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The lower limb of the Atlantic overturning circulation is resupplied by the sinking of 

dense Antarctic Bottom Water (AABW) that forms via intense air-sea-ice interactions 

adjacent to Antarctica, especially in the Weddell Sea1. In the last three decades, 

AABW has warmed, freshened and declined in volume across the Atlantic Ocean 

and elsewhere2-7, suggesting an on-going major reorganization of oceanic 

overturning8,9. However, the future contributions of AABW to the Atlantic overturning 

circulation are unclear. Here, using observations of AABW in the Scotia Sea, the 

most direct pathway from the Weddell Sea to the Atlantic Ocean, we show a recent 

cessation in the decline of the AABW supply to the Atlantic overturning circulation. 

The strongest decline was observed in the volume of the densest layers in the 

AABW throughflow from the early 1990s to 2014; since then, it has stabilised and 

partially recovered. We link these changes to variability in the densest classes of 

abyssal waters upstream. Our findings indicate that the previously observed decline 

in the supply of dense water to the Atlantic Ocean abyss may be stabilizing or 

reversing, and thus call for a reassessment of Antarctic influences on overturning 

circulation, sea level, planetary-scale heat distribution, and global climate2,3,8. 

 

Antarctic Bottom Water (AABW) occupies more than 35% of the volume of the global 

ocean10, and the sinking of this dense water as it is formed around Antarctica plays a 

key role in driving the lower limb of the global overturning circulation11. The recently 

ventilated nature of AABW means that it can be influenced strongly by changes in 

surface forcing, with several landmark studies observing a poleward-intensified 

warming3 and freshening5-7 of AABW. These trends have been attributed to 

anthropogenically-driven increases in glacial meltwater discharge and shifts in wind 

patterns reducing dense water formation rates and AABW export from Antarctic 
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continental shelves12. However, due to the inaccessibility of these source regions, 

our ability to monitor such changes is mostly limited to repeat occupations of a few 

hydrographic sections situated mainly farther north. 

 

Here we use data from three of the most comprehensively-sampled sections in the 

Southern Ocean, located within the Weddell and Scotia Seas: SR1b, which spans 

eastern Drake Passage south of the Falkland Islands; SR4, which crosses the 

Weddell Sea from Cape Norvegia on the coast of Queen Maud Land to Joinville 

Island off the tip of the Antarctic Peninsula; and A23, which extends from the 

northern Weddell Sea to South Georgia (Figure 1). Since 1989 they have been 

partially or fully occupied 26, 9, and 12 times, respectively, placing them among the 

most useful sections for determining long-term changes in AABW properties and 

transports. The A23 section is particularly well-positioned to capture changes in the 

equatorward transport of AABW from its formation regions upstream in the Weddell 

Sea, since it spans the most direct export route via the Scotia Sea and is sufficiently 

far downstream from the AABW source regions that aliasing of seasonal water mass 

changes is minimized13. Following Meredith et al.13 and Heywood et al.14 we define 

the densest class of the AABW that is exported from the Weddell Sea as Lower 

Weddell Sea Deep Water (LWSDW), with a neutral density15 (gn) between 28.31 and 

28.40 kg m-3. Orkney Passage, a 3650-m deep gap in the South Scotia Ridge (SSR), 

is the main export route of WSDW from the Weddell Sea to the Scotia Sea, 

accounting for almost all of the northward transport of LWSDW over the SSR, and 

around one-quarter of all the transport of dense bottom waters from Antarctica to 

lower latitudes16,17. 
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Figure 2 shows the area of LWSDW on the part of A23 that spans the Scotia Sea 

north of the SSR (at approx. 60° S), and on the SR1b section. Computation of these 

areas is described in more detail in the Methods section. The area occupied by 

LWSDW on A23 steadily and significantly declined by almost two thirds from 1995 to 

2014, in accord with previous observations of dwindling AABW volumes in the South 

Atlantic2 and farther north4,9. Subsequently, from 2014 to 2018, LWSDW volume 

recovered to near its 2005 levels, remaining stable from 2016 to 2018. 

 

The LWSDW area on SR1b (Figure 2) also exhibited an overall downward trend from 

1993-2014, and an increase in 2014 and 2015, but the area of LWSDW on this 

section is smaller, and its relative variability much larger than on A23, thus 

hampering determination of whether the trend has reversed or flattened at SR1b. 

Except in 2014 and 2015, very little LWSDW has been observed on this section 

since 2009. The SR1b section is located to the west of the major routes of LWSDW 

export through the Scotia Sea, and its interannual variability is related to other 

factors (including the movement of fronts within Drake Passage18 and changes in the 

small amount of Weddell Sea export that occurs west of Orkney Passage19) that 

have weak or no influence on A23. We therefore conclude that the interannual 

variability at SR1b does not reflect changes in the water mass properties within the 

central Scotia Sea, and that although the SR1b record cannot unambiguously 

confirm the recovery and stabilisation observed on A23, neither does it contradict it. 

 

The decrease in volume of LWSDW in the Scotia Sea to 2014 and its pronounced 

recovery thereafter could be caused by (1) changes in the rate of supply from its 

source regions upstream in the Weddell Sea; (2) changes in its properties, for 
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example a reduction in density caused by warming or freshening with a consequent 

apparent decrease in the downstream observed fraction of the water mass; or (3) 

changes in the rate of its outflow from the Scotia Sea to lower-latitude regions. Our 

contention, discussed below and based on consideration of the changing water mass 

structure upstream in the Weddell Sea, is that cause (1) is the principal contributor, 

and that this variability is driven by changes in the volume of denser water masses 

within the Weddell Sea.  

 

We demonstrate upstream water mass structure change using hydrographic data 

from the western part of the WOCE SR4 section, west of 30° W, and the part of the 

A23 section south of South Scotia Ridge and north of 64° S; these regions are 

marked in purple in Figure 1. The western part of the SR4 section spans the flow of 

deep water from the Weddell Sea toward the passages where it can overflow the 

SSR and enter the Scotia Sea. The Weddell A23 segment is downstream of the flow 

into Orkney Passage, but we postulate that it is representative of conditions in the 

northern and northwestern Weddell Sea as evidenced by the similarity in its 

variability with that of SR4. The upper boundary of LWSDW (gn = 28.31 kg m-3) in the 

Weddell Sea deepened progressively between the early 1990s and 2013 on both 

SR4 and the southern part of A23 (Supplementary Information Figure 1); however, 

there has been no discernible change in the area of LWSDW on either section 

(Figure 3), with the lowering of the LWSDW upper boundary entirely caused by a 

loss in area of the underlying WSBW (gn > 28.40 kg m-3), as observed on this section 

by Fahrbach et al.20 and Purkey and Johnson4. The resulting deepening of the 

overlying LWSDW isopycnals within the Weddell Sea is consistent with a reduction 
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in the export of LWSDW to the Scotia Sea and a reduction in the amount of LWSDW 

observed there, since a smaller depth range of the LWSDW density class will be 

able to clear the crest of Orkney Passage. 

 

Similarly, the recent period of marked LWSDW recovery on A23 in the Scotia Sea 

coincided with recovery of WSBW on A23 in the Weddell Sea. While the SR4 record 

does not span this period, data from oceanographic moorings that have been 

deployed in Orkney Passage (Figure 1) since 2004, with full coverage across the 

passage since 2011, lend support to our proposition that the observed recovery of 

LWSDW is also due to changes in upstream flow. The northward LWSDW volume 

transport through Orkney Passage from 2011 to 2017 is shown in Figure 4. This time 

series captures the period of the increasing LWSDW volume in the Scotia Sea. 

Transport of LWSDW in 2013-2015 was approximately 0.3 Sv (106 m3 s-1) larger 

than the long-term mean of 2.4 Sv; this difference is significant even in the context of 

the large short-term variability that is present. The effect of a transport increase of 

0.3 Sv over two years would be an increase of between 8.1 ± 1.7×106 m2 and 2.3 ± 

0.5×107 m2 in the area of LWSDW on the A23 section (see Methods section). The 

upper bound of this estimate is comparable to the observed increase in A23 LWSDW 

area from 2014 to 2016, indicating that recovering Scotia Sea LWSDW volumes after 

2014 may be plausibly attributed to increased LWSDW transport through Orkney 

Passage. The large decrease in transport in 2015-2016, a period during which A23 

LWSDW area remained stable, might appear contradictory; however, this likely 

reflects longer time scales for sinks (outflow or upward mixing) than for sources of 

LWSDW within the Scotia Sea, resulting in a lag before a decrease would be 
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observed. Meredith et al.13 estimate an approximately 3-year residence time for 

LWSDW in the Scotia Sea.  

 

We discuss the second and third mechanisms, and our rationales for discounting 

them as causes of the LWSDW changes on A23, more fully in the Supplementary 

Discussion in the Methods section. In summary, we find that density impacts of the 

observed freshening and cooling (possibility 2) cannot account for the changes in 

LWSDW area observed at A23 (red, green and black bars in Figure 2 and 

Supplementary Information Figure 2), and that the variation in eddy-driven mixing 

that would be needed to drive a marked increase in the rate of removal of LWSDW 

from the Scotia Sea21,22 (possibility 3) is not suggested by observations 

(Supplementary Information Figure 3). 

 

A natural question that follows from our inference of a reinvigorated LWSDW export 

from the Weddell Sea linked to WSBW recovery is: what has driven this change? 

Much recent work has focused on the role of winds over the Weddell Gyre as a 

cause of export variability, either increasing the baroclinicity of the gyre13, or acting 

more locally on its northern boundary current to modify transports and isopycnal 

depths23-26. However, we do not see any clear signal in wind stress or its curl over 

either the Weddell Gyre or SSR that may explain the long-term LWSDW decline prior 

to 2014, nor a shift that might be associated with its recovery since then 

(Supplementary Information Figure 4). Conceptual arguments presented by Meredith 

et al.13 and Coles et al.27 suggest that variations in the strength of the Weddell Gyre, 

forced by wind stress, may affect the inclination of isopycnals across the gyre, in turn 

controlling the range of water masses exported northward, and recent work has 
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demonstrated that the cyclonicity of the Weddell Gyre is indeed sensitive to changes 

in wind stress curl28. The role of barotropic dynamics and bottom Ekman layers has 

also been investigated23. Here we suggest, however, that the volume of underlying, 

denser, water masses has varied significantly, shifting the whole overlying water 

mass structure vertically, thus raising the level of the upper boundary of LWSDW 

and allowing more LWSDW to be exported north across South Scotia Ridge. Multiple 

processes may in fact be occurring concurrently, but it appears that changes in 

WSBW volume presently dominate the water mass structure and LWSDW export, at 

least on multi-annual time scales. 

 

Our data suggest that perturbations to the production of WSBW at the periphery of 

the Weddell Sea could be primarily responsible for large-scale variations in deep-

water volume that are documented downstream in the Scotia Sea and beyond in the 

Atlantic Ocean. The time series necessary to fully diagnose such changes in WSBW 

production do not exist, but observed climatic shifts in sea ice concentration and 

ocean salinity near formation regions indicate this type of perturbation to be 

eminently plausible29-32. Changes in the properties of water masses advected into 

the Weddell Sea from the east could also contribute to some of these changes33. 

Enhanced monitoring of the formation regions of WSBW in the southern and western 

Weddell Sea could help constrain the processes responsible, if combined with 

concurrent monitoring of LWSDW exports as shown in this manuscript. 

 

There are many important consequences to our observation of a stabilised and 

potentially rejuvenated export of dense waters from the Weddell Sea toward the 

Atlantic Ocean. The previously-observed warming of AABW along much of the 
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length of the Atlantic has been shown to have significant implications for the 

planetary-scale heat budget and the thermal expansion component of sea level rise3, 

as well as for cold-adapted benthic fauna vulnerable to even small temperature 

changes34. If, as was hypothesized, this warming was caused by a dwindling export 

of dense waters from high southern latitudes, our observation here of a 

reinvigoration of this export likely portends a cooling of the Atlantic abyssal waters in 

coming years. It should also be recalled that AABW circulates within the Atlantic as 

the lowest component of the AMOC; modelling studies have illustrated how changes 

in AABW export can influence not just the lower limb, but the overall AMOC 

magnitude8. Consequently, the reinvigoration demonstrated here may have 

implications for the strength of the overturning circulation and thus for ocean heat 

and carbon sequestration. Finally, this is the first observational study to demonstrate 

a clear multi-annual reversal in AABW trends. Other studies of AABW around 

Antarctica2,3,5,6 have been limited by data availability to seeking mainly monotonic 

changes in volume or properties on multi-annual time scales. The clearly-resolved 

decline and recovery in LWSDW properties at the Scotia Sea section of A23 

demonstrates both the value of frequent occupations of key hydrographic sections, 

and the need for sustained observations of bottom water source regions in order to 

understand the drivers of such large-scale changes and their global implications.  
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Figures 

 

 

Figure 1. Pathways of Antarctic Bottom Water (AABW) from the Weddell Sea into 

the World Ocean. Panel a: map of the Scotia Sea, with the South and North Scotia 

Ridges marked by black lines. The SR1b section and the part of the A23 section in 

the Scotia Sea are marked in red. The parts of the A23 and SR4 sections in the 

Weddell Sea used here are marked in purple. Yellow arrows show schematic 

pathways of AABW, following refs. 14, 35, and 36. The bathymetry data are from the 

GEBCO_2014 Grid, version 20150318. Panel b: map showing the global extent 

(vertically integrated fraction) of AABW, based on the methods of Johnson10 using 

updated data from WOA1337-40, on a Lambert azimuthal equal-area projection. The 

area of panel a is outlined in blue. 
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Figure 2. Area of LWSDW (gn > 28.31 kg m-3) from hydrographic sections. Panel a 

shows data from the A23 section in the Scotia Sea panel b is from the SR1b section. 

The blue bars are calculated from the measured properties; the red bars are 

compensated for the temperature anomalies on the gn = 28.31 kg m-3 surface (as 

shown in Supplementary Information Figure 2 and discussed in more detail in 

Methods); the green bars are compensated for salinity anomalies; and the black bars 

are compensated for both temperature and salinity anomalies. The method used to 

compute the confidence limits (light blue bars) is described in the Methods section. 
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Figure 3. Normalised areas of water masses on hydrographic sections. Panel a is 

for WSBW (gn > 28.40 kg m-3), panel b LWSDW (28.31< gn <28.40 kg m-3), and panel 

c WSDW (28.26 < gn < 28.40 kg m-3). Sections used are the A23 section in the 

Scotia Sea (blue circles; red section in Figure 1) and the A23 and SR4 sections in 

the Weddell Sea (red and orange crosses; purple sections in Figure 1). The values 

have been normalised such that the 2013 values are 1. 
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Figure 4. Northward transport of LWSDW through Orkney Passage. In panel a, the 

light red line indicates daily averages of the LWSDW (gn > 28.31 kg m-3) transport 

through the mooring array, the thick red line is the one-month running mean, and the 

blue bars are quarterly averages. Vertical black lines indicate mooring cruises to the 

area; the annual (1 Apr-31 Mar) mean LWSDW transport through the array is 

indicated at the bottom of the graph. Panel b shows the mean current across (normal 

to) the section, with the location of the six moorings and the instruments deployed in 

2013-2015 indicated. The dashed line shows the mean extent of LWSDW on the 

section.  
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Methods 

 

CTD data processing  

For a detailed analysis of the CTD data errors on SR1b, see Jullion et al.12. The 

salinity errors on A23 are of comparable magnitude and those at SR4 have been 

estimated to be lower20, but errors were computed here using the more conservative 

SR1b and A23 values. Salinities on all three sections have been corrected for 

standard seawater batch-to-batch offsets (Kawano et al.41, with recent additions from 

H. Uchida, personal communication, 2015 and 2018), as per Firing et al.18. 

 

To calculate the water mass areas, station positions are projected onto a piecewise 

linear section in Mercator projection; the location of each section was chosen based 

on the initial occupation of each section; most of the coordinates initially were 

chosen on rhumb lines. The horizontal (distance) coordinate is calculated by finding 

the position along this line that minimizes the distance normal to the line. Neutral 

densities (calculated using the gamma_n Fortran routines of Jackett and 

McDougall15, interfaced with Matlab) are linearly interpolated (horizontally and 

vertically) onto a grid with a horizontal resolution of 1 km and a vertical resolution of 

2 m, with profile data extrapolated in the vertical (using the first/last measured value) 

to the surface or bottom if necessary. A depth mask is then applied, based on Smith 

and Sandwell42 (version 16.1, Dec. 2013). The number of grid cells that fall within 

each density range (and latitude/longitude range, for A23 and SR4, respectively) is 

then summed and multiplied by the grid cell area to obtain the water mass area. 
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The error bars in Figure 2 are calculated to take into account both the accuracy of 

the neutral density calculation itself (as described in appendix B of Jackett and 

McDougall15), the underlying accuracy of the temperature and salinity 

measurements, and the errors arising from the variable station spacing. LWSDW 

area perturbations are calculated corresponding to salinity offsets of ±0.002 and 

temperature offsets of ±0.001°C, along with the lower and upper error ranges of 

neutral density calculated by the gamma_n software from each section. The resulting 

ranges in LWSDW areas from salinity and neutral density are of the same 

magnitude; however, within the LWSDW layer, the neutral density error range is 

skewed toward lower values, while the salinity and temperature are approximately 

symmetric around zero. This results in a bias toward lower LWSDW area estimates. 

The errors resulting from varying station spacing were estimated by subsampling the 

1/6° Southern Ocean State Estimate43 (SOSE) to match the station locations from 

each occupation of a section. The difference between the LWSDW area based on 

this subset and the area computed using the full model grid is calculated for each 

five-day average from the six year SOSE run (2005-2010; iteration 100); the 5th and 

95th percentiles of these differences are added to the errors from neutral density, 

salinity, and temperature described above. The largest errors from station spacing 

correspond to the occupations of the sections with the lowest spatial resolution (e.g. 

the 2005 and the first 2014 occupation of A23), and cause a bias toward higher 

values, as the set of stations on those sections tend to under-sample the denser 

water masses. The effect of salinity and neutral density errors is largest on the 

sections with the highest LWSDW areas; these are generally the dominant sources 

of error (by a factor of 5), except for the two coarser sections, where the resolution 

error is slightly larger. Errors resulting from temperature variations are an order of 
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magnitude smaller, owing largely to the reduced sensitivity of density to temperature 

at high latitudes (in cold temperatures). SOSE has no LWSDW on SR1b; instead the 

area of Upper WSDW (UWSDW), scaled by the average observed ratio of LWSDW 

to UWSDW areas on the section, was used. 

 

Moored current meter transports 

Transports of LWSDW through Orkney Passage were calculated by linearly 

interpolating the mooring temperatures, salinities, and currents perpendicular to the 

direction of the mooring array onto a grid with a horizontal resolution of approx. 350 

m and a vertical resolution of 8 m. For instruments measuring only temperature, 

salinities were estimated using a linear temperature-salinity relationship obtained 

from the remaining instruments on that particular mooring. Neutral density was 

calculated from the gridded data, and velocities were integrated over the area with 

neutral densities matching the criteria for LWSDW. 

 

To estimate the effect of an increase in Orkney Passage transport on the A23 

LWSDW area, the 2013-2015 transport anomaly of 0.3 Sv was assumed to uniformly 

raise the gn = 28.31 kg m-3 surface across the Scotia Sea. The areal extent of this 

water mass has been estimated to be 5.85×1011 m2 (World Ocean Atlas 201337,38 

average between 1955-2012) or 7×1011 m2 (1990s, Heywood et al.14), with a 

tendency towards lower extent in later years. The observed increase of 0.3 Sv of 

inflow to the Scotia Sea would result in a 27-76 m rise in the height of the bounding 

isopycnal over two years. Assuming that LWSDW covers a meridional extent of 300 

± 64 km on the Scotia Sea part of the A23 section, this translates into an increase in 

the LWSDW area of 8.1 ± 1.7×106 m2 to 2.3 ± 0.5×107 m2. 
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Surface eddy kinetic energy  

Following Sheen et al.22, we calculate the surface kinetic energy anomaly, KEanom, as 

a proxy for surface eddy kinetic energy. KEanom was calculated from daily 

Ssalto/Duacs altimetry mapped surface geostrophic velocity as 𝐾𝐸#$%& =

[(𝑢 − 𝑢,). + (𝑣 − �̅�).]/2, where u and v are the zonal and meridional components of 

the surface geostrophic velocity anomaly, respectively, and the overbar represents 

the temporal mean since the start of December 1993 (~23-year altimetric time 

series). The time series of average KEanom between 54-62° S and 30-50° W 

(Supplementary Information Figure 3), were low-pass filtered using a 6th-order 

Butterworth filter with a cut-off frequency of 45 days. This 45-day timescale was 

chosen because Sheen et al.22 find surface KEanom is related to abyssal turbulence 

on time periods of 1-3 months, typical of the eddy field. 

 

The two-satellite merged product is based on only two missions at any given time: 

Jason-2/AltiKa or Jason-2/Cryosat-2 or Jason-2/Envisat or Jason-1/Envisat or 

Topex/Poseidon/ERS, with the same groundtrack, and provides a stable sampling 

pattern. Because the all-satellite merged product uses all missions available at a 

given time, the time series produced is not homogeneous and hence is inappropriate 

for determining long-term changes; consequently, we use the homogeneous two-

satellite product here. 

 

Wind stress and wind stress curl  

The wind stress and wind stress curl over the Weddell Gyre and South Scotia Ridge 

plotted in Supplementary Information Figure 4 were calculated using the ERA-Interim 
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reanalysis product44 monthly-mean wind stress between 1979-2017, and were 

averaged over the areas between 60-0° W, 62-70° S and 60-20° W, 60-65° S for the 

Weddell Gyre and SSR, respectively.  

 

Supplementary discussion 

Here we discuss in more detail the other candidate mechanisms considered as 

potential contributors to the LWSDW changes seen on the A23 section.  

 

The relatively infrequent sampling on A23 prior to 2010, combined with the relatively 

short residence time of LWSDW in the Scotia Sea, means that the possibility of 

aliasing the interannual variability during this period of decline cannot be excluded 

completely. However, the intervals between section occupations since 2010 are 

shorter than the residence time scale for this water mass, O(2.5 years)14, and thus 

we can be confident that the recovery in LWSDW observed since 2014 is real and 

not an artefact of aliasing. 

 

Concerning possibility (2), that they are caused by changes in water mass properties 

and hence density, Jullion et al.12 observed a decrease in the salinity of Upper 

WSDW (UWSDW, defined by 28.26 < gn < 28.31 kg m-3) on SR1b equivalent to -

0.007 from 1993 to 2011. SR1b LWSDW also displays a salinity trend of -0.0025 per 

decade (see Supplementary Information Figure 2). On the A23 section in the Scotia 

Sea, LWSDW freshening is smaller in amplitude (0.0016 per decade), the trend is 

not significant for the period of the decline, and the salinities appear to have 

continued decreasing toward the present (two of the three lowest LWSDW salinity 

anomalies observed on the section were in the last two occupations of the section); 
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thus, we do not believe that salinity changes can be responsible for the variability 

observed. The decrease in LWSDW potential temperature on A23 is equivalent 

to -0.008 °C per decade, also smaller than the equivalent trend on SR1b 

of -0.0116 °C per decade. 

 

In Figure 2, the temperature and salinity anomalies for each occupation of the 

sections (as shown in Supplementary Information Figure 2) have been subtracted 

from the data, individually and together, and the LWSDW areas recomputed, 

resulting in the red (temperature only), green (salinity only) and black (both) bars. 

The density impacts of freshening and cooling on the A23 section are not large 

enough in magnitude to account for the significant downward trend in the area of 

LWSDW on A23 observed up to 2014, nor for its subsequent strong recovery. 

Consequently, possibility (2) is unlikely to be a major causal factor in the LWSDW 

changes observed in the Scotia Sea.  

 

Concerning possibility (3), that the LWSDW changes in the Scotia Sea might be 

caused by changes in its rate of removal, it should be noted that the direct export of 

this water mass from the Scotia Sea is facilitated by diapycnal mixing, since the 

depths at which the water resides are blocked by topography around the northern 

and eastern flanks of the basin45. Consequently, for the observed trend in LWSDW 

area to be influenced by changing outflow from the Scotia Sea, changes in the rates 

of deep diapycnal mixing therein would be required. Unfortunately, direct 

observations of deep-ocean mixing over time are lacking, making it difficult to make 

definitive statements concerning trends. A time series of deep ocean turbulent 

dissipation using velocity and hydrographic measurements from the SR1b section22, 
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however, showed that strong, deep diapycnal mixing was predominantly collocated 

with the fronts of the Antarctic Circumpolar Current, and that changes in mixing were 

forced by changes in the mesoscale eddy field. Such enhanced deep mixing is 

unlikely to explain the changes at A23, as the highest levels of eddy variability 

associated with the Polar and Sub-Antarctic Fronts are located north of the LWSDW 

extent in the Scotia Sea. Despite this, following Sheen et al.22, who showed that 

surface kinetic energy anomaly (KEanom) is related to abyssal turbulent mixing, we 

examined the KEanom over the Scotia Sea (Supplementary Information Figure 3) and 

found that in addition to substantial interannual variability, there has been an 

increase in KEanom since 1993, and particularly since 2006. However, there is no 

significant decrease in KEanom post-2013, and in fact it is higher then than over most 

of the rest of the record. This suggests that a decrease in mixing cannot be a 

significant cause of the strong recovery in LWSDW after this period. 

 

Accordingly, the balance of evidence strongly suggests that the change in volume of 

LWSDW in the Scotia Sea is predominantly driven by changes in the supply of this 

water mass from the Weddell Sea via Orkney Passage, with changes in its 

hydrographic properties and its diapycnal mixing playing secondary or negligible 

roles.  

 

Data availability  

CTD data were collected on UK, US and German research cruises; these data are 

available at CLIVAR and Carbon Hydrographic Data Office (CCHDO; 

http://cchdo.ucsd.edu) for US and some UK cruises, British Oceanographic Data 

Centre (BODC; http://www.bodc.ac.uk) for UK cruises, and PANGAEA 
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(http://www.pangaea.de) for German cruises46-54; links to the data are given in 

Supplementary Information Table 1. Mooring data from Orkney Passage are 

available from BODC at 

https://www.bodc.ac.uk/data/bodc_database/nodb/data_collection/6565/.  

The altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with 

support from Cnes (http://www.aviso.altimetry.fr). ERA-interim reanalysis data are 

available from the European Centre for Medium-Range Weather Forecasts 

(ECMWF; https://www.ecmwf.int/en/research/climate-reanalysis/era-interim). SOSE 

data are available from http://sose.ucsd.edu/. GEBCO_2014 bathymetry data are 

available from https://www.gebco.net/. 
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