in both those cases,

d(ph, pik) < η(2n − 1) < 1
4s . (3.1)

Hence the constructed positions of ascending and descending components lie in
disjoint intervals.

Now let P be the subset of positions {pi | 1 ≤ i ≤ 2n s.t. vi = 1}. We claim
that this configuration of points has v as its occupancy word. As in Section 2,
we set P ′ = {p + 1

2 , p ∈ P}, and L (resp. L′) the positions of the bisectors
of P (resp. P ′). We also set M to be the collection of L ∪ L′, possibly with
repetitions. We now characterize the positions of these bisectors.

Lemma 3.2. For every h in a descending (resp. ascending) component, there
is a unique element of M in I(ph−1, ph) (resp. in I(ph, ph+1)).

For every 1 ≤ k ≤ s, the set I
( 2k−1

2s −
1
8s ,

2k−1
2s + 1

8s
)

contains exactly two
elements of M.

Moreover, these are all the 2n elements of M.

Proof of Lemma 3.2. Let 1 ≤ k ≤ s, and let h be in the descending component
I2n(ik, jk+1). We distinguish two cases, depending on the value of vh.

If vh = 1, then ph ∈ P. Moreover, vik = 1 since ik ∈ T , hence pik ∈
P. Therefore, the rightmost element of P smaller than ph belongs to the set
{pik , pik+1, . . . , ph−1}. Hence the position lh of the bisector of this point and ph
satisfies

pik + ph
2 ≤ lh ≤

ph−1 + ph
2 < ph.

Now notice that the left-hand side is pik + η(2ik−h− 1
2 ), which is strictly bigger

than ph−1. Hence lh ∈ I(ph−1, ph).
If vh = 0, then as σh = 1, we have vh+n = 1. Hence there is an element

of P at position ph+n, and by the invariance under translation of the word by
n, we have ph+n = ph + 1

2 . Therefore, ph ∈ P ′. Similarly, as σik = 2, we have
vik+n = 1 so that pik+n ∈ P and pik ∈ P ′. From there, we conclude as in the
previous case.

For h in an ascending component, the proof is identical.
For the second point of the Lemma, consider the index jk ∈ Z. As both

pik−1 and pik belong to P, the elements of P directly to the left and right of pjk
belong, respectively, to {pik−1 , . . . , pjk−1} and to {pjk+1, . . . , pik}. Hence the
position of their bisector ljk ∈ L satisfies

pik−1 + pjk+1

2 ≤ ljk ≤
pjk−1 + pik

2 .

As jk − 1 belongs to the descending component I2n(ik−1, jk), by (3.1) we have
pjk−1 < pik−1 + 1

4s , hence the right-hand side is smaller than pik−1 +pik
2 + 1

8s ,
which is the expected bound. The left-hand side is treated similarly. Then, an
identical proof shows that there is an element of L′ in the same interval.

Clearly the elements of M coming from ascending and descending compo-
nents are disjoint. Those coming from the second point are also disjoint among
themselves, as even if two may share the same position, only one of them will
belong to L, and the other to L′. The fact that these two families are disjoint
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is an easy consequence of (3.1). Hence we constructed two elements of M for
each element of Z, and one for each element of (T ∪ Z)c, which is in total
2(]Z) + 2n− (]T + ]Z) = 2n.

Let w be the occupancy word of P. We now have all the tools to prove that
w = v. For any 1 ≤ k ≤ s, consider the interval I[pik−1 , pik). In that part, the
positions and order of the elements of M are given by Lemma 3.2: for every
h in the descending component I2n(ik−1, jk) there is one lh ∈ I(ph−1, ph) ∩M;
then there are two distinct elements in ljk , l

′
jk
∈ I(pjk−1, pjk+1) ∩M; then for

every h in the ascending component I2n(jk, ik) there is one lh ∈ I(ph, ph+1).
Thus the part of w corresponding to this interval can be described as: first a 1
(for the region containing pik−1), then for every h ∈ I2n(ik−1, jk), either a 1 or
a 0 according to the value of vh (as by definition these are the positions where
a point of P has been put), then a 0 (for the region corresponding to ljk , l′jk),
then for every h ∈ I2n(jk, ik) either a 0 or a 1 according to the value of vh.
This is clearly the same as v at those indices. This being true for any k, by
concatenation we get that w = v.

One issue that may arise is that the configuration constructed above is not
generic, in the sense that two lines may coincide, which occurs for example when
a descending component and the following ascending component are empty. In
order to avoid such issues, we perturb the configuration slightly, by fixing ε > 0
and defining for every 1 ≤ k ≤ 2n, the point p̃k = pk + kε. For ε small enough
(ε < η

2n suffices), the relative position of the perturbed points and lines is the
same as the unperturbed one, while two lines can no longer coincide.

4 Enumerating realizable words, necklaces and
bracelets

A realizable word can be represented by a necklace, i.e. a word considered up to
cyclic shifts, of length 2n on the alphabet {0, 1} with n times the letter 0 and
n times the letter 1. Such necklaces are enumerated by the sequence A003239
of the OEIS (Online Encyclopedia of Integer Sequences [6]). Up to quotienting
out necklaces by mirror image, one obtains so-called bracelets of length 2n with
n times the letter 0 and n times the letter 1. Such bracelets are enumerated by
the sequence A005648 of the OEIS.

Closed formulas for the number of bracelets of fixed size can notably be
found in [2, 4], where they are called self-dual necklaces. However these formulas
cannot be directly extended to find the number of realizable bracelets.

Proof of Corollary 1.3. To choose a realizable word v, one may first choose its
alternating signature σ; as σ is invariant under the shift by n, this amounts to
choosing a number 1 ≤ p ≤ bn2 c such that σ will have 4p letters 0 or 2, then
2
(
n
2p
)

choices for their position and whether the first one is a 0 or a 2. Then for
every i such that σi = 1 (there are 2n− 4p such indices), one has to chose if vi
is 1 or 0, under the condition that vi+n 6= vi. This gives 2n−2p choices. Hence
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the number of realizable words is

]Wn = 2
bn2 c∑
p=1

(
n

2p

)
2n−2p

= 2
∑

2≤k≤n, k even

(
n

k

)
2n−k.

IntroducingW ′n = 2
∑

1≤k≤n, k odd
(
n
k

)
2n−k, one easily gets 2n+1 +]Wn+W ′n =

2× 3n and 2n+1 + ]Wn −W ′n = 2, and the result follows.
For the number of bracelets and necklaces, they are between (3n − 2n+1 +

1)/(4n) and 3n − 2n+1 + 1, which implies the announced limits.

We deduce from Corollary 1.3 the following result.

Corollary 4.1. The proportion of realizable bracelets (resp. necklaces) among
all bracelets (resp. necklaces) composed of n 0’s and n 1’s tends to 0 like (3/4)n
up to polynomial corrections as n tends to infinity.

Proof. As the number of bracelets or necklaces with n 0’s and n 1’s is between(2n
n

)
/(4n) and

(2n
n

)
, this is a direct consequence of the bounds given in the proof

of Corollary 1.3.

5 Scaling limit of a uniform realizable word
The aim of this section is to prove Theorem 1.4. Recall that w(n) denotes a
random word taken uniformly in the set of realizable words of length 2n, and
that we define ŵ(n) to be the word of length n on the alphabet {00, 10, 01, 11},
whose letter in position i, denoted ŵ(n)

i , is the concatenation w(n)
i w

(n)
i+n ; we call

this the folded word obtained from w(n). To simplify notations, we will often
drop the dependence in n.

We prove both parts of the theorem at once. The main idea in the proof is
to rephrase it in terms of a random walk, and then use a local limit theorem.
A local limit theorem controls the precise value of a random walk after a large
number of steps. Let us state it properly (see e.g. [5, Theorem 6.1] for a proof
of this result).

Theorem 5.1 ([5]). Let j ≥ 1 and (Yi)i≥1 :=
(

(Y (1)
i , . . . , Y

(j)
i )

)
i≥1

be i.i.d.

random variables in Zj, such that the covariance matrix Σ of Y1 is positive
definite. Assume in addition that Y1 is aperiodic, and denote by M the mean
of Y1. Finally, define for n ≥ 1

Tn = 1√
n

(
n∑
i=1

Yi − nM
)
∈ Rj .

Then, as n→∞, uniformly for x ∈ Rj such that P (Tn = x) > 0,

P (Tn = x) = 1
(2πn)j/2

√
det Σ

e−
1
2
txΣ−1x + o

(
n−j/2

)
.
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We now define a walk from a realizable word, in an almost bijective way: to
any a := xy ∈ {00, 01, 10, 11}, define f(a) = x− y. Then, to a folded realizable
word ŵ := ŵ1 · · · ŵn, we associate the walk S satisfying S0 = 0 and, for all
i ≥ 1, Si − Si−1 = f(ŵi).

Remark that occurrences of 01 (resp. 10) in ŵ correspond to jumps by −1
(resp. +1) in S. Jumps by 0 in S may correspond to either 00 or 11, but as
these two letters shall alternate in a folded realizable word, if one knows whether
the first jump 0 corresponds to 00 or 11, then it is possible to recover ŵ from
S. By symmetry, we assume from now on that the first jump by 0 corresponds
to 11, so that the map ŵ 7→ S is a bijection from Ŵ+

n to Walks+(n), where Ŵ+
n

is the set of folded realizable words whose first 11 appears before the first 00,
and Walks+(n) is the set of walks of length n, starting from 0 and with steps
in {0,+1,−1}, with an even nonzero number of steps 0.

Now take n a positive integer. We want to study a uniform element of
the set Walks+(n). To this end, we first study the set Walks(n), of walks of
length n, starting from 0 and with jumps in {0,+1,−1}. We define a walk
(Ti)0≤i≤n := (Si,Ki)0≤i≤n on Z2 as follows: its first coordinate is a uniform
element of Walks(n), K0 = 0 and, for any 0 ≤ i ≤ n−1, Ki+1−Ki = 1Si+1−Si=0.
In other words, the second coordinate of T enumerates the steps 0 in the walk
S. It is clear by definition that (Ti)0≤i≤n is a random walk on Z2 starting from
(0, 0), with i.i.d. jumps Y1, . . . , Yn whose distribution is the following:

P (Y1 = (1, 0)) = P (Y1 = (−1, 0)) = P (Y1 = (0, 1)) = 1
3 .

In particular, Y1 has respective mean and covariance matrix

M =
(

0
1/3

)
and Σ =

(
2/3 0
0 2/9

)
We want to prove the functional convergence of the walk S, along with the

process (Ki)0≤i≤n counting the number of “0” jumps in the walk, conditionally
on Kn being even and nonzero. Since P (Kn = 0) = o(P(Kn = 0 mod 2)), we
only need to condition Kn to be even.

In what follows, we define (Su)u∈[0,n] (resp. (Ku)u∈[0,n]) as the linear inter-
polation of (Si)i∈J0,nK (resp. (Ki)i∈J0,nK) on the whole interval.

Proposition 5.2. The following convergence holds in distribution, in C([0, 1],R2):((
Scn√
n
,
Kcn − cn/3√

n

)
0≤c≤1

∣∣∣Kn = 0 mod 2
)

(d)→
n→∞

(
W (1)
c ,W (2)

c

)
0≤c≤1

where W (1),W (2) are independent Brownian motions of respective variances 2/3
and 2/9.

The whole proof of this proposition is highly inspired from the one of [7,
Lemma 4.1]. Let us start with a result on the corresponding unconditioned
random walk.(

Scn√
n
,
Kcn − cn/3√

n

)
0≤c≤1

(d)→
n→∞

(
W (1)
c ,W (2)

c

)
0≤c≤1

(5.1)

12



This result is a consequence of Theorem 5.1. Indeed, by [3, Theorem 16.14],
it is enough to check that the one-dimensional convergence holds for t = 1. One
gets this from Theorem 5.1. Uniformly for a, b in a compact subset of R:

P(Sn = ba
√
nc,Kn = bn/3 + b

√
nc) ∼

n→∞

1
2πn
√

det Σ
e−

1
2 ( 2

3a
2+ 2

9 b
2).

This implies (see e.g. [1, Theorem 7.8]) that (Sn/
√
n, (Kn − n/3)/

√
n) converges

in distribution to (W (1)
1 ,W

(2)
1 ). The convergence (5.1) follows.

We now want a conditioned version of (5.1), taking into account the fact that
Kn has to be even. To this end, take 0 < u < 1 and take F : C([0, u],R2)→ R
a bounded continuous functional. Set

En = E

[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
0≤c≤u

∣∣∣∣∣ Kn = 0 mod 2
]
.

Setting ϕn(i) = P(Kn = i mod 2) and observing that the (unconditioned) walk
until time nu is independent of the walk between nu and n, one can write:

En = E

[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
0≤c≤u

ϕn−bnuc(Kbnuc)
ϕn(0)

]
(5.2)

In order to estimate this quantity, simply remark that Kn is distributed as
a binomial Binn of parameters (n, 1/3). Now, remark by a simple computation
that P(Binn = 0 mod 2)+P(Binn = 1 mod 2) = 1, and P(Binn = 0 mod 2)−
P(Binn = 1 mod 2) = 3−n, which implies that ϕn(0) and ϕn(1) both converge
to 1/2 as n→∞. Thus, (5.2) can be rewritten:

En = E

[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
0≤c≤u

1/2 + o(1)
1/2 + o(1)

]

= E

[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
0≤c≤u

]
+ o(1) (5.3)

and we get Proposition 5.2 on [0, u]. In order to extend it to the whole interval
[0, 1], it now suffices to show that the process is tight on [0, 1].

Proof of the tension on the whole interval. The convergence (5.3) shows notably
that, conditionally to the fact that Kn = 0 mod 2, the process

(Scn/
√
n, (Kcn − cn/3)/

√
n)0≤c≤1 (5.4)

is tight on [0, u] for every u ∈ (0, 1). To show that it is in addition tight on
[u, 1], we only need to check that, for u ∈ (0, 1), the process

(Sn−cn/
√
n, (Kn−cn − n(1− c)/3)/

√
n)0≤c≤u

is tight conditionally on Kn = 0 mod 2. For this, we use the invariance of
the process by time-reversal: the process (Ŝi, K̂i)0≤i≤n := (Sn − Sn−i,Kn −

13



Kn−i)0≤i≤n has the same distribution as (Si,Ki)0≤i≤n, and this is also true
under the condition that Kn = 0 mod 2. By definition, we can write(

Sn−cn√
n

,
Kn−cn − n(1− c)/3√

n

)
0≤c≤u

=(
Ŝn − Ŝcn√

n
,
K̂n − n/3√

n
− K̂cn − cn/3√

n

)
0≤c≤u

.

Now, letting σ2 := 2n/9 be the variance of K1, we obtain that, uniformly
for b in a compact subset of R,

P(Kn = bn/3 + b
√
nc
∣∣Kn = 0 mod 2) = 2√

2πnσ
e−

b2
2σ2 + o

(
1√
n

)
as n→∞. This implies that, conditionally to Kn = 0 mod 2, (Kn − n/3)/

√
n

converges in distribution. Hence, by (5.3), the initial process (5.4) is tight on
[u, 1] conditionally on Kn = 0 mod 2.

Finally, the process is tight on [0, 1]. Furthermore, the convergence of the
finite-dimensional marginals is just a consequence of (5.3). This put together
implies Proposition 5.2.

We can now prove the main result of this section, Theorem 1.4, by translating
Proposition 5.2 in terms of folded realizable words. For this, we make use of
the following lemma, which relates the behaviour of a folded realizable word in
Ŵ+
n to the behaviour of the associated element of Walks+(n).

Lemma 5.3 (From the walk to the word). Let ŵ be a folded realizable word of
size n and (Si,Ki)0≤i≤n the associated walk on Z2. For any i ≥ 0, denote by αi
(resp. βi, γi, δi) the number of occurrences of 11 (resp. 00, 10, 01) in the word
ŵ up to position i. Then the following holds. For any i ≥ 0, any a ∈ Z, any
p ≥ 0: {

Si = a
Ki = p

⇐⇒
{
αi = bp+1

2 c, βi = bp2c
γi = i−p+a

2 , δi = i−p−a
2

This lemma, whose proof is straightforward, implies Theorem 1.4:

Proof of Theorem 1.4. The proof just boils down to putting together Lemma
5.3 and Proposition 5.2. Indeed, Lemma 5.3 (keeping the same notation as in
its statement) allows us to write for all 1 ≤ i ≤ n:

αi = i

6 + Ki − i/3
2 + c1 = βi + c2

γi = i

3 + Si − (Ki − i/3)
2

δi = i

3 + −Si − (Ki − i/3)
2 ,

where c1, c2 are bounded in absolute value by 1, independently of n and i. This
proves point (ii) of the theorem by the convergence of Proposition 5.2. Using
the fact that sup0≤c≤1 |W

(1)
c |, sup0≤c≤1 |W

(2)
c | are bounded in probability, point

(i) follows.
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Remark 5.4. Notice that the conclusion of Theorem 1.4 still holds when one
considers a uniform realizable necklace instead of a uniform realizable word.
Indeed, one just has to check that, with probability going to 1 as n → ∞, a
uniform realizable word is not equal to any of its cyclic shifts. To see this,
remark that a word equal to one of its cyclic shifts is necessarily periodic, of
period at most n/2. Thus, there are at most 3n/2 realizable words with fixed
period. Summing over all possible periods, there are at most n3n/2 such words,
which is o(]Ŵn). The result follows.

By a similar argument, the conclusion of Theorem 1.4 also holds for a uniform
realizable bracelet.
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du Musée 11, 1700 Fribourg, Suisse

E-mail address: paul.melotti at unifr.ch
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