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We report on laboratory experiments of wave-driven rotating turbulence. A set of wave makers produces
inertial-wave beams that interact nonlinearly in the central region of a water tank mounted on a rotating
platform. The forcing thus injects energy into inertial waves only. For moderate forcing amplitude, part of
the energy of the forced inertial waves is transferred to subharmonic waves, through a standard triadic
resonance instability. This first step is broadly in line with the theory of weak turbulence. Surprisingly
however, stronger forcing does not lead to an inertial-wave turbulence regime. Instead, most of the kinetic
energy condenses into a vertically invariant geostrophic flow, even though the latter is unforced. We show
that resonant quartets of inertial waves can trigger an instability—the “quartetic instability”—that leads to
such spontaneous emergence of geostrophy. In the present experiment, this instability sets in as a secondary
instability of the classical triadic instability.

DOI: 10.1103/PhysRevLett.124.124501

Introduction.—Turbulence subject to global rotation
[1–3] can take multiple forms depending on the large-scale
mechanism driving it. At the extremes of the spectrum are
the Taylor-Proudman theorem [4], which states that rapidly
rotating flows tend to become two-dimensional (2D, or
“geostrophic,” invariant along the rotation axis) and weak
turbulence theory (WTT) [5], which describes the flow as a
collection of nonlinearly interacting inertial waves. Both
approaches address the low-Rossby-number limit, but they
are somewhat blind to one another: the Taylor-Proudman
theorem is established for a slowly evolving flow, thus
ruling out inertial waves at the outset. On the other hand,
inertial-wave turbulence assumes that there is no geo-
strophic flow to begin with. The flow is then protected
from the emergence of geostrophy, because triadic inter-
actions of inertial waves cannot transfer energy from the
fast wave modes to the slow geostrophic one [1,6]: at this
order of the low-Rossby-number asymptotic expansion, the
geostrophic component remains zero.
A prerequisite to testing WTT in the laboratory is to be

able to generate an ensemble of nonlinear inertial waves.
Because this is an arduous task, most rotating turbulence
experiments use instead standard forcing devices of non-
rotating turbulence: grids [7–10], jets [11–14], vortex
generators [15,16], and impellers [17]. These devices are
rather inefficient at forcing inertial waves, either because
they lack the right time dependence to match the wave
dispersion relation (most of them are steady), or because
they are directly compatible with a Taylor-Proudman-like
2D flow. The geostrophic component then dominates the
flow in the low-Rossby-number limit, with a small energy
fraction in the wave modes [13,14,16,18].

To investigate nonlinear wave dynamics, there is thus a
crucial need for experiments with energy input into the
wave modes only. Experimental methods have arisen to
generate isolated inertial-wave beams in rotating flows
[19–24], but the fate of a chaotic ensemble of inertial waves
remains unexplored in the laboratory. In this Letter, we
report on a rotating turbulence experiment where energy
is input into the wave modes only, with the following
questions in mind: what happens beyond the first triadic
subharmonic instability? Is inertial-wave turbulence really
protected from the emergence of a strong geostrophic
mode? If not, what is the physical mechanism responsible
for the emergence of geostrophy?
Experimental setup.—The experimental setup is ske-

tched in Fig. 1. Thirty-two horizontal cylinders of diameter
d ¼ 4 cm oscillate vertically inside a parallelepipedic water

FIG. 1. Experimental setup. 32 horizontal cylinders oscillate
vertically inside a tank centered on a platform rotating at
Ω ¼ 18 rpm.
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tank of 105 × 105 cm2 base and 75 cm height, with an
amplitude A, an angular frequency ω0, and independent
random initial phases. The cylinders are tangent to an
80-cm-diameter virtual sphere horizontally centered in the
water tank.
The apparatus is mounted on a two-meter-diameter

platform rotating at a rate Ω ¼ 18 rpm around the vertical
axis z. The cylinders oscillate at ω0 ¼ 0.84 × 2Ω, each
cylinder generating four inertial-wave beams [23,25] mak-
ing angles � arccosðω0=2ΩÞ ≃�32.9° with the horizontal
[4]. In the central region of the sphere, these beams interact
nonlinearly, producing a homogeneous turbulent flow. The
amplitude of oscillation A is varied from 1.0 to 8.2 mm,
which corresponds to a forcing Reynolds number 130 ≤
Re ¼ Aω0d=ν ≤ 1040 and a forcing Rossby number
0.022 ≤ Ro ¼ Aω0=2Ωd ≤ 0.172. We access the velocity
field inside a vertical plane containing the center of the
sphere with an on-board particle image velocimetry (PIV)
system. Two velocity components ðux; uzÞ are measured
with a resolution of 1.94 mm over an area Δx × Δz ¼
285 × 215 mm2, 12 times per wave maker period
T ¼ 2π=ω0.
Triadic resonance instability.—We show in Fig. 2 the

temporal energy spectrum of the velocity field in the
statistically steady state. For the lowest amplitude
(Re ¼ 130), the spectrum displays two dominant peaks,
the next subdominant peaks being less energetic by 2 orders
of magnitude. A first peak at normalized frequency ω�

0 ¼
ω0=2Ω ¼ 0.84 corresponds to the waves forced by the
wave makers, while a second one at ω� ¼ ω=2Ω ¼ 0.5
corresponds to a “precession flow” induced by Earth’s
rotation [26,27]. This spectrum illustrates the base flow at
low forcing amplitude: an ensemble of wide inertial wave

beams generated by the wave makers and propagating
towards the central region (see the velocity fields in Fig. 3).
Increasing the forcing amplitude to Re ¼ 270, two

subharmonic bumps emerge around frequencies ω�
1 ¼

0.26� 0.04 and ω�
2 ¼ 0.58� 0.04. They correspond to

inertial waves created by the triadic resonance instability
of the primary waves, following the classical scenario
reported in various experimental [21,24,28,29] and
numerical [30–32] studies. The secondary frequencies
notably satisfy a resonance condition with the primary
waves: ω�

1 þ ω�
2 ≃ ω�

0 ¼ 0.84 [33].
Emergence of geostrophy.—In parallel, we observe the

emergence of a strong peak at ω� ¼ 0 in the high-Re
spectra. Low-pass filtering the velocity field with ω� <
0.10 reveals that this peak is associated with 2D geo-
strophic vortices wandering in the horizontal plane. The
snapshots in Fig. 3 highlight this emergence of geostrophy.
In Fig. 3, we show time series of the kinetic energies

K2DðtÞ in the vertically averaged velocity field inside the
PIV domain, KlfðtÞ in the low-frequency mode (using a
low-pass filter with ω� < 0.1), KshðtÞ in the first subhar-
monic bump produced by the triadic instability (band-pass
filter with 0.1 < ω� < ω�

0=2) and Kω0
ðtÞ in the forced

waves (band-pass filter with jω� − ω�
0j < 0.1). The time

series of K2D and Klf are almost identical, the difference
being due to some pollution of K2D by the large-scale
precession-induced flow at ω� ¼ 0.5. This confirms that
the low-frequency spectrum corresponds to the 2D geo-
strophic flow. Most interestingly, Fig. 3 highlights the
bifurcation sequence by which the geostrophic flow arises:
(i) For Re ¼ 130, the flow consists mostly in primary
waves, with very low levels of Klf and Ksh. (ii) For
Re ¼ 270, the system is above the threshold of the triadic
instability, with significant subharmonic energy Ksh and

FIG. 2. Temporal spectrum of the velocity field. A vertical shift
by a factor of 10 has been introduced between successive spectra.
The red spectrum corresponds to an additional experiment at
Re ¼ 520 with a honeycomb bottom boundary.

FIG. 3. Time series of the kinetic energies Kω0
of the forced

mode, K2D of the 2D mode, Klf of the low-frequency mode, and
Ksh of the first subharmonic mode (the latter being multiplied by
50) for Re ¼ 130; 270 and 1040 and normalized by v20 ¼ ðAω0Þ2.
The forcing starts at t ¼ 0. Avertical shift of 1 has been introduced
between the curves at different Re. For each Re, the right panel
shows the corresponding velocity field at time t ¼ 1830T.
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still negligible energy Klf in the low-frequency geostrophic
component. (iii) For Re ¼ 1040, the triadic instability first
sets in, inducing significant levels of Ksh, before the
geostrophic mode arises and settles in a strongly fluctuating
state with large K2D ≃ Klf [34]. The geostrophic flow thus
arises above a threshold value of the driving intensity, as a
secondary instability of the triadic instability. While the
first triadic instability is in line with the phenomenology
of wave turbulence, the system then rapidly finds a shortcut
to directly transfer energy to the geostrophic mode.
Quartetic secondary instability.—We propose a generic

scenario to explain this shortcut to geostrophy: while
resonant triads cannot transfer energy to the slow geo-
strophic modes, resonant quartets can, as discussed by
Smith and Waleffe (SW) [6]. More surprisingly, we will
show that these resonant quartets can spontaneously gen-
erate geostrophic flows through a “quartetic instability,” the
four-wave equivalent of the triadic instability. To illustrate
this mechanism, we focus on a single resonant triad, and an
associated single resonant quartet. They are chosen some-
what arbitrarily, with the goal of providing a simple
example of quartetic shortcut to geostrophy.
We thus consider the resonant triad in Fig. 4(a), with

wave vectors k2 ¼ k0½6; 0;−3�, k0
3 ¼ k0½−18=5; 0;−9=5�,

andk0
4¼k0½−12=5;0;24=5� and polarities ðs2¼þ1;s03¼þ1;

s04¼þ1Þ in the conventions of SW (see Supplemental
Material [35]). k0 is an arbitrary inverse length scale that
does not enter the analysis. In a similar fashion to our
experiments, we consider a system where wave makers
generate waves at frequency ωðk0

4Þ, energizing wave vector
k0
4 but also many other parallel wave vectors associated

with the same frequency [see Fig. 4(a)] [36]. Above a
threshold amplitude of the forcing, the system spontane-
ously transfers some energy from the mode k0

4 to k
0
3 and k2

through the triadic resonance instability mechanism
[21,30]. Consider then the quartet sketched in Fig. 4(b),

built by keeping wave vector k2, inserting a horizontal
wave vector k5 ¼ k0½8; 0; 0�, and closing the quartet
with two wave vectors k3 ¼ k0½−10; 0;−5� and k4 ¼
k0½−4; 0; 8� parallel to k0

3 and k0
4, respectively. The quartet

ðk2;k3;k4;k5Þ happens to be the one considered by Smith
and Waleffe [6]. This quartet is resonant for the mode
polarities ðs2; s3; s4; s5Þ ¼ ðþ1;þ1;þ1;−1Þ, which we
adopt in the following. The mode k4 is at frequency
ωðk4Þ ¼ ωðk0

4Þ and is also energized by the forcing, while
the mode k2 has been energized by the triadic instability at
the previous step. We now show that the mode k3 and the
geostrophic mode k5 can emerge spontaneously through a
quartetic instability. Denoting as bi the amplitude of the
mode of wave vector ki with the polarity si, a multiple-
timescale expansion in the low-Rossby-number limit yields
the following quartetic evolution equations:

ð∂t þ νk23Þb3 ¼ Cþ1;þ1;þ1;−1
k3;k2;k4;k5

b2 b4 b5; ð1Þ

ð∂t þ μþ νk25Þb5 ¼ C−1;þ1;þ1;þ1
k5;k2;k3;k4

b2 b3 b4; ð2Þ

where an overbar denotes the complex conjugate and the
μ-term mimics bottom-drag acting on the geostrophic
mode. The details of the asymptotic expansion are deferred
to the Supplemental Material [35], as well as the expres-
sions of the (μ- and ν-independent) quartetic coefficients
Cþ1;þ1;þ1;−1
k3;k2;k4;k5

and C−1;þ1;þ1;þ1
k5;k2;k3;k4

. Our base state consists of
time-independent finite amplitudes b2 and b4, energized,
respectively, by the forcing and by the triadic instability.
We consider infinitesimal perturbations of the modes 3
and 5, b3ðtÞ ≪ 1 and b5ðtÞ ≪ 1. Upon looking for pertur-
bations evolving as eγt and neglecting the dissipative terms,
Eqs. (1) and (2) yield

γ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ1;þ1;þ1;−1
k3;k2;k4;k5

× C̄−1;þ1;þ1;þ1
k5;k2;k3;k4

q
jb2jjb4j: ð3Þ

Because Cþ1;þ1;þ1;−1
k3;k2;k4;k5

× C̄−1;þ1;þ1;þ1
k5;k2;k3;k4

>0 (see Supplemental
Material [35]), waves at k3 and k5 grow exponentially: a
geostrophic flow emerges spontaneously through this
quartetic instability. When the damping terms are retained,
the amplification gain (3) must overcome viscous and
frictional damping. This occurs above a threshold value
of the product jb2jjb4j, which we determine by performing a
similar linear stability analysis on the full equations (1)
and (2), before setting γ to zero. This yields the instability
criterion

jb2jjb4j ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νk23ðμþ νk25Þ
Cþ1;þ1;þ1;−1
k3;k2;k4;k5

× C̄−1;þ1;þ1;þ1
k5;k2;k3;k4

s

: ð4Þ

In other words, the system needs to be sufficiently above the
threshold of the triadic instability, with large enough jb2j, to
trigger the quartetic secondary instability.

(a) (b)

FIG. 4. An illustrative example of the quartetic secondary
instability. (a) The triadic instability transfers energy from the
mode k0

4 (at the forcing frequency) to modes at k2 and k0
3.

(b) One can build a resonant quartet by keeping k2, inserting a
horizontal wave number k5, and closing the quartet with two
wave vectors k3 and k4 parallel to k0

3 and k0
4, respectively. k4 is

energized by the forcing, while k2 has been energized at step (a).
Through a resonant quartet instability, the geostrophic mode k5

then spontaneously emerges, together with k3.

PHYSICAL REVIEW LETTERS 124, 124501 (2020)

124501-3



To confront this scenario to the experimental data, we
plot in Fig. 5 the time-averaged kinetic energies hKshi and
hKlfi as functions of Re. The primary triadic instability
arises above a threshold value Re1 ≃ 260, where hKshi
departs from zero, while the threshold of the quartetic
instability is Re2 ≃ 330, where hKlfi departs from zero.
One may notice that hKlfi has a nonmonotonic behavior at
higher Re. This feature goes beyond the scope of the
present model, which describes the immediate vicinity of
the bifurcation points only. An interesting extension of the
model could be to focus on scale separation between wave
motion and large-scale geostrophic flow, to capture the
four-wave instability through mean-field coefficients
[37–39], in the spirit of Refs. [40,41].
Despite its simplicity—a triad inside a vertical plane, and

an associated quartet inside that same plane—the model
successfully captures the sequence of bifurcations observed
in the experiment: a primary triadic instability followed by
a secondary quartetic instability, which triggers the emer-
gence of geostrophy. The frequency of the forced waves in
the theoretical model being close to the frequency of the
forced waves in the laboratory experiment (respectively,
ωðk4Þ ¼ ωðk0

4Þ ¼ 0.89 × 2Ω and ω0 ¼ 0.84 × 2Ω), we
can compare quantitatively the various terms arising in
the model to their experimental counterparts. We estimate
both sides of Eq. (4) at the experimental threshold Re2
where geostrophy emerges: the amplitude of the pri-
mary waves jb4j is approximately

ffiffiffiffiffiffiffiffiffiffiffiffihKω0
ip
≃ 4.5 mms−1.

The square-root of hKshi gives jb2j ≃ 0.7 mms−1, and the
left-hand side of Eq. (4) is around 3.2 × 10−6 m2 s−2. The

Ekman friction term is here comparable to the viscous one,
and the wave vectors have comparable lengths. We thus
estimate the numerator of the right-hand side of Eq. (4) as
simply νk24. Substituting k4 ¼

ffiffiffiffiffi
80

p
k0 and Cþ1;þ1;þ1;−1

k3;k2;k4;k5
×

C̄−1;þ1;þ1;þ1
k5;k2;k3;k4

≃ 726k40=Ω2 (computed in the Supplemental
Material [35]), the right-hand side of Eq. (4) is estimated as
80νΩ=

ffiffiffiffiffiffiffiffi
726

p
≃ 5.6 × 10−6 m2 s−2. We conclude that the

two sides of Eq. (4) have comparable magnitudes at
Re2, which confirms the expected balance between quar-
tetic amplification and damping terms at threshold.
Beyond these order of magnitude estimates, fully quan-

titative predictions would require an exact knowledge of the
base flow, together with an optimization of the bifurcation
threshold over all possible combinations of resonant triads
and associated resonant quartets, a challenging task in
general. Nevertheless, we can test the qualitative predictions
of the theory further: we performed three complementary
experiments with a honeycomb structure at the bottom of
the tank (mesh ¼ 1.7 cm, height ¼ 2 cm). We first sent an
inertial-wave beam towards this rough bottom boundary and
observed that it reflects with negligible losses: the honey-
comb structure has little effect on wavelike motion. By
contrast, we expect it to induce a strong damping of the
geostrophic modes, through a drastic increase in bottom
drag. In some sense, this honeycomb structure is an
experimental means of achieving the specific damping of
the geostrophic modes included numerically by Le Reun
et al. [32]. In line with these expectations, we observe in
Fig. 5 that the onset of the triadic instability remains
unaffected, while the threshold of the secondary quartetic
instability is shifted to prohibitively large values of Re [42].
These observations are qualitatively captured by expression
(4) at large μ, this large μ being a rough modelization of the
possibly turbulent and quadratic bottom drag induced by the
honeycomb structure. This provides further experimental
evidence that the subharmonic waves and the geostrophic
flow appear through distinct instabilities.
Discussion.—Although our study focuses on rotating

turbulence, the phenomenology probably holds for the
various anisotropic fluid systems that can be decomposed
into fast wave modes and a slow manifold: Rossby waves
and zonal flows on the beta plane, internal gravity waves
and shear flows in stratified fluids, etc. As a matter of fact,
the ability of quartets of inertial waves to transfer energy to
the geostrophic modes was soon identified by SW, based on
previous work by Newell [43] showing that quartets of
Rossby waves can force zonal flows. These studies focus
on the direct forcing of the slow manifold by three
preexisting waves. By contrast, here we force waves at a
single frequency. Even in that case, however, our exper-
imental results show that the system efficiently transfers
energy to the 2D flow through a quartetic instability. A
somewhat similar situation was recently reported by
Le Reun et al. [44]. In their experiment, the libration of
an ellipsoid induces a 2D base flow that is unstable to

FIG. 5. hKshi and hKlfi as functions of Re. The threshold
Reynolds number Re2 for the emergence of geostrophy is 25%
higher than the threshold Re1 of the triadic instability when the
bottom boundary is smooth. Re2 is shifted to prohibitively
large values when the bottom boundary is made rough using a
honeycomb structure. The error bars on hKshi are comparable
to the size of the symbols. The error bars on hKlfi are
comparable to the size of the symbols for Re ≤ 600, and
around �15% for Re > 600.
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inertial-wave motion. As one increases the driving ampli-
tude, the system first transfers energy to secondary inertial-
wave modes through triadic resonances before inducing a
geostrophic vortex on top of the base librating flow. The
authors conclude that this geostrophic vortex probably
emerges because the Rossby number is only moderately
low, although they also invoke the possible role of an
instability described by Kerswell in cylindrical geometry
[45]. Although it was not identified as such at the time, we
believe that Kerswell’s instability may very well be under-
pinned by the present four-wave mechanism: the corre-
sponding quartet would consist of two wave modes and two
geostrophic ones, suggesting a scenario where geostrophy
arises through a direct quartetic instability (as opposed to a
secondary one). While it is difficult to discriminate between
the direct and secondary quartetic instability scenarios
experimentally, we expect the direct instability to be more
strongly stabilized by bottom friction than the secondary
instability, because it involves two geostrophic modes. By
contrast, the secondary instability involves a single geo-
strophic mode, hence a single factor

ffiffiffi
μ

p
on the right-hand

side of Eq. (4).
The quartetic instability induces a transfer of energy to

the slow modes, thus restricting the domain of validity of
WTT. Indeed, the relation (4) indicates that this instability
sets in when the Ekman number is reduced at fixed Rossby
number. The only hope to observe weak wave turbulence is
then to focus on distinguished limits where the Rossby
number goes to zero faster than some power of the Ekman
number [32], the precise boundary in parameter space
depending on the dominant damping mechanism (bulk
viscosity, Ekman friction, etc.). For wave turbulence to
develop, this damping mechanism must be dominant at the
quartetic order, but negligible at the triadic one. The
corresponding parameter range may be too narrow for
an experimental study. A more promising approach could
be the use of rough boundaries, such as the honeycomb
structure we placed at the bottom of the tank, to induce
turbulent Ekman layers and preferential damping of the
geostrophic flow.
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