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Abstract

We consider a model called CHARME (Conditional Heteroscedastic Autoregressive
Mixture of Experts), a class of generalized mixture of nonlinear nonparametric
AR-ARCH times series. Under certain Lipschitz-type conditions on the autoregressive
and volatility functions, we prove that this model is τ -weakly dependent in the sense
of Dedecker & Prieur (2004) [1], and therefore, ergodic and stationary. This result
forms the theoretical basis for deriving an asymptotic theory of the underlying
nonparametric estimation. As application, for the case of a single expert, we use the
universal approximation property of the neural networks in order to develop an
estimation theory for the autoregressive function by deep neural networks, where the
consistency of the estimator of neurons and bias are guaranteed.

The model

Let (E , ‖ · ‖) be a Banach space. The conditional heteroscedastic p−autoregressive
mixture of experts (CHARME(p)) model, with values in E , is defined by:

Xt =
K∑

k=1

ξ(k)
t [fk(Xt−1, . . . , Xt−p) + gk(Xt−1, . . . , Xt−p)εt] t ∈ Z, (1)

where
I fk : (E p, E⊗p) −→ (E , E) and gk : (E p, E⊗p) −→ (R,B(R)), with

k ∈ [K] := {1, 2, . . . , K}, are arbitrary unknown functions,
I (εt)t are E−valued independent identically distributed (iid) zero-mean innovations,

and
I ξ

(k)
t = I{Qt=k}, where (Qt)t is an iid sequence with values in the finite set of states

[K], which is independent of the innovations (εt)t.

In particular, if p =∞, we call this model CHARME with infinite memory
(CHARME(∞)).

Weak dependence

Let (E , ‖ · ‖) be a Banach space and let h : E −→ R. We define
‖h‖∞ = supx∈E |h(x)| and

Lip(h) = sup
x 6=y

|h(x)− h(y)|
‖x − y‖

.

Moreover, we denote by Λ1(E) := {h : E −→ R : Lip(h) ≤ 1}.

The appropriate notion of weak dependence for the CHARME model was introduced
in [1]. It is based on the concept of the coefficient τ defined below.

Def. Let (Ω,A, P) be a probability space,M a σ-sub-algebra of A and X a
random variable with values in E such that ‖X‖1 <∞. The coefficient τ is defined
as

τ (M, X ) =

∥∥∥∥sup

{∣∣∣∣∫ h(x)PX |M(dx)−
∫

h(x)PX(dx)

∣∣∣∣ : h ∈ Λ1(E)

}∥∥∥∥
1

.

Using the definition of this τ coefficient with the σ-algebra

Mp = σ(Xt, t ≤ p)

and the norm ‖x − y‖ = ‖x1 − y1‖+ · · · ‖xk − yk‖ on E k, we can assess the
dependence between the past of the sequence (Xt)t∈Z and its future k-tuples through
the coefficients

τk(r) = max
1≤l≤k

1

l
sup{τ (Mp, (Xj1, . . . , Xjl)) with p + r ≤ j1 < · · · < jl}.

Finally, denoting τ (r) := τ∞(r) = supk>0 τk(r), the time series (Xt)t∈Z is called
τ -weakly dependent if its coefficients τ (r) tend to 0 as r tends to infinity.

Deep neural networks (DNN)

Def. Let d, L ∈ N. A deep neural network (architecture) θ with input dimension d

and L layers is a sequence of matrix-vector tuples

θ =
(

(A(1), b(1)), (A(2), b(2)), . . . , (A(L), b(L))
)
,

where A(l) is a Nl × Nl−1 matrix and b(l) ∈ RNl, with N0 = d and N1, . . . , NL ∈ N,
the number of neurons for each layer.

If θ is a deep neural network architecture as above and if ϕ : R −→ R is an
arbitrary function, then we define the deep neural network (DNN) associated to
θ with activation function ϕ as the map fθ,ϕ : Rd −→ RNL such that

fθ,ϕ(x) = xL,

where xL results from the following scheme:

x0 := x,

xl := ϕ(Alxl−1 + bl), for l = 1, . . . , L− 1,

xL := ALxL−1 + bL,

where ϕ acts componentwise, i.e., for y = (y1, . . . , yN) ∈ RN,
ϕ(y) = (ϕ(y1), . . . , ϕ(yN)).

Theorem (Stationarity of CHARME models)

Let E∞ := {(xk)k>0 ∈ EN : xk = 0 for k > N, for some N ∈ N∗} endowed with its
product σ−algebra E⊗N.

Consider the CHARME(∞) model and denote πk = P(Q0 = k), with k = 1, . . . , K .

Assume that there exist non-negative real sequences (a
(k)
i )i≥1 and (b

(k)
i )i≥1, for

k = 1, 2, . . . , K , such that for any x, y ∈ E∞,

‖fk(x)− fk(y)‖ ≤
∞∑
i=1

a
(k)
i ‖xi − yi‖,

|gk(x)− gk(y)| ≤
∞∑
i=1

b
(k)
i ‖xi − yi‖, k = 1, . . . , K . (2 )

Denote a(m) = 2m−1
∑K

k=1 πk

(
Amk + Bm

k ‖ε0‖mm
)

, where Ak =
∑∞

i=1 a
(k)
i and

Bk =
∑∞

i=1 b
(k)
i . Then,

1. if a(1) < 1, there exists a τ−weakly dependent strictly stationary solution (Xt)t∈Z of
(1, with p =∞) which belongs to L1, and such that

τ (r) ≤ 2
µ1

1− a
inf

1≤s≤r

a
r/s +

1

1− a

∞∑
i=s+1

ai

 −→
r→∞

0, (3 )

where µ1 =
∑K

k=1 πk (‖fk(0)‖+ |gk(0)|‖ε0‖1) and

ai =
∑K

k=1 πk

(
a

(k)
i + b

(k)
i ‖ε0‖1

)
.

2. if moreover a(m) < 1 for some m ≥ 1, the stat. solution belong to Lm.

Application-Example

Suppose that (Xt)t is a time series such that

Xt = fθ,ϕ(Xt−1, . . . , Xt−p) + εt, (4)

where fθ,ϕ : Rp −→ R is a DNN with parameter

θ =
(

(A(1), b(1)), (A(2), b(2)), . . . , (A(L), b(L))
)
∈

L∏
l=1

(
MNl×Nl−1(R)×MNl×1(R)

)
and Lipschitz activation function ϕ. Then, if ‖ε0‖1 <∞ and

ã = (Lip(ϕ))L−1
∑

(j0,...,jL)∈
∏L

i=0[Ni]

L∏
l=1

|a(l)
jl jl−1
| < 1, (5)

the time series (Xt)t is stationary and belongs to L1.

Some conclusions

I Under the assumptions of Theorem, the stationary solution of the CHARME(∞) model
can be represented as a causal Bernoulli shift (see [2]). Moreover, this solution is the
unique causal Bernoulli shift solution of the model. Therefore, the solution is
automatically an ergodic process.

I Under the assumptions of Theorem and additional classical conditions, the least squares
estimator for the DNN-based CHARME(p) model (1) is consistent.

Future work

I To provide a central limit theorem for the least squares estimator of the DNN-based
CHARME(p) model (1) under flexible conditions.
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