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Abstract. Recent progress in machine learning has shown
how to forecast and, to some extent, learn the dynamics of a
model from its output, resorting in particular to neural net-
works and deep learning techniques. We will show how the
same goal can be directly achieved using data assimilation
techniques without leveraging on machine learning software
libraries, with a view to high-dimensional models. The dy-
namics of a model are learned from its observation and an
ordinary differential equation (ODE) representation of this
model is inferred using a recursive nonlinear regression. Be-
cause the method is embedded in a Bayesian data assimila-
tion framework, it can learn from partial and noisy observa-
tions of a state trajectory of the physical model. Moreover, a
space-wise local representation of the ODE system is intro-
duced and is key to coping with high-dimensional models.

It has recently been suggested that neural network archi-
tectures could be interpreted as dynamical systems. Recipro-
cally, we show that our ODE representations are reminiscent
of deep learning architectures. Furthermore, numerical anal-
ysis considerations of stability shed light on the assets and
limitations of the method.

The method is illustrated on several chaotic discrete and
continuous models of various dimensions, with or without
noisy observations, with the goal of identifying or improving
the model dynamics, building a surrogate or reduced model,
or producing forecasts solely from observations of the phys-
ical model.

1 Introduction

1.1 Data assimilation and model error

Data assimilation aims at estimating the state of a physi-
cal system from its observation and a numerical dynamical
model for it. It has been successfully applied to numerical
weather and ocean prediction, where it often consisted in
estimating the initial conditions for the state trajectory of
chaotic geofluids (Kalnay, 2002; Asch et al., 2016; Carrassi
et al., 2018). This objective is impeded by the deficiencies of
the numerical model (discretrisation, approximate physical
schemes, unresolved scales, and their uncertain parametrisa-
tions, e.g. Harlim, 2017) and the difficulty in matching nu-
merical representations of the system with the observations
(representation error, Janjić et al., 2018). As a result, the
quality of numerical weather predictions based on a method-
ologically sound data assimilation method crucially depends
on both the sensitivity to the initial condition due to the
chaotic unstable dynamics and on model error (Magnusson
and Källén, 2013).

Model errors can take many forms, and accounting for
them depends on the chosen data assimilation scheme. A
first class of solutions relies on parametrising model error
by, for instance, transforming the problem into a physical pa-
rameter estimation problem (e.g. Bocquet, 2012; Aster et al.,
2013). Other solutions are based on a weakly parametrised
form of model error, for instance when it is assumed to
be additive noise. Such techniques have been developed
for variational data assimilation (e.g. Trémolet, 2006; Car-
rassi and Vannitsem, 2010), for ensemble Kalman filters and
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144 M. Bocquet et al.: Data assimilation as a learning tool to infer dynamics

smoothers (e.g. Ruiz et al., 2013; Raanes et al., 2015), and
for ensemble-variational assimilation (Amezcua et al., 2017;
Sakov et al., 2018). In the weakly parametrised form, these
methods should be completed by an estimation of the model
error statistics (e.g. Pulido et al., 2018; Tandeo et al., 2019).
Moreover, a model error’s impact can be mitigated, and this
is often the case in applications, by multiplicative and ad-
ditive inflation (e.g. Whitaker and Hamill, 2012; Grudzien
et al., 2018; Raanes et al., 2019) and by physically driven
stochastic perturbations of model simulations in ensemble
approaches (e.g. Buizza et al., 1999) or by stochastic subgrid
parametrisations (e.g. Resseguier et al., 2017). This account
is very far from exhaustive as this is a vast, multiform, and
very active subject of research.

These approaches essentially seek to correct, calibrate, or
improve an existing model using observations. Hence, they
all primarily make use of data assimilation techniques.

1.2 Data-driven forecast of a physical system

An alternative is to renounce physically based numerical
models of the phenomenon of interest and instead to only
use observations of that system. Given the huge required
datasets, this may seem a far-reaching goal for operational
weather and ocean forecasting systems, but recent progress
in data-driven methods and convincing applications to geo-
physical problems of small to intermediate complexity are
strong incentives to investigate this bolder approach. Eventu-
ally, the perspective of putting numerical models away has a
strong practical appeal, even though such a perspective may
generate intense debates.

For instance, forecasting of a physical system can be done
by looking up past situations and patterns using the tech-
niques of analogues, which can be combined with present
observations using data assimilation (Lguensat et al., 2017),
or it can rely on a representation of the physical system
based on diffusion maps that look for a spectral representa-
tion of the dataset (see chapter 6 of Harlim, 2018). An orig-
inal data-driven stochastic modelling approach has been de-
veloped by Kondrashov et al. (2015). The method, recently
extended to deal with multi-scale datasets (Kondrashov and
Chrekroun, 2017), has been applied to successfully estimate
reduced models of geophysical phenomena (see e.g. Kon-
drashov et al., 2018, and references therein). A fourth route
relies on neural networks and deep learning to represent the
hidden model and make forecasts from this representation.
Examples of such an approach applied to the forecasting
of low-order chaotic geophysical models are Park and Zhu
(1994), who used a bilinear recurrent neural network and ap-
plied it to the three-variable Lorenz model (Lorenz, 1963,
hereafter L63), Pathak et al. (2017, 2018), who use reservoir
network techniques on the L63 model and on the Kuramoto–
Sivashinski model (Kuramoto and Tsuzuki, 1976; Sivashin-
sky, 1977, hereafter KS), and Dueben and Bauer (2018),
who use a neural network on a low-order Lorenz three-scale

model and on coarse two-dimensional geopotential height
maps at 500 hPa. The last three contributions have to resort to
local reservoir networks or convolutional layers, respectively,
to cope with the dimensionality of the models. However, all
these representations are not mechanistic and the neural net-
work becomes a surrogate for the hidden model. This marks
a key distinction with respect to our approach where the dy-
namics to be determined are explicitly formulated, as will be
clarified later.

1.3 Learning the dynamics of a model from its output

Data-driven techniques that seek to represent the model in
a more explicit manner, and therefore with a greater inter-
pretability, may use specific classes of nonlinear regression
as advocated by Paduart et al. (2010) and Brunton et al.
(2016). With a view to forecasting dynamical systems, it
is possible to design neural networks in order to reflect the
iterative form of a Runge–Kutta (RK) integration scheme.
Wang and Lin (1998) proposed and achieved such a goal us-
ing classical activation functions, which may however blur
the interpretation of the underlying dynamics. Fablet et al.
(2018) went further and used a bilinear residual neural net-
work structured so as to mimic a fourth-order RK scheme
(RK4) and noise-free data. Using the Keras tool with the
TensorFlow backend, their approach proved to be a very ef-
fective tool for the L63 model and to a lesser extent for the
40-variable Lorenz model (Lorenz and Emanuel, 1998, here-
after L96). In particular, they retrieved the parameters of the
L63 equations to a high precision. Long et al. (2018) sought
the operators of the partial differential equations (PDEs) of
a physical system by identifying differentiations with convo-
lution operators of a feed-forward neural network. They suc-
cessfully applied their method to advection–diffusion prob-
lems. As opposed to our proposal, described hereafter, none
of the aforementioned techniques is embedded in a Bayesian
framework, making them less suitable for working with noisy
and partial data.

1.4 Goal and outline

From this point on, the physical system under scrutiny will
be called the reference model. It will be assumed to be known
only from observations. We follow a data-driven approach in-
spired by the works of Paduart et al. (2010) and Fablet et al.
(2018) in the sense that we will consider an observed phys-
ical reference model, which might be generated by a hidden
mathematical model or process. This work is focused on ei-
ther one or a combination of the following goals: (i) to build
a surrogate model for the dynamics, (ii) to produce forecasts
that emulate those of the reference model, and (iii) to iden-
tify the underlying dynamics of the reference model given by
a mathematical model. The reference model could be totally
unknown or only partially specified.
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To achieve these goals, we introduce a surrogate model
defined by a set of ordinary differential equations (ODEs):

dx
dt
= φ(x), (1)

where x ∈ RNx is the state vector and x 7−→ φ(x) is a vector
field that we shall call the flow rate. For the sake of simplicity,
the dynamics in this study are supposed to be autonomous,
i.e. do not explicitly depend on time. Our technique seeks
a fit φ given observations of the reference model. This is a
rather general representation since, for instance, PDEs can
be discretised into ODEs. We will restrict ourselves to the
case where φ is at most quadratic in {xn}0≤n<Nx . The numer-
ical integration of Eq. (1) could be based on any RK scheme,
but should additionally rely on the composition of such inte-
gration steps. As a result, quite general resolvents of Eq. (1)
can be built (the resolvent is the model, i.e. the flow rate,
integrated in time over a finite time interval).

Importantly, we will not require any machine learning
software tool since the adjoint of the model resolvent can
be derived without a lot of effort. As opposed to the con-
tributions mentioned in the previous subsections, we embed
the technique in a data assimilation framework. From a data
assimilation standpoint, the technique can be seen as meant
to deal with model error (with or without some prior on the
model) and it naturally accommodates partial and noisy ob-
servations. Moreover, we will build representations of the
dynamics that are either invariant by spatial translation (ho-
mogeneous) and/or local (i.e. the flow rate of a variable xn
only depends on neighbouring variables whose perimeter is
defined by a stencil). These properties make our technique
scalable and thus potentially applicable to high-dimensional
systems.

In Sect. 2, we present model identification as a Bayesian
data assimilation problem. We first choose an ODE represen-
tation of the dynamics, introduce a nonlinear regressor basis,
and define the integration schemes we will work with. We
describe the local and homogeneous representations as phys-
ically based simplifications of the most general case, and we
derive the gradient of the problem’s cost function based on
these representations. We then introduce the Bayesian prob-
lem and the resulting cost function used for joint supervised
learning of the optimal representation and estimation of the
state trajectory. The latter is the standard goal of data assim-
ilation, while the former is that of machine learning. Our ap-
proach blends them together using the formalism of data as-
similation.

In Sect. 3, we discuss several theoretical issues: the prior
of the model, the convergence of the training step, the con-
nection with numerical analysis of integration schemes, the
connection with deep learning architectures, and, finally, the
pros and cons of our approach.

In Sect. 4, we illustrate the method with several low-
order chaotic models (L63, L96, KS, and a two-scale Lorenz
model) of various sizes, from a perfectly identifiable model,

i.e. where the model used to generate the dataset can be re-
trieved exactly, to a reduced-order model where the model
used to generate the dataset cannot be retrieved exactly, using
full or partial, noiseless, or noisy observations. Conclusions
are given in Sect. 5.

2 Model identification as a data assimilation problem

2.1 Ordinary differential equation representation

Our surrogate model is chosen to be represented by an ODE
system as described by Eq. (1). We additionally assume that
the flow rate can be written as

φA(x)= Ar(x), (2)

where A ∈ RNx×Np is a matrix of real coefficients to be es-
timated and r : RNx 7−→ RNp is a map that defines regressor
functions of x. RNp is the latent space of the regressors in
which the flow rate is linear.

In the absence of any peculiar symmetry, we choose this
map to list all the monomials up to second order built on
x, i.e. the constant, linear, and bilinear monomials. Let us
call D = {0,1, . . .,Nx − 1} the set of all variable indices and
P the set of all pairs of variable indices. We introduce the
augmented state vector

x̃ =

[
x

1

]
∈ RNx+1, (3)

extend D to D̃ =D∪{Nx}, and define P̃ as the distinct pairs
of variable indices in D̃.

As a result, the regressors are compactly defined by

r(x)=
[
{̃xnx̃m}(n,m)∈P̃

]
, (4)

where the scalars in the bracket are the entries of the vector
r(x). We count

Np =

(
Nx + 1

2

)
=

1
2
(Nx + 1)(Nx + 2) (5)

regressors, i.e. the cardinal of P̃ . For instance, a model with
three variables, x0,x1, and x2, such as L63, has 10 such re-
gressors:[
1,x0,x1,x2,x

2
0 ,x0x1,x0x2,x

2
1 ,x1x2,x

2
2

]
. (6)

Higher-order regressors, as well as regressors of differ-
ent functional forms, could be included as in Brunton et al.
(2016). However, it is important to keep in mind that we do
not seek an expansion of the resolvent of the reference model,
but of the flow rate φA. As a consequence, higher-order prod-
ucts of the state variables are anyhow generated by the inte-
gration schemes and their composition. It is worth mention-
ing that nonlinear regressions are not widespread in geophys-
ical data assimilation. We are nonetheless aware of at least
one noticeable exception that extends traditional Gaussian-
based methods (Hodyss, 2011, 2012).
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2.2 Local and homogeneous representations

At least two useful simplifications for the ODEs could be
exploited if the state x is assumed to be the discretisation of
a spatial field.

2.2.1 Locality

First, we use a locality assumption based on the physical lo-
cality of the system: all multivariate monomials in the ODEs
have variables xn that belong to a stencil, i.e. a local arrange-
ment of grid points around a given node. This can signifi-
cantly reduce the number of bilinear monomials in r(x). We
assume that sn is the stencil around node n, the pattern be-
ing the same for all nodes except the last one. For the node
Nx corresponding to the extra variable x̃Nx = 1, we assume
that its stencil consists of all the Nx + 1 nodes. We then de-
fine P̃s ⊂ P̃ as the sub-set of all pairs (n,m) of variables for
which m ∈ sn. The set of required monomials can therefore
be reduced to

r(x)=
[
{̃xnx̃m}(n,m)∈P̃s

]
. (7)

Under these conditions, A becomes sparse. Indeed, for each
node n, we assume that ẋn, the time derivative of xn, is im-
pacted only by linear terms xm such thatm ∈ sn and quadratic
terms xmxl such that m ∈ sn, l ∈ sn, and m ∈ sl . However, to
keep a dense matrix, we choose to compactly redefine and
shrink A by eliminating all a priori zero entries due to the
locality assumption. The number of columns of A is then
significantly reduced from Np to Na. As a consequence of
this redefinition of A, the matrix multiplication in between
A and r(x) must be changed accordingly. Nonetheless, the
operation that assigns coefficients in A to the monomials in
r(x) remains linear, and we write it as

φA(x)= A · r(x). (8)

Let us take the example of a one-dimensional extended
space as those used in Sect. 4. The domain is supposed to be
periodic (circle) and the nodes are indexed by 0≤ n < Nx .
Recall that the node of index Nx is associated with the extra
{1}. For 0≤ n < Nx , the stencil sn is defined as the set of
2L+1 nodes of index n−L,n−L+1, . . .n+L−1,n+L,
plus the extra node of indexNx . The stencil sNx consists of all
the nodes, i.e. D. We assume 2L+ 1≤Nx . In that case r(x)
as defined by Eq. (7) has Np = 1+Nx(2+L) monomials.
For instance, there are 161 such regressors for a 40-variable
model defined on a circular domain, such as L96, withL= 2:

[1,

x0,x1, . . .,x39,

x2
0 ,x0x1,x0x2,

x2
1 ,x1x2,x1x3,

...

x2
39,x39x0,x39x1

]
.

(9)

The row [A]n of the dense A contains the following coef-
ficients for each 0≤ n < Nx . First there are 2L+ 2 regres-
sors built with {1} (the constant and linear regressors). Sec-
ond, we consider the square monomials x2

m with m ∈ sn, i.e.{
x2
m

}
n−L≤m≤n+L

whose number is 2L+1. Then we consider
those separated by one space step, {xmxm+1}n−L≤m≤n+L−1
whose number is 2L, followed by those separated by two
space steps whose number is 2L− 1, and so on until a sepa-
ration of L is reached. Quadratic monomials of greater sep-
aration are discarded since they do not belong to a com-
mon stencil as per the above definition reflecting the local-
ity assumption. Hence there is a total of Na =

∑2L+2
l=L+1l =

3
2 (L+ 1)(L+ 2) coefficients per grid cell.

In Appendix A, we show in the one-dimensional space
case how to compute the reduced form of the product be-
tween A and r(x), assuming locality. This type of technical
parametrisation is required for a parsimonious representation
of the control variables, i.e. the coefficients of A, and is key
for a successful implementation with high-dimensional mod-
els.

Note that this locality assumption is hardly restrictive. In-
deed, owing to the absence of long-range instantaneous inter-
actions (which are precluded in geophysical fluids), farther
distance correlations between state variables can be gener-
ated by small stencils in the definition of φA through time
integrations. This would not prevent potential specific long-
distance dependencies (such as teleconnections).

2.2.2 Homogeneity

Furthermore, a symmetry hypothesis could optionally be
used by assuming translational invariance of the ODEs,
called homogeneity in the following. Because our control pa-
rameters, i.e. the coefficients of A, parametrise the flow rate,
the symmetry simply translates into the rows [A]n of the
dense A being the same for all n. Hence A simply becomes
a vector in RNa .

Let us enumerate its coefficients in the case of the L96
model withL= 2 and assuming both locality and homogene-
ity. The coefficients are partitioned intoA(0) for the bias,A(1)l
for the linear sector, and A(2)l,m for the bilinear sector. In the
linear sector, l =−2, . . .,2 is the relative position with re-
spect to the current grid point. In the bilinear sector, l,m are
the relative positions with respect to the current grid point of
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the two variables in the product. Proceeding in the same way
we counted them, the Na = 18 coefficients of A are[
A(0),

A
(1)
−2,A

(1)
−1,A

(1)
0 ,A

(1)
1 ,A

(1)
2 ,

A
(2)
−2,−2,A

(2)
−1,−1,A

(2)
0,0,A

(2)
1,1,A

(2)
2,2,

A
(2)
−2,−1,A

(2)
−1,0,A

(2)
0,1,A

(2)
1,2,

A
(2)
−2,0,A

(2)
−1,1,A

(2)
0,2,

]
.

(10)

Note that while both constraints, locality and homogene-
ity, apply to the ODEs, they do not apply to the states per
se. For instance, ODEs for discretised homogeneous two-
dimensional turbulence satisfy both constraints and yet gen-
erate non-uniform flows.

For realistic geofluids, the forcing fields (solar irradiance,
bathymetry, boundary conditions, friction, etc.) are hetero-
geneous, so that the homogeneity assumption should be
dropped. Nonetheless, the fluid dynamics part of the model
would remain homogeneous. As a result, a hybrid approach
could be enforced.

2.3 Integration scheme and cycling

The reference model will be observed at time steps tk , in-
dexed by integer 0≤ k ≤K . Hence, we need to be able to
express the resolvent of the surrogate model from tk to tk+1.
We assume that tk+1− tk is a multiple of the integration time
step of the surrogate model, tk+1− tk =N

k
c h, where h is the

integration time step and Nk
c is the number of integrations.

The time steps tk+1− tk can be uneven, which is reflected
in the dependence of Nk

c on k. Hence, the resolvent of the
surrogate model from tk to tk+1 can be written as

xk+1 = FkA(xk), where FkA ≡ fN
k
c

A ≡ fA ◦ . . . ◦ fA︸ ︷︷ ︸
Nkc times

, (11)

i.e. the integration of Eq. (1) from tk to tk+1 using the repre-
sentation Eq. (2).

We define intermediate state vectors in between [tk, tk+1]:
xk,l is the state vector defined at time tk + (tk+1− tk)l/N

k
c

for 0≤ l ≤Nk
c , as the result of l compositions of fA on xk:

xk,l = flA(xk). Figure 1 is a schematic of the composition of
the integration steps, along with the state vectors xk and xk,l .

The operator fA is meant to be an explicit numerical in-
tegration scheme. In the following, we shall consider an RK
scheme applied to x ≡ xk,l , with NRK steps. This number of
steps coincides with the accuracy of the schemes that we will
consider: first order for the Euler scheme, second order for
RK2, and fourth order for RK4 (NRK = 1,2, and 4, respec-
tively). Provided the dynamics are autonomous, a general RK
scheme reads as

fA(x)= x+h
NRK−1∑
i=0

βiki, (12a)

ki = φA

(
x+h

i−1∑
j=0

αi,jkj

)
, (12b)

where the coefficients βi and αi,j entirely specify the scheme
and h= (tk+1− tk)/N

k
c . Note that αi,j are zero for j ≥ i,

so that Eq. (12b) can be computed iteratively from k0 to
kNRK−1, followed by the sum Eq. (12a) to get fA(x).

In the following, h will be absorbed into the definition of
A and hence φA, so that we can take h= 1 without loss of
generality.

2.4 Bayesian analysis

We consider a sequence of observation vectors yk ∈ RN
k
y of

the physical system at tk indexed by 0≤ k ≤K . The system
state is observed through

yk =Hk(xk)+ εk, (13)

where Hk is the observation operator at time tk . The observa-
tion error εk will be assumed to be Gaussian with zero mean
and covariance matrix rk . It is also assumed to be white in
time. The flow rate φA is given by the approximation Eq. (2),
so that the resolvent FA of the surrogate model should also
be considered an approximation of the reference model’s re-
solvent. Hence, we generalise Eq. (11) to

xk+1 = FkA(xk)+ ηk, (14)

where ηk are unbiased Gaussian errors of covariance matri-
ces Qk , supposed to be white in time and uncorrelated from
the observation errors. Note that, in all generality, the state
space of the surrogate model does not have to match that of
the reference model. We will nonetheless take them to coin-
cide here merely for simplicity.

With the goal of identifying a model or building a sur-
rogate of the reference one, we are interested in estimating
the probability density function (pdf) p(A|y0:K), where y0:K
stands for all observations in the window [t0, tK ]. To obtain a
tractable expression for this conditional likelihood, we need
to marginalise over the state variables x0:K within the win-
dow:

p(A|y0:K)=

∫
dx0:K p(A,x0:K |y0:K). (15)

An approximate maximum a posteriori for A could be ob-
tained by using the Laplace approximation of this integral,

www.nonlin-processes-geophys.net/26/143/2019/ Nonlin. Processes Geophys., 26, 143–162, 2019



148 M. Bocquet et al.: Data assimilation as a learning tool to infer dynamics

Figure 1. Representation of the data assimilation system as a hidden Markov chain model and of the model resolvents FkA and fA.

which would require finding the maximum of

p(A,x0:K |y0:K)=
p(A,x0:K ,y0:K)

p(y0:K)

=
p(x0:K ,y0:K |A)p(A)

p(y0:K)

=
p(y0:K |x0:K ,A)p(x0:K |A)p(A)

p(y0:K)
. (16)

Nonetheless, maximising Eq. (16) rigorously yields the
maximum a posteriori of the joint variables A,x0:K . The
cost function associated with this joint pdf is by definition
J (A,x0:K)=− ln(p(A,x0:K |y0:K)). Because Eq. (14) is
Markovian and given the Gaussian form of both model and
observational errors, the cost function reads as

J (A,x0:K)=
1
2

K∑
k=0

∥∥yk −Hk(xk)
∥∥2
r−1
k

+
1
2

K∑
k=1

∥∥∥xk −Fk−1
A (xk−1)

∥∥∥2

Q−1
k

− lnp(x0|A)− lnp(A), (17)

up to a constant depending on Q1:K and r0:K only. The vector
norm ‖z‖P is defined as

√
zTPz. This is the cost function of

a weak constraint 4D-Var (see Sect. 2.4.3.2 of Asch et al.,
2016) with A and x0:K as control variables.

In the case where the reference model is fully and directly
observed, i.e. Hk ≡ Ix , and in the absence of observation
noise, i.e. rk ≡ 0, we have x0:K ≡ y0:K and the cost func-
tion simplifies to

J (A)=
1
2

K∑
k=1

∥∥∥yk −Fk−1
A (yk−1)

∥∥∥2

Q−1
k

− lnp(y0|A)− lnp(A), (18)

where y0:K is the fully and perfectly observed state trajec-
tory of the reference model. This is notably similar to a
traditional least-square function used in machine and deep

learning regression. This connection between machine learn-
ing and data assimilation cost functions had been previously
put forward by Hsieh and Tang (1998) and Abarbanel et al.
(2018), although in a different form. Reciprocally, when the
aforementioned hypotheses of noiseless and complete obser-
vations do not hold, Eq. (17) can be seen as a natural data
assimilation extension of Eq. (18). Note that Eq. (18) only
depends on the sequence Q1:K . If, in addition, the depen-
dence on p(y0,A)= p(y0|A)p(A) is neglected in Eq. (18),
then the maximum a posteriori should not depend on a global
rescaling of Q1:K .

The data assimilation system is represented in Fig. 1 as a
hidden Markov chain model. This Bayesian view highlights
the choice that must be made for r0:K and/or Q1:K and pro-
vides an interpretation in terms of errors. Furthermore, one
could implement an objective estimation of these error statis-
tics as in Pulido et al. (2018).

2.5 Gradients and adjoint of the representation

To efficiently minimise the cost function Eq. (17) with a
gradient-based optimisation tool, we need to analytically de-
rive the gradient of Eq. (17) with respect to both A and x0:K .
As for x0:K , we have

∇x0J =−
(
∇x0H0

)T
r−1

0 δ0−
(
∇x0F0

A

)T
Q−1

1 11

−∇x0 lnp(x0|A), (19a)

∇xkJ =−
(
∇xkHk

)T
r−1
k δk −

(
∇xkF

k
A

)T
Q−1
k+11k+1

+Q−1
k 1k, for 1≤ k ≤K − 1, (19b)

∇xKJ =−
(
∇xKHK

)T
r−1
K δK +Q−1

K 1K , (19c)

where δk = yk −Hk(xk) for 0≤ k ≤K and 1k = xk −

Fk−1
A (xk−1) for 1≤ k ≤K; ∇xkF

k
A is the tangent linear op-

erator of the resolvent FkA computed at xk for 0≤ k < K;
∇xkHk is the tangent linear operator of the observation oper-
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ator Hk computed at xk for 0≤ k ≤K . As for A, we have

∇AJ =−
K∑
k=1

δT
kQ−1

k ∇AFk−1
A (xk−1)−∇A lnp(A), (20)

assuming x0 is independent of A. Hence, a key technical as-
pect of the problem is to compute the tangent linear and ad-
joint operators required by these gradients. In this paper, we
assume that the adjoints

(
∇xkHk

)T of the tangent linear op-
erators of the observation operators are known, for instance
if the latter are linear as in Sect. 4.

The computations of the gradients and the required ad-
joints are developed in Appendix B. These technicalities can
be skipped since they are not required to understand the
method. Nonetheless, they are critical to its numerical effi-
ciency.

3 Discussion of the theoretical points

In this section, we discuss the prior pdf p(A), the optimi-
sation of the cost function J (A,x0:K), and the connections
with deep learning techniques.

3.1 Prior information on the reference model

The goal is either to reconstruct an ODE for the reference
model, characterised by the coefficients A through φA, or to
build a surrogate model of it. The estimation of x0:K is then
accessory even though factually critical to the estimation of
A. The alternative would have been to consider the estima-
tion of x0:K as the primary problem, under model error of a
prescribed ODE form, the estimation of A becoming acces-
sory. In both cases, but particularly in the latter one, one may
benefit from an informative prior pdf p(A).

The prior pdf p(A) can be used to encode any prior knowl-
edge on the reference model, such as pieces of it that would
be known. Indeed, p(A) can formally quantity the uncer-
tainty associated with any part of the surrogate model. For
instance, assume that the reference model is partially identi-
fiable, which means that part of the reference model could be
represented by an up to bilinear flow rate of the form Eq. (2)
and Eq. (4). Moreover, assume that there is one such part of
the reference model which is known, i.e. that elements of A
are actually known, while others need to be estimated. Then,
the known coefficients can formally be encoded in p(A)with
Dirac factors. In practice it could be implemented as a con-
strained optimisation problem, for instance using an aug-
mented Lagrangian, in order to avoid significantly altering
the gradients with respect to A. More generally, assigning a
non-trivial prior likelihood, such as a Gaussian one for A, is
certainly appealing but may not be practical.

3.2 Numerical optimisation: issues and solutions

The success of the optimisation of J (A,x0:K) depends
above all on the ability to evaluate it robustly. In particular, it
depends on the stability of the numerical integration scheme
x′ = fA(x). In this paper, we chose to rely on one-step ex-
plicit schemes which are much simpler to describe and ef-
ficient to integrate (a family to which the RK schemes of
any NRK belong). These schemes are 0-stable, which means
that the finite time error growth goes to zero as the integra-
tion step goes to zero. But, as a major drawback, they have
a limited absolute (or A-)stability domain (see e.g. chapters
5 and 6 of Gautschi, 2012). For a given state trajectory, there
exists a stability domainDs ∈ RNx×Np out of which the eval-
uation of J (A,x0:K) is hazardous. A failure to evaluate the
cost function also depends on the number of integration steps
since the instabilities are likely to increase exponentially with
Nk

c .
This says that, in the absence of a strong prior p(A), it is

safer to start with A= 0 likely to lie close to Ds. Alterna-
tively, if stability constraints are known about A, they could
be encoded in p(A). It also says that we should strike an
empirical compromise between the composition numbersNk

c
and the easiness in evaluating J (A,x0:K). On the one hand,
the larger Nk

c , the more the iterates of A in the optimisation
must be kept confined in Ds. On the other hand, the longer
Nk

c , the broader the class of achievable resolvents and hence
the ability to build a good surrogate. Moreover, the higher
the stability of the integration scheme, the larger Ds, and the
easier the optimisation in spite of an increase in its numerical
cost.

As for the sensitivity on K , the longer the time window,
the more observations are available to constrain the problem.
However, the longer K , the higher the chances of having a
significant instability: the chances of a successful integration
typically decrease exponentially with the length K .

This stability issue can be somehow alleviated by normal-
ising the observations yk by their mean and variance in order
to avoid excessively large value ranges of the regressors. This
will not change the fundamental stability of the schemes, yet
may delay the occurrences of instabilities due to the nonlin-
ear terms.

Moreover, instabilities can significantly be mitigated by
replacing the monomials with smoothed or truncated ones:

r(x)=
[
{ζ (̃xn)ζ (̃xm)}(n,m)∈P̃

]
. (21)

One can for instance choose ζ(x)= λ tanh(x/λ), in order to
cut off too large values of |x| and hence delay the growth of
instabilities. The parameter λ > 0 is roughly chosen as the
typical maximum amplitude of |x| as approximately inferred
from the observations. If tanh is deemed to be numerically
too costly, one can choose instead ζ(x)=−λ1]−∞,−λ]+
x1[−λ,λ]+ λ1[λ,+∞[ or more generally ζ(x)= (−λ+ ε(x+
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λ))1]−∞,−λ]+x1[−λ,λ]+(λ+ε(x−λ))1[λ,+∞[, with 0≤ ε�
1 a small trend.

This latter change in variables is the one implemented for
all numerical applications described in Sect. 4, together with
the normalisation. From these experiments, we learned that
these tricks often turned critical in the first iterates of the op-
timisation when the estimate of A progressively migrated to
the A-stability domain. After a few iterations, however, the
integrations are stabilised and the nonlinear regime of the
truncations in Eq. (21) is not tapped into anymore.

3.3 Connection and analogies with deep learning
architectures

It has recently been advocated that residual deep learning ar-
chitectures of neural networks can roughly be interpreted as
dynamical systems (e.g. Weinan, 2017; Chang et al., 2018).
Each layer of the network contributes marginally to the out-
put, so that there exists an asymptotic continuum limit repre-
sentation of the neural network. Furthermore, as mentioned
in the introduction, Wang and Lin (1998) and Fablet et al.
(2018) have shown that the architecture of the network can
follow that of an integration scheme.

By contrast, we have started here from a pure dynami-
cal system standpoint and proposed to use data assimilation
techniques. In order to explore complex model resolvents,
applied to each interval [tk, tk+1] between observations, we
need the composition of Nc integration steps. In particular,
this allows the resolvent to exhibit more realistic long-range
correlations. Even when using a reasonably small stencil,
long-range correlations will arise as a result of the integra-
tion steps. Nonetheless, the stencil might not be too small
so as to model discretised higher-order differential operators.
As noted by Abarbanel et al. (2018), each application of fA
could be seen as a layer of the neural network. Moreover,
within such a layer, there are sublayers corresponding to the
steps of the integration scheme. The larger Nc is, the deeper
this network is, and the richer the class of resolvents is to
optimise on.

Following this analogy, the analysis step where
J (A,x0:K) is optimised can be called the training phase.
Backpropagation in the network, as coined in machine
learning (Goodfellow et al., 2016), corresponds to the
computation of the gradient of the network with respect
to A and of the model adjoint derived in Sect. 2. This is a
shortcut for the use of machine learning software libraries
such as TensorFlow or PyTorch (see Appendix C for a brief
discussion).

Because of our complete control of the backpropagation,
we hope for a gain in efficiency. However, our method does
not have the flexibility of deep learning through established
tools. For instance, addition of extra parameters, adaptive
batch normalisation, and dropouts are not granted in our ap-
proach without further considerations.

Convolutional layers play the role of localisation in neu-
ral architecture. In our approach this role is played by the
locality assumption and its stencil prescription. Recall that a
tight stencil does not prevent longer-range correlations that
are built up through the integration scheme and their compo-
sition. This is similar to stacking several convolutional lay-
ers to account for multiple scales from the reference model
which the neural network is meant to learn from.

Finally, we note that, as opposed to most practical deep
learning strategies with a huge amount of weights to esti-
mate, we have reduced the number of control variables (i.e.
A) as much as possible.

4 Numerical illustrations

4.1 Model setup and forecast skill

In this section, we shall consider four low-order chaotic mod-
els defined on a physical one-dimensional space, except for
L63, which is 0-dimensional. They will serve as reference
models.

1. The L63 model as defined by the ODEs:

dx0

dt
= σ(x1− x0), (22a)

dx1

dt
= ρx0− x1− x0x2, (22b)

dx2

dt
= ρx0x1−βx2, (22c)

with the canonical values (σ,ρ,β)= (10,28,8/3). Its
Lyapunov time1 is about 1.10. Besides its intrin-
sic value, this model is introduced for benchmarking
against Fablet et al. (2018). It is integrated using an RK4
scheme with δtr = 0.01 as the integration time step.

2. The L96 model as defined by ODEs defined over a pe-
riodic domain of variables indexed by n= 0, . . .,Nx−1
where Nx = 40:

dxn
dt
= (xn+1− xn−2)xn−1− xn+F, (23)

where xNx = x0, x−1 = xNx−1, x−2 = xNx−2, and F =
8. This model is an idealised representation of a one-
dimensional latitude band of the Earth’s atmosphere. Its
Lyapunov time is 0.60. It is integrated using the RK4
scheme and with δtr = 0.05.

3. The KS model, as defined by the PDE:

∂x

∂t
=−x

∂x

∂α
−
∂2x

∂α2 −
∂4x

∂α4 , (24)

1The Lyapunov time is defined as the inverse of the first Lya-
punov exponent, i.e. the typical time over which the error grows by
a factor e.
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over the periodic domain α ∈ [0,32π ] on which we
apply a spectral decomposition with Nx = 128 modes.
The Lyapunov time of our KS model is 10.2 time units.
This model is of interest because, even though it has
dynamical properties comparable to that of L96, it is
much steeper, so that much more stringent numerical
integration schemes are required to efficiently integrate
it. It is defined by a PDE, not an ODE system. It is in-
tegrated using the EDTRK4 scheme (Kassam and Tre-
fethen, 2005) and δtr = 0.05.

4. The two-scale Lorenz model (L05III, Lorenz, 2005) is
given by the two-scale ODEs:

dxn
dt
= ψ+n (x)+F −h

c

b

9∑
m=0

um+10n, (25a)

dum
dt
=
c

b
ψ−m (bu)+h

c

b
xm/10, (25b)

ψ±n (x)= xn∓1(x±1− xn∓2), (25c)

for n= 0, . . .,Nx−1 withNx = 36 andm= 0, . . .,Nu−
1 with Nu = 360. The indices apply periodically over
their domain; m/10 stands for the integer division of
m by 10. We use the original values for the parameters:
c = 10 for the timescale ratio, b = 10 for the space-scale
ratio, h= 1 for the coupling, and F = 10 for the forcing.
When uncoupled (h= 0), the Lyapunov time of the slow
variables x sector of the model Eq. (25) is 0.72, which
will be the key timescale when focusing on the slow
variables (see e.g. Carlu et al., 2019).

This model is of interest because the variable u is meant
to represent unresolved scales and hence model error
when only considering the slow variables x. For this
reason, it has been used in data assimilation papers fo-
cusing on estimating model error (e.g. Mitchell and Car-
rassi, 2015; Pulido et al., 2018). It is integrated with an
RK4 scheme and δtr = 0.005 since it is steeper than the
L96 model.

The numerical experiments consist of three main steps.
First, the truth is generated, i.e. a trajectory of the reference
model is computed. The reference model equations are sup-
posed to be unknown, but the trajectory is observed through
Eq. (13) to generate the observation vector sequence y0:K .

Next, estimators of the ODE model and state trajec-
tory x0:K are learned by minimising the cost function
J (A,x0:K). We choose to minimise it using an implementa-
tion of the quasi-Newton BFGS algorithm (Byrd et al., 1995),
which critically relies on the gradients obtained in Sect. 2.
The default choices for the initial ODE model are A= 0 and
x0:K defined as the space-wise linear interpolation of y0:K .
Note that the minimisation could converge to a local mini-
mum, which may or may not yield satisfactory estimates.

Finally, we can make forecasts using the tentative optimal
ODE model A? obtained from the minimisation. With a view

to comparing it to the reference model used to generate the
data, we will consider a set of forecasts with (approximately)
independent initial conditions. Both the reference model and
the surrogate one will be forecasted from these initial condi-
tions. The departure from their trajectories, as measured by a
root mean square error (RMSE) over the observed variables,
will be computed for several forecast lead times. The RMSE
is then averaged over all the initial conditions. We will also
display the state trajectories of the reference and surrogate
models starting from one of the initial conditions.

The integration time step of the truth (reference model) is
δtr over the time window [t0, tK ]. This parameter only mat-
ters for the reference model integration since only the train-
ing time steps tk+1− tk and the output of the model y0:K
(which may include knowledge of the observation operator)
are known to the observer.

The integration time step of the surrogate model within
the training time window [t0, tK ] is δta. It is assumed to be
an integer divisor of the training time step 1t = tk+1− tk ,
supposed to be constant, i.e. 1t/δta is a constant integer and
the number of compositions Nc, and that is why the index
k on Nk

c has been dropped. The integration time step of the
surrogate model within the forecast time window [T ,T +Tf]

is denoted δtf. Note that δta and δtf can be distinct and that
they are critical to the stability of the training and the forecast
step, respectively.

The three steps of the numerical experiments are depicted
in Fig. 2. Except when explicitly mentioned, the prior p(A)
is disregarded, which means that no explicit regularisation on
A is introduced.

4.2 Inferring the dynamics from dense and noiseless
observations: perfectly identifiable models

In the first couple of experiments, we consider a densely ob-
served2 reference model with noiseless observations. In this
case, Hk is the identity operator, i.e. each grid point value
is observed, and rk ≡ 0 so that a uniform rescaling of the
Qk , all chosen to be Ix , is irrelevant, assuming p(y0,A)=
p(y0|A)p(A) can be neglected, which is hypothesised here
and is generally true for large K . Moreover, we use the same
numerical scheme with the same integration time step to gen-
erate the reference model trajectory as the one used by the
surrogate model. In principle, we should be able to retrieve
the reference model, since the reference is identifiable, mean-
ing that it belongs to the set of all possible surrogate models.

Let us first experiment with the L63 model, using an RK4
integration scheme, with 1t = 0.01 and K = 104 (this cor-
responds to about 91 Lyapunov times). We have Nx = 3 and
Np = 10. We choose δta = δtf = 0.01. A convergence to the
highest possible precision is achieved after about 120 iter-
ations. The cost function value reaches 0 to machine pre-

2We choose the qualifier densely observed instead of fully ob-
served because there is no way to tell from the observations alone
whether the reference model is fully observed.
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Figure 2. Schematic of the three steps of the experiments, with the associated time steps (see main text). The beginning of the forecast
window may or may not coincide with the end of the training window. The lengths of the segments δtr, δta, and δtf are arbitrary in this
schematic.

cision at A?. The estimated A is given by Aa = A?/δta, be-
cause, as mentioned above, the optimised A matrix absorbs
the time step. The accuracy of Aa is measured by the uni-
form norm ‖Aa−Ar‖∞, i.e. the absolute values of the en-
tries of the difference Aa−Ar, where Ar is the matrix of
the flow rate of L63 (including the zero coefficients). We ob-
tain ‖Aa−Ar‖∞ = 8.46×10−18. To compute the RMSE as a
function of the forecast lead time, we average over Ne = 103

runs (each one starting from a difference initial condition).
The RMSE (not shown) starts significantly, diverging from 0
after 16 Lyapunov time units, and reaches a saturation for a
lead time of 23 Lyapunov times.

A similar experiment is carried out with the L96 model,
using an RK4 integration scheme, with 1t = 0.05 and K =
50 (this corresponds to about 4.2 Lyapunov times). We
choose here to implement the locality and homogeneity as-
sumptions (see Sect. 2.2.1 and 2.2.2). The stencil has a width
of 5 (i.e. the local grid points with two points on its left and
two points on its right). We have Nx = 40, Np = 161, and
Na = 18. We choose δta = δtf = 0.05. Through the minimi-
sation, the main coefficients of the L96 model (forcing F ,
advection terms, dissipation) are retrieved with a precision
of a least 8.88× 10−15.

To compute the RMSE as a function of the forecast lead
time, we average over Ne = 103 runs. The RMSE starts sig-
nificantly, diverging from 0 after 12 Lyapunov times, and
reaches a saturation for a lead time of 25 Lyapunov times.

4.3 Inferring the dynamics from dense and noiseless
observations: non-identifiable models

In this second couple of experiments, we consider again a
densely observed reference model with noiseless observa-
tions. The reference model trajectory is generated by the
L96 model (Nx = 40) integrated with the RK4 scheme, with
1t = 0.05 and K = 50.

As opposed to the reference model, in these non-
identifiable model experiments, the surrogate model is based

Figure 3. Average RMSE of the surrogate model (L96 with an RK2
structure) compared to the reference model (L96 with an RK4 inte-
gration scheme) as a function of the forecast lead time (in Lyapunov
time unit) for an increasing number of compositions.

on the RK2 scheme, with Nc compositions. We choose to
implement the locality and homogeneity assumptions, with
a stencil of width 5. We have Np = 161 and Na = 18. We
choose δta = δtf =1t/Nc. In all the cases, the convergence
is reached within a few dozens of iterations. The error on the
coefficients of A (i.e. ‖Aa−Ar‖∞) is about 4×10−2 but with
the dominant contribution from F . The RMSE as a function
of the forecast lead time is computed for Nc = 1,2,3,4,5
and is shown in Fig. 3. The error is reduced as Nc is in-
creased. But the improvement saturates at about Nc = 5.

Figure 4 shows the trajectories of the reference and surro-
gate models starting from the same initial condition, as well
as their difference, as a function of the forecast lead time.
Their divergence becomes significant after 4 Lyapunov times
and saturates after 8 Lyapunov times.
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Figure 4. Density plot of the L96 reference and surrogate model trajectories, as well as their difference trajectory, as a function of the forecast
lead time (in Lyapunov time unit). The observations are noiseless and dense; the model is not identifiable.

Next, the reference model trajectory is generated by the
KS model (Nx = 128) integrated with the ETDRK4 scheme,
with 1t = 0.05 and K = 50 (this corresponds to about 0.25
Lyapunov time). We choose to implement the locality and
homogeneity assumptions, with a stencil of width 9. The
surrogate model is based on the RK4 scheme, with Nc = 2
compositions. Note that in this experiment, the reference
and surrogate models and their integration schemes signif-
icantly differ. We have Np = 769 and Na = 45. We choose
δta =1t/Nc and δtf = 10−3. The forecast time step δtf is
somehow smaller than δta because the KS equations are stiff
and so will the surrogate model be. This emphasises once
again that we have learned about the intrinsic flow rate of the
reference model and not a resolvent thereof. Alternatively,
we could use a more robust integration scheme than RK4
such as ETDRK4 for the forecast.

Figure 5 shows the trajectories of the reference and surro-
gate models starting from the same initial condition, as well
as their difference, as a function of the forecast lead time, for
a stencil of 9. Their divergence becomes significant after 4
Lyapunov times and saturates after 8 Lyapunov times.

To check whether the PDE of the KS model could be re-
trieved in spite of the differences in the method of integra-
tions and representations, we have computed a Taylor expan-
sion of all monomials in the surrogate ODE flow rate up to
order 4 so as to obtain an approximately PDE equivalent.
The coefficients of this PDE (up to order 4 in the expansion)
are displayed in Fig. 6 and compared to the coefficients of
the reference model’s PDE. The match is good and the terms
−x∂αx,−∂2

αx, and−∂4
αx are correctly identified as the dom-

inant ones. Nonetheless, there are three non-negligible co-
efficients for higher-order terms that either might have been

generated by the Taylor expansion or may originate from a
degeneracy among the higher-order operators, or may simply
be identified with a shortcoming of our specific ODE repre-
sentation.

4.4 Inferring the dynamics from partial and noisy
observations

We come back to the L96 model, which is densely observed
but with noisy observations that are generated using an in-
dependently identically distributed normal noise. The surro-
gate model is based on an RK4 scheme Nc = 1 and a stencil
of length 5, which makes the reference model identifiable. In
this case, the outcome theoretically depends on the choice for
rk and Qk , given that Eq. (17) is now used instead of Eq. (18).
For the sake of simplicity, we have chosen them to be of the
scalar forms rk ≡ σ 2

y Iy and Qk ≡ qIx . In these synthetic ex-
periments, σy is supposed to be known, while q is not. We
only have a qualitative view of the potential mismatch be-
tween the reference and the surrogate model. Moreover, a
Gaussian additive noise might not even be the best statisti-
cal model for such error. Nonetheless holding to the above
Gaussian assumptions for model error, the optimal value of
q could be determined using an empirical Bayes approach
based on, for instance, the expectation–maximisation tech-
nique in order to determine the maximum a posteriori of the
conditional density of q (see e.g. Dreano et al., 2017; Pulido
et al., 2018). The use of advanced methods of that sort to es-
timate model error will be considered in future works, while,
in the following, we have chosen values of q that yield near-
to-optimal skill scores (typically q ∈ [10−4,1]σ 2

y ).
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Figure 5. Density plot of the KS reference and surrogate model trajectories, as well as their difference trajectory, as a function of the forecast
lead time (in Lyapunov time unit). The observations are noiseless and dense; the model is not identifiable.

Figure 6. Coefficients of the surrogate PDE model (blue) result-
ing from the expansion of the surrogate ODEs and compared to the
reference PDE’s coefficients (orange).

Moreover, note that we have chosen the relatively small
K = 50. While we expect increasing K to be beneficial, es-
pecially with noisy observations, it would force us to address
issues related to weak constraint 4D-Var optimisation for
long time windows, a topic which is also beyond the scope of
this paper. Preliminary results on this aspect are nonetheless
discussed later in this section.

Figure 7 shows the forecast skill of the surrogate model as
a function of the forecast lead time and for increasing noise
in the observations.

Figure 7. Average RMSE of the surrogate model (L96 with an RK4
structure) compared to the reference model (L96 with an RK4 inte-
gration scheme) as a function of the forecast lead time (in Lyapunov
time unit) for a range of observation error standard deviations σy .

Even though, in this configuration, the model is identifi-
able, the reference value A0 for A may not correspond to a
minimum of the cost function. The cost function might have
several local minima. As a consequence, there is no guaran-
tee, starting from a non-trivial initial value for A, that the
model will be identified. Indeed, as seen in Fig. 7, the fore-
cast skill degrades significantly as the observation error stan-
dard deviation is increased.

This is confirmed by Fig. 8, where the precisions in iden-
tifying the model, measured by either the spectral norm
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Figure 8. Gap between the surrogate (L96 with an RK4 structure)
and the (identifiable) reference dynamics (L96 with an RK4 inte-
gration scheme) as a function of the observation error standard de-
viation σy . Note the use of logarithmic scales.

‖A0−A‖2 or the uniform norm ‖A0−A‖∞, are plotted as
functions of the observation error standard deviation.

Using the same setup, we have also reduced the number of
observations. The observations of grid point values are regu-
larly spaced and shifted by one grid cell at each observation
time step. The initial A in the optimisation remains 0, while
the initial state x0:K is taken as a cubic spline interpolation
of the observations over the whole surrogate model grid.

If the observations are noiseless, the reference model is
easily retrieved to a high precision down to a density of 1 site
over 4. If the observations are noisy, the performance slowly
degrades when the density is decreased down to about 1 site
over 4, below which the minimisation, trapped in a deceiving
local minimum, yields an improper surrogate model.

We would like to point out that in the case of noiseless
observations, the performance depends little on the length of
the training window, beyond a relatively short length, typ-
ically K = 50. However, in the presence of noisy observa-
tions, the overall performance improves with longer K , as
expected since the information content of the observations
linearly increases with the length of the window.

Figure 9 displays the values of the coefficients in A with
respect to the minimisation iteration index for the noiseless
and fully observed case. As expected, 4 coefficients converge
to the value specified by the exact L96 flow rate, while the 14
other coefficients collapse to 0.

Figure 10 shows the same but in the significantly noisy
case where σy = 1 and with a significantly longer window
K = 5000 (about 417 Lyapunov times).

4.5 Inferring reduced dynamics of a multiscale model

In this experiment, we consider the L05III model. With the
locality and the homogeneity assumptions, the scalability is

typically linear with the size of the system, and we actually
consider the 10-fold model where Nx = 360 and Nu = 3600
to demonstrate that no issues were encountered when scal-
ing up the method. The large-scale variable x of the refer-
ence model is noiselessly and fully observed over a short
training window (K = 50, which corresponds to about 0.35
Lyapunov time), i.e. all slow variable values are observed,
whereas the short-scale variable u is not observed. The surro-
gate model is based on the RK4 scheme andNc = 2 composi-
tions. We choose to implement the locality and homogeneity
assumptions, with a stencil of width 5. We have Np = 161
and Na = 18. We choose δta = δtf =1t/Nc.

Figure 11 shows the trajectories of the reference and surro-
gate models starting from the same initial condition, as well
as their difference, as a function of time.

The emergence of error, i.e. the divergence from the ref-
erence, appears as long darker stripes on the density plot
of the difference (close to zero difference values appear as
white or light colour). We argue that these stripes result from
the emergence of sub-scale perturbations that are not prop-
erly represented by the surrogate model. Reciprocally there
are long-lasting stripes of low error not yet impacted by
sub-scale perturbations. As expected, and similarly to the
L96 model, the perturbations are transported eastward, as
shown by the upward tilt of the stripes in Fig. 11. Clearly,
in this case, a flow rate of the form Eq. (2) could be in-
sufficient. Adding a stochastic parametrisation with parame-
ters additionally inferred might offer a solution, as in Pulido
et al. (2018). Because of this mixed performance, the RMSE
slowly degrades (compared to the other experiments reported
so far) with the increase in the forecast lead time (not shown).

5 Conclusions

We have proposed to infer the dynamics of a reference model
from its observation using Bayesian data assimilation, which
is a new and original scope for data assimilation. Over a
given training time window, the control variables are the state
trajectory and the coefficients of an ODE representation for
the surrogate model. We have chosen the surrogate model to
be the composition of an explicit integration scheme (Runge–
Kutta typically) applied to this ODE representation. Time
invariance, space homogeneity, and locality of the dynam-
ics can be enforced, making the method suitable for high-
dimensional systems. The cost function of the data assimila-
tion problem is minimised using the adjoint of the surrogate
resolvent which is explicitly derived. Analogies between the
surrogate resolvent and a deep neural network have been dis-
cussed as well as the impact of stability issues of the refer-
ence and surrogate dynamics.

The method has been applied to densely noiseless ob-
served systems with identifiable reference models yielding a
perfect reconstruction close to machine precision (L63 and
L96 models). It has also been applied to densely or par-
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Figure 9. L96 is the reference model, which is fully observed without noise: plot of the Na = 18 coefficients of the surrogate model as a
function of the minimisation iteration number. The coefficient of the forcing (F ) is in green, the coefficients of the convective terms are in
cyan, and the dampening coefficient is in magenta.

Figure 10. L96 is the reference model, which is fully observed with observation error standard deviation σy = 1: plot of the Na = 18
coefficients of the surrogate model as a function of the minimisation iteration number. Note that the index axis is in logarithmic scale. The
coefficient of the forcing (F ) is in green, the coefficients of the convective terms are in cyan, and the dampening coefficient is in magenta.

Figure 11. Density plot of the L05III reference and surrogate model trajectories, as well as their difference trajectory, as a function of the
forecast lead time (in Lyapunov time unit). Panel (d) shows a zoom of the difference between times 4 and 5.
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tially observed, identifiable or non-identifiable models with
or without noise in the observations (L96 and KS models).
For moderate noise and sufficiently dense observation, the
method is successful in the sense that the forecast is accu-
rate beyond several Lyapunov times. The method has also
been used as a way to infer a reduced model for a multi-
scale observed system (L05-III model). The reduced model
was successful in emulating slow dynamics of the reference
model, but could not properly account for the impact of the
fast unresolved scale dynamics on the slow ones. A subgrid
parametrisation would be required or would have to be in-
ferred.

Two potential obstacles have been left aside on purpose
but should later be addressed. First, the model error statistics
have not been estimated. This could be achieved using for in-
stance an empirical Bayesian analysis built on an ensemble-
based stochastic expectation maximisation technique. This
is an especially interesting problem since the potential dis-
crepancy between the reference and the surrogate dynam-
ics is in general non-trivial. Second, we have used relatively
short training time windows. Numerical efficient training on
longer windows will likely require use of advanced weak
constraint variational optimisation techniques.

In this paper, only autonomous dynamics have been con-
sidered. We could at least partially extend the method to
non-autonomous systems by keeping a static part for the
pure dynamics and consider time-dependent forcing fields.
We have not numerically explored non-homogeneous dy-
namics, but we have shown how to learn from them using
non-homogeneous local representations.

A promising yet challenging path would be to consider
implicit or semi-implicit schemes following for instance the
idea in Chen et al. (2018). This idea is known in geophysical
data assimilation as the continuous adjoint (see e.g. Bocquet,
2012). This would considerably strengthen the stability of
the training and forecast steps at the cost of more intricate
mathematical developments.

If observations keep coming after the training time win-
dow, then one can perform data assimilation using the ODE
surrogate model of the reference model. This data assimila-
tion scheme could only focus on state estimation or it could
continue to update the ODE surrogate model for the forecast.

Data availability. No datasets were used in this article.
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Appendix A: Parametrisation of φA for local
representations defined over a circle

In this Appendix, we show how to parametrise φA assuming
locality of the representation, in the case where it is defined
over a periodic one-dimensional domain, i.e. a circle. It is of
the generic form

[A · r]n =
Np−1∑
p=0

An,π(n,p)rp, (A1)

where π(n,p) is an integer such that 0≤ π(n,p) < Na. We
can treat the bias, linear, and bilinear monomials separately
into sectors, 0, 1, and 2, respectively. Let 0≤ ai ≤Na− 1
be the indices which span the columns of A for each of the
three sectors i and 0≤ pi ≤Np − 1 the indices which span
the entries of r for each of the three sectors i. Then, Eq. (A1)
can be more explicitly written as

[A · r]n =An,a0(0)rp0(0)+

2L∑
l=0

An,a1(n,l)rp1(n,l)

+

L∑
l=0

2L−l∑
m=0

An,a2(n,l,m)rp2(n,l,m), (A2)

where the dummy index l for the linear terms browses the
stencil, and the dummy indices l,m for the bilinear mono-
mials browse the stencil, in the same way as we did in
Sect. 2.2.1 to enumerate them. By enumeration, we find the
following.

– For the bias sector, we have p0(0)= 0 and a0(0)= 0.

– For the linear sector, we have a1(n, l)= 1+ l and
p1(n, l)= 1+ [n+ l−L], where [n] means the index
in [0,Nx − 1] congruent to n modulo Nx , in order to
respect the periodicity of the domain.

– Finally, for the bilinear sector, we have a2(n, l,m)= 1+
2L+1+ 1

2 l(4L− l+1)+m and p2(n, l,m)= 1+Nx+
[n−L+m](1+L)+ l.

We observe that these indices a0(0),a1(n, l), and
a2(n, l,m) do not depend on the site index n. They only in-
dicate a relative position with respect to n. Hence, if homo-
geneity is additionally assumed, An,a0 ,An,a1 , and An,a2 do
not depend on n anymore and A becomes a vector.

Appendix B: Computations of the gradients with
respect to A and x0:K

B1 Differentiation of the RK schemes

It will be useful in the following to consider the variation of
each ki , defined by Eq. (12b), with respect to either A or x:

δki = δφA,i +h
i−1∑
j=0

αi,j
(
∇xiφA,i

)
δkj , (B1)

where φA,i is φA evaluated at xRK
i ≡ x+h

∑i−1
j=0αi,jkj and

∇xiφA,i is the tangent linear operator with respect to x of φA
evaluated at xRK

i . Equation (B1) can be written compactly in
the form

Gδκ = δϕ, (B2)

where G is the matrix of size (NRKNx)× (NRKNx) defined
by its Nx ×Nx blocks [G]i,j = Ix −hαi,j∇xiφA,i , κ is the
vector of size NRKNx which results from the stacking of the
ki ∈ RNx for 0≤ i < NRK, ϕ is the vector of size NRKNx
which results from the stacking of the φA,i for 0≤ i < NRK,
and Ix ∈ RNx is the identity matrix. The important point is
that G is a lower triangular matrix and describes an iterative
construction of the ki . Moreover, the diagonal entries of G
are 1 by construction so that G is invertible and

δκ =G−1δϕ. (B3)

This will be used to compute the variations of fA(x) via
Eq. (12a).

B2 Integration step

We first consider the situation when the observation inter-
val corresponds to one integration time step of the surro-
gate model, i.e. Nk

c = 1: x′ = FA(x)= fA(x) with x ≡ xk .
As a result, the time index k can be omitted here. We will
later consider the composition of several integration schemes
(Nc ≥ 2). Equation (12a) is written again but as

fA(x)= x+bκ, (B4)

where b= β⊗Ix is the matrix of a sizeNx×(NRKNx) tensor
product of the vector β defined by βT

= (β0, . . .,βNRK−1),
i.e. the coefficients of the RK scheme as defined in Eq. (12a),
with the state space identity matrix, and where κ is the vector
of size NRKNx defined after Eq. (B2). Looking first at the
gradient with respect to the state variable, and using Eq. (B3),
we have

∇xfA =∇xx+b∇xκ = Ix +bG−1
∇xϕ, (B5)

which yields the adjoint operator

(∇xfA)
T
= Ix + (∇xϕ)

TG−TbT. (B6)

Let us consider an arbitrary vector d ∈ RNx ; we have

(∇xfA)
Td = d + (∇xϕ)

TG−TbTd. (B7)

To avoid computing G−T explicitly, let us define the vector
z ∈ RNxNRK such that

GTz= bTd. (B8)

Because GT is upper triangular with diagonal entries of value
1, z is the solution of a linear system easily solvable iter-
atively, which stands as an adjoint/dual to the RK iterative
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construction. Hence, we finally obtain a formula and algo-
rithm to evaluate

(∇xfA)
Td = d + (∇xϕ)

Tz, (B9)

which is key to computing Eq. (19). Indeed, Eq. (19) now
reads as

∇x0J =−
(
∇x0H0

)T
r−1

0 δ0−Q−1
1 11−

(
∇x0ϕ

)T
z0

−∇x0 lnp(x0|A), (B10a)

∇xkJ =−
(
∇xkHk

)T
r−1
k δk −Q−1

k+11k+1−
(
∇xkϕ

)T
zk

+Q−1
k 1k, for 1≤ k ≤K − 1,

(B10b)

∇xKJ =−
(
∇xKHK

)T
r−1
K δK +Q−1

K 1K , (B10c)

where zk is the iterative solution of the system GT
k zk =

bTQ−1
k+11k+1 for 0≤ k ≤K − 1.

Second, let us look at the gradient of J (A,x0:K) with re-
spect to A. From Eqs. (B4) and (B3), and now considering
variations with respect to A, we obtain

∇AfA =∇Ax+b∇Aκ = bG−1
∇Aϕ, (B11)

which yields, using z as defined by Eq. (B8),

dT (∇AfA)= d
TbG−1 (∇Aϕ)= z

T (∇Aϕ) . (B12)

For each 0≤ i < NRK, let us introduce r i = r(xi) ∈ RNp ,
and let us denote zi ∈ RNx the subvector of z for the ith block
of the Runge–Kutta scheme. Then we have, for 0≤ n < Nx
and 0≤ p < Np,

[
zT (∇Aϕ)

]
n,p
=

∑Nx−1
m=0

∑NRK−1
i=0

[zi ]m
∂

∂An,p

∑Np−1
q=0

Am,q [r i ]q

=

∑Nx−1
m=0

∑NRK−1
i=0

∑Np−1
q=0
[zi ]mδm,nδp,q [r i ]q

=

∑NRK−1
i=0

[zi ]n[r i ]p =
∑NRK−1

i=0
zir

T
i .

(B13)

This is key to efficiently computing Eq. (20), which now
reads as

∇AJ =−
K∑
k=1

NRK−1∑
i=0

zk,ir
T
k,i −∇A lnp(A), (B14)

where zk is the solution of GT
k zk = bTQ−1

k δk . The index k of
Gk indicates that the operators defined in the entries of G are
evaluated at xk .

B3 Composition of integration steps

We now consider a resolvent which is the composition of

Nk
c ≥ 2 integration steps over [tk, tk+1]: x′ = fN

k
c

A (x), where
x is an alias to xk . Let us first look at the gradient with re-
spect to the state variable. Within the scope of this section,

we define x0 ≡ x and for 1≤ l ≤Nk
c : xl ≡ fA(xl−1). Hence,

x′ = xNc . We also define ∇xl fA as the tangent linear operator
of fA at xl . By the Leibniz rule, we obtain(
∇xFkA

)T
= (∇x0 fA)

T(∇x1 fA)
T
· · ·(∇xNc−1 fA)

T. (B15)

We can now apply Eq. (B9) to each individual integration
step and obtain for any d ∈ RNx

(∇xl fA)
Td = d +

(
∇xlϕ

)T
zl, (B16)

where zl is the solution of

GT
l zl = bTd. (B17)

Hence, to compute
(
∇xFkA

)T
· d , we define x̃Nc = d and for

Nc− 1≥ l ≥ 0: x̃l = (∇xl fA)
Tx̃l+1. This finally reads as

x̃l = x̃l+1+
(
∇xlϕl

)T
zl, (B18)

for Nc− 1≥ l ≥ 0, where zl is the solution of

GT
l zl = bTx̃l+1. (B19)

To compute the key terms in the gradients Eq. (19), d must
be chosen to be Q−1

k+11k+1 where 0≤ k ≤K − 1 and(
∇xFkA

)T
Q−1
k+11k+1 = x̃0. (B20)

Second, we look at the gradient with respect to A. In this
case, the application of the Leibniz rule yields

∇AFkA =
Nc−1∑
l=0

(∇xNc−1 fA)· · ·(∇xl+1 fA)∇AfA(xl)

=

Nc−1∑
l=0

(
∇xl+1 fNc−l−1

A

)
∇AfA(xl), (B21)

where ∇xl+1 fNc−l−1
A = (∇xNc−1 fA)· · ·(∇xl+1 fA). But

∇AfA(xl), which focuses on a single integration step,
is given by Eq. (B11),

∇AfA(xl)= bG−1
l ∇Aϕl (B22)

and from Eq. (B12),

dT
∇AfA(xl)= z

T
l

(
∇Aϕl

)
. (B23)

As a result, we obtain

∇AJ =−
Nc−1∑
l=0

K∑
k=1

NRK−1∑
i=0

zk,l,ir
T
k,l,i −∇A lnp(A), (B24)

where zk,l is the solution of

GT
k,lzk,l = bT

(
∇xl+1 fNc−l−1

A

)T
Q−1
k δk. (B25)
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All of these results, Eqs. (B10), (B14), (B20), and (B24),
allow us to efficiently compute the gradients of the cost func-
tion J (A,x0:K) with respect to both A and x0:K . Note, how-
ever, that they have been derived under the simplifying as-
sumption that φA is given by Eq. (2) with a traditional matrix
multiplication between A and r(x), but not by the compact
Eq. (8). When relying on homogeneity and/or locality, the
calculation of the gradient with respect to A follows the prin-
ciple described above but requires further adaptations, which
can be derived using Eq. (A2), with the asset of strongly re-
ducing the computational burden.

Appendix C: Adjoint differentiation with PyTorch and
TensorFlow

As an alternative to the explicit computation of the gradi-
ents of Eq. (17) and the associated adjoint models, we have
used PyTorch and TensorFlow as automatic differentiation
tools. Only the cost function code needs to be implemented.
We made a few tests of the experiments of Sect. 4 that
showed that the fastest code is a C++ implementation using
the explicit gradients, followed by an implementation using
Python/Numpy/Numba using the explicit gradients, followed
by a much slower implementation with TensorFlow (graph
execution), followed by an implementation with TensorFlow
(eager execution) and finally with PyTorch. Our experiments
made use of a multi-core CPU and/or a GPU. This purely
qualitative ranking is not surprising since (i) PyTorch and
TensorFlow excel in tensor algebra operations which are not
massively used in the way we built our cost function with rel-
atively few but significant parameters, and (ii) the time spent
in the development of each approach scales with their speed.
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