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Deep neural network-based CHARME models with infinite memory

We consider a model called CHARME (Conditional Heteroscedastic Autoregressive Mixture of Experts), a class of generalized mixture of nonlinear nonparametric AR-ARCH times series. Under certain Lipschitz-type conditions on the autoregressive and volatility functions, we prove that this model is τ -weakly dependent in the sense of Dedecker & Prieur (2004) [1], and therefore, ergodic and stationary. This result forms the theoretical basis for deriving an asymptotic theory of the underlying nonparametric estimation. As application, for the case of a single expert, we use the universal approximation property of the neural networks in order to develop an estimation theory for the autoregressive function by deep neural networks, where the consistency of the estimator of neurons and bias are guaranteed.

The model

Let (E, • ) be a Banach space. The conditional heteroscedastic p-autoregressive mixture of experts (CHARME(p)) model, with values in E , is defined by:

X t = K k=1 ξ (k) t [f k (X t-1 , . . . , X t-p ) + g k (X t-1 , . . . , X t-p ) t ] t ∈ Z, (1) 
where f k : (E p , E ⊗p ) -→ (E, E) and g k : (E p , E ⊗p ) -→ (R, B(R)), with k ∈ [K] := {1, 2, . . . , K }, are arbitrary unknown functions, ( t ) t are E -valued independent identically distributed (iid) zero-mean innovations, and ξ

(k) t = I {Q t =k}
, where (Q t ) t is an iid sequence with values in the finite set of states [K], which is independent of the innovations ( t ) t .

In particular, if p = ∞, we call this model CHARME with infinite memory (CHARME(∞)).

Weak dependence

Let (E, • ) be a Banach space and let h : E -→ R. We define

h ∞ = sup x∈E |h(x)| and Lip(h) = sup x =y |h(x) -h(y )| x -y .
Moreover, we denote by Λ 1 (E) := {h : E -→ R : Lip(h) ≤ 1}.

The appropriate notion of weak dependence for the CHARME model was introduced in [1]. It is based on the concept of the coefficient τ defined below.

Def. Let (Ω, A, P) be a probability space, M a σ-sub-algebra of A and X a random variable with values in E such that X 1 < ∞. The coefficient τ is defined as

τ (M, X ) = sup h(x)P X |M (dx) -h(x)P X (dx) : h ∈ Λ 1 (E ) 1 .
Using the definition of this τ coefficient with the σ-algebra

M p = σ(X t , t ≤ p) and the norm x -y = x 1 -y 1 + • • • x k -y k on E k ,
we can assess the dependence between the past of the sequence (X t ) t∈Z and its future k-tuples through the coefficients

τ k (r ) = max 1≤l≤k 1 l sup{τ (M p , (X j 1 , . . . , X j l )) with p + r ≤ j 1 < • • • < j l }.
Finally, denoting τ (r) := τ ∞ (r) = sup k>0 τ k (r), the time series (X t ) t∈Z is called τ -weakly dependent if its coefficients τ (r) tend to 0 as r tends to infinity.

Deep neural networks (DNN)

Def. Let d , L ∈ N. A deep neural network (architecture) θ with input dimension d and L layers is a sequence of matrix-vector tuples θ = (A [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] , b [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] ), (A [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] , b [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] ), . . . , (A (L) , b (L) ) ,

where A (l) is a N l × N l -1 matrix and b (l) ∈ R N l , with N 0 = d and N 1 , . . . , N L ∈ N, the number of neurons for each layer.

If θ is a deep neural network architecture as above and if ϕ : R -→ R is an arbitrary function, then we define the deep neural network (DNN) associated to θ with activation function ϕ as the map f θ,ϕ : R d -→ R N L such that f θ,ϕ (x) = x L , where x L results from the following scheme:

x 0 := x, x l := ϕ(A l x l -1 + b l ), for l = 1, . . . , L -1, x L := A L x L-1 + b L ,
where ϕ acts componentwise, i.e., for y = (y 1 , . . . , y N ) ∈ R N , ϕ(y) = (ϕ(y 1 ), . . . , ϕ(y N )).

Theorem (Stationarity of CHARME models)

Let E ∞ := {(x k ) k>0 ∈ E N : x k = 0 for k > N, for some N ∈ N * } endowed with its product σ-algebra E ⊗N .
Consider the CHARME(∞) model and denote π k = P(Q 0 = k), with k = 1, . . . , K . Assume that there exist non-negative real sequences (a

(k) i ) i≥1 and (b (k) i ) i≥1 , for k = 1, 2, . . . , K , such that for any x, y ∈ E ∞ , f k (x) -f k (y) ≤ ∞ i=1 a (k) i x i -y i , |g k (x) -g k (y)| ≤ ∞ i=1 b (k) i x i -y i , k = 1, . . . , K . (2 ) Denote a(m) = 2 m-1 K k=1 π k A m k + B m k 0 m m , where A k = ∞ i=1 a (k) i and B k = ∞ i=1 b (k) 
i . Then, 1. if a(1) < 1, there exists a τ -weakly dependent strictly stationary solution (X t ) t∈Z of (1, with p = ∞) which belongs to L 1 , and such that

τ (r) ≤ 2 µ 1 1 -a inf 1≤s≤r   a r /s + 1 1 -a ∞ i=s+1 a i   -→ r →∞ 0, (3 ) 
where

µ 1 = K k=1 π k ( f k (0) + |g k (0)| 0 1 ) and a i = K k=1 π k a (k) i + b (k) i 0 1 . 2.
if moreover a(m) < 1 for some m ≥ 1, the stat. solution belong to L m .

Application-Example

Suppose that (X t ) t is a time series such that

X t = f θ,ϕ (X t-1 , . . . , X t-p ) + t , (4) 
where f θ,ϕ : R p -→ R is a DNN with parameter θ = (A [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] , b [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] ), (A [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] , b [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] ), . . . , (A (L) 

, b (L) ) ∈ L l =1 M N l ×N l-1 (R) × M N l ×1 (R)
and Lipschitz activation function ϕ. Then, if 0 1 < ∞ and

ã = (Lip(ϕ)) L-1 (j 0 ,...,j L )∈ L i=0 [N i ] L l =1 |a (l) j l j l-1 | < 1, (5) 
the time series (X t ) t is stationary and belongs to L 1 .

Some conclusions

Under the assumptions of Theorem, the stationary solution of the CHARME(∞) model can be represented as a causal Bernoulli shift (see [2]). Moreover, this solution is the unique causal Bernoulli shift solution of the model. Therefore, the solution is automatically an ergodic process. Under the assumptions of Theorem and additional classical conditions, the least squares estimator for the DNN-based CHARME(p) model ( 1) is consistent.

Future work

To provide a central limit theorem for the least squares estimator of the DNN-based CHARME(p) model ( 1) under flexible conditions.
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