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A class of short-term models for the oil industry addressing

speculative storage

Yves Achdou ∗, Charles Bertucci †,
Jean-Michel Lasry ‡, Pierre-Louis Lions§, Antoine Rostand¶, José Scheinkman‖

March 25, 2020

This is a work in progress.
The aim is to propose a plausible mechanism for the short term dynamics of the oil market based

on the interaction of economic agents. This is a theoretical research which by no means aim at
describing all the aspects of the oil market. In particular, we use the tools and terminology of game
theory, but we do not claim that this game actually exists in the real world.

In parallel, we are currently studying and calibrating a long term model for the oil industry,
which addresses the interactions of a monopolists with a competitive fringe of small producers. It is
the object of another paper that will be available soon.

The present premiminary version does not contain all the economic arguments and all the con-
nections with our long term model. It mostly addresses the description of the model, the equations
and numerical simulations focused on the oil industry short term dynamics.

A more complete version will be available soon.

1 Introduction

To be completed

2 The models and the systems of partial differential equations

We consider a monopolist producing a natural resource and facing both a competitive fringe of small
producers and the business of speculative storage. Even though our motivation is to understand some
aspects of the oil market at short or middle term (of the order of a year) and we may sometimes use
a terminology linked to the oil industry (for example, oil for the resource, OPEC for the monopolist),
the models proposed below may be applied in many other situations.
There are four types of agents: the consumers, a large producer or monopolist (OPEC), minor
producers forming a competitive fringe, and the arbitragists who buy, store and then sell a part of
the resource. The arbitragists will most often determine the price.
For simplicity, we are not going to address the decision making process of the competitive fringe of
small producers; we rather assume that the dynamics of their global production rate is given.
Hence, the class of models described below involves two state variables:
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1. the level of speculative storage, that will be named k

2. the global production rate of the competitive fringe, that will be named z.

While k, i.e. the level of speculative storage, takes its value in a given interval, say [kmin, kmax],
the second state variable, i.e. z, may be either discrete or continuous, depending on the considered
variant of the model.
The physical constraints on the storage capacity will play a key role. Indeed, it will be shown that
in some situations and when the storage level is either minimal or maximal, the monopolist directly
controls the price of the resource.
Mathematically, all the variants of the model lead to systems of partial differential equations coupling
a Hamilton-Jacobi-Bellman equation for the monopolist and an equation of the type “master equa-
tion” for the price of the resource, see [4, 2, 1]. Note that in the present case, the master equation
does not model a crowd of players as in mean field games, but rather an equilibrium reached by a
crowd of arbitragists. To the best of our knowledge, the boundary conditions arising from the state
constraints are completely new.

Our model has several variants:

1. In the first variant, the global production rate zt of the competitive fringe takes its values in
the interval [zmin, zmax]

2. In the second variant, zt can take a finite number of values zj , j = 0, . . . , J − 1, for a positive
integer J (we will only discuss the cases when J = 2 and J = 1).

2.1 A model with two continuous state variables

2.1.1 The dynamics of kt and zt

The global production rate zt of the competitive fringe is assumed to follow the dynamics

dzt = b(kt, zt, pt)dt,

where pt stands for the unitary price of the resource and b : [kmin, kmax]×R+×R+ is a given smooth
function.

In the case of the oil industry, the choice of the function b comes from a long term model which
is independent from the present one and currently investigated and calibrated by the same authors,
and on which a paper will be available soon.
We know that the strategy of the monopolist consists of returning to a target market share which is
of the order of 42%. Since we have chosen as a state variable zt, the market share of the competitive
fringe, the strategy of the monopolist consists of having zt return to 58%. The monopolist controls
the return of zt to its target value by playing on the prices. More precisely, our long term model
(with no storage) takes b as follows:

b(z, p) = −az + λp− µ, (1)

with λ = 0.4, µ = 10 et a = 10%.
In the present model, since the aim is to study the interaction of the monopolist with the storage
business, for which the time scale is of the order of a few semesters, we may neglect the variations of
z in the definition of b because they are small on this time scale. Hence, we replace the term az by
az◦, where z◦ is the target value of the market share of the competitive fringe (z◦ = 58%).
Besides, we are going to introduce a correction that will play the role of a proxy for the time delays
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between the investment decisions of the producers belonging to the competitive fringe and the actual
creation of new capacities of production. Indeed, (1) comes from the equation b(z, p) = −az + c

√
I,

where I stands for the instantaneous investments that are conditioned by constraints on the credit;
the latter are themselves connected to the price p. Hence I is a function of p. However, as already
mentioned, there must be a delay between investments and the creation of capacity. It is therefore a
strong simplification to assume that the investments have an instantaneous effect. This simplification
permits to keep the theoretical complexity at a reasonable level and proves acceptable in a very long
term model. The situation is much different when one deals with short terms: it seems necessary
to model inertia effects, memory effects and anticipations of delays between investments and the
creation of capacity.
Nevertheless, since we wish to keep the model as simple as possible, we limit ourselves to a proxy
when addressing the above mentioned delay effects. Note that an accurate model is possible, but it
would increase the difficulty of the numerical simulations significantly, in particular because it would
increase the dimension of the problem.
The correction consists of modifying b by adding a function f(k, z) which stands for a little increase
(respectively decrease) in the production capacities when the storage facilities are close to empty
(respectively full). Indeed, close to empty storage facilities must follow a period when the price is
high, thus the investments of the producers in the competitive fringe are at a high level; the latter
result in an increase of production capacity, i.e. an increase of z, even if the instantaneous price has
decreased. The mechanism has to be reversed when the storage facilities are close to full. This is
why we add to b the function f(k, z) that is of the order of 2% for k ∼ kmin and −2% for k ∼ kmax.

We shall suppose that there exist zmin, zmax, 0 ≤ zmin < zmax, such that for all t ≥ 0,

• the probability that b(kt, zt, pt) ≤ 0 conditionally on zt = zmax is one.

• the probability that b(kt, zt, pt) ≥ 0 conditionally on zt = zmin is one.

Therefore, we may suppose that zt takes its values in the compact interval [zmin, zmax].
The demand of the consumers is a decreasing function of the price of the resource; after a suitable
choice of units, the simplest demand function is

D(p) = 1− εp,

where the parameter ε stands for the elasticity of demand. Note that it would be more appropriate
to set D(p) = max(0, 1− εp), but in the regime that will be considered, the price p will never excede
1/ε.
The control variable of the monopoly is its production rate qt. Matching demand and supply yields
dkt = (qt+zt−D(pt))dt. However, we rather consider a slightly more general dynamics of kt, possibly
including some noise in the storage capacities:

dkt = (qt + zt −D(pt))dt+ σ(kt)dWt, (2)

where (Wt) is a Brownian motion. We suppose that the volatility k 7→ σ(k) is a smooth nonnegative

function that vanishes at k = kmin and k = kmax and that the quantities σ(k)
k−kmin

and σ(k)
kmax−k are

bounded. This assumption will play an important role in the discussion of the boundary conditions.

2.1.2 The equilibrium

We look for a stationary equilibrium. Given the unitary price of the resource, the monopolist solves
an optimal control problem. Let (k, z) 7→ U(k, z) be the associated value function. The price,
described by a function p(k, z), is fixed by ruling out opportunities of arbitrage. We will see that the
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functions U and p satisfy a system of two coupled partial differential equations.
The optimal control problem solved by the monopolist knowing the trajectory of pt is:

U(k, z) = sup
qt

E
(∫ ∞

0
e−rt

(
(pt − c)qt − α

|qt − q◦|2

2

)
dt

∣∣∣∣ (k0, z0) = (k, z)

)
,

where r is a positive discount factor, c is the cost related to the production of a unit of resource, and

α |qt−q◦|
2

2 is a penalty term used to avoid imposing bounds on qt. The dynamic programming principle
yields that the value function is a solution of the following Hamilton-Jacobi-Bellman equation:

−rU + sup
q≥0

(
−α |q − q◦|

2

2
+ (p− c)q + (q + z −D (p)) ∂kU

)
+ b(k, z, p)∂zU +

σ2(k)

2
∂kkU = 0. (3)

Introducing the Hamiltonian

H(z, p, ξ) = sup
q≥0

(
−α |q − q◦|

2

2
+ (p− c)q + ξ (q + z −D (p))

)
in which the maximum is reached by q∗ = max(0, q◦ + 1

α(p− c+ ξ)), (3) can be written:

−rU +H(z, p, ∂kU) + b(k, z, p)∂zU +
σ2(k)

2
∂kkU = 0.

Since, in the regime that will be considered, q◦ + 1
α(p − c + ∂kU)) will always be nonnegative, we

omit for simplicity the constraint q ≥ 0 in the definition of the Hamiltonian: hereafter, we set

H(z, p, ξ) = sup
q∈R

(
−α |q − q◦|

2

2
+ (p− c)q + ξ (q + z −D (p))

)
=

1

2α
(p− c+ ξ)2 + ξ(z −D(p)) + q◦(p− c− ξ),

(4)

and the optimal production rate at kt = k and zt = z is given by the feedback law

q∗(k, z) = DξH (z, p(k, z), ∂kU(z, p))− z +D(p(k, z))

= q◦ +
1

α
(p(k, z)− c+ ∂kU(k, z))).

(5)

Let us now turn to the price of a unit of resource : ruling out opportunities of arbitrage implies that
the price process obeys the following relation,

pt = E
(
e−rδtpt+δt −

∫ t+δt

t
g(ks)ds

∣∣∣∣ (kt, zt)) ,
where g(k) is the cost of storing a unit of resource per unit of time when the level of storage is k.
Recalling that pt = p(kt, zt), Ito formula yields:

−rp+DξH(z, p, ∂kU)∂kp+ b(k, z, p)∂zp+
σ2(k)

2
∂kkp− g(k) = 0.

To summarize, the system of PDEs satisfied by U, p is

0 = −rU +H(z, p, ∂kU) + b(k, z, p)∂zU +
σ2(k)

2
∂kkU, (6)

0 = −rp+DξH(z, p, ∂kU)∂kp+ b(k, z, p)∂zp+
σ2(k)

2
∂kkp− g(k), (7)

for kmin < k < kmax and zmin < z < zmax and with H given by (4). Note that equation (7) is
nonlinear with respect to p. It is reminiscent of the master equations discussed in ? .
Note also that it seems possible to refine the present model by considering that the arbitragists
running the speculative storage business are rational agents playing a mean field game. This would
lead to a more involved model of a mean field game with a major agent, see [3]. Yet, the resulting
system of partial differential equations would have the same structure as (6-7).
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2.2 A variant in which the production of the fringe is a two-state Poisson process

We consider a situation in which the production rate zt can take only two values 0 ≤ z0 < z1 and is
described by a stochastic Poisson process with intensities that may depend on kt and pt:

P (zt+∆t = z0| zt = z0) = 1− λ0(kt, pt)∆t+ o(∆t),
P (zt+∆t = z1| zt = z0) = λ0(kt, pt)∆t+ o(∆t),
P (zt+∆t = z1| zt = z1) = 1− λ1(kt, pt)∆t+ o(∆t),
P (zt+∆t = z0| zt = z1) = λ1(kt, pt)∆t+ o(∆t).

(8)

All the other features of the model are the same as in paragraph 2.1, in particular, the dynamics
of kt is still given by (2). The optimal value of the monopolist and the price are described by
U(k, zj) = Uj(k) and p(k, zj) = pj(k), where for j = 0, 1, the real values functions Uj , pj are defined
on [kmin, kmax] and satisfy a system of four coupled differential equations.
Introducing the Hamiltonians

Hj(p, ξ) =
1

2α
(p− c+ ξ)2 + ξ(zj −D(p)) + q◦(p− c− ξ),

(we still omit the constraint that the production rate is nonnegative), and repeating the arguments
contained in paragraph 2.1.2, we get the following system of differential equations:

0 = −rUj +Hj(pj , U
′
j) + λj(k, pj)(U` − Uj) +

σ2(k)

2
U ′′j , (9)

0 = −rpj +DξHj(pj , U
′
j)p
′
j + λj(k, pj)(p` − pj)− g(k) +

σ2(k)

2
p′′j , (10)

for j = 0, 1, ` = 1 − j, and k ∈ (kmin, kmax). The optimal drift of kt in (2) is then given by
DξHj(pj(kt), U

′
j(kt)) = 1

α(U ′j(kt)− c+ pj(kt)) + zj −D(pj(kt)) + q◦ if zt = zj .

2.3 An even simpler model

It is possible to simplify further the model by assuming that the production rate of the competitive
fringe is a constant z. Introducing the Hamiltonian

H(p, ξ) =
1

2α
(p− c+ ξ)2 + ξ(z −D(p)) + q◦(p− c− ξ),

and repeating the arguments contained in paragraph 2.1.2, we get the following system of two differ-
ential equations:

0 = −rU +H(p, U ′) +
σ2(k)

2
U ′′, (11)

0 = −rp+DξH(p, U ′)p′ − g(k) +
σ2(k)

2
p′′, (12)

for k ∈ (kmin, kmax).

3 Boundary conditions

The systems of partial differential equations have to be supplemented with boundary conditions. We
are going to discuss the latter in full details within the framework described in paragraph 2.1, and
more briefly for the variants proposed in 2.2 and 2.3.
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3.1 The boundary conditions associated with the model discussed in paragraph
2.1

3.1.1 Boundary conditions at z = zmin, zmax

No boundary conditions are needed at z = zmin and z = zmax, from the assumptions made on the
dynamics of zt in § 2.1.

3.1.2 Boundary conditions at k = kmin and k = kmax

Preliminary : monotone envelopes of ξ 7→ H(z, p, ξ). For describing the boundary conditions
linked to the state constraints kmin ≤ kt ≤ kmax, it is useful to introduce the nonincreasing and
nondecreasing envelopes of the function ξ 7→ H(z, p, ξ): we set

H↓(z, p, ξ) = max
q≤D(p)−z

(
−α

2
(q − q◦)2 + (p− c)q + ξ(q + z −D(p)

)
, (13)

and
H↑(z, p, ξ) = max

q≥D(p)−z

(
−α

2
(q − q◦)2 + (p− c)q + ξ(q + z −D(p)

)
. (14)

The Hamiltonian H↓(z, p, ξ) (resp. H↑(z, p, ξ)) corresponds to the controls q such that the drift of kt
in (2) is nonpositive (resp. nonnegative). It may also be convenient to set

Hmin(z, p) = min
ξ
H(z, p, ξ) = −α

2
(D(p)− z − q◦)2 + (p− c)(D(p)− z) (15)

which corresponds to the control q = D(p) − z for which the drift of kt in (2) vanishes. Note that
p 7→ Hmin(z, p) is strongly concave with respect p. It is easy to check that

H(z, p, ξ) = H↓(z, p, ξ) +H↑(z, p, ξ)−Hmin(z, p).

The optimal values of q in the definition of H↓(z, p, ξ) and H↑(z, p, ξ) are

q∗↓(z, p, ξ) = min
(
D(p)− z, q◦ +

p− c+ ξ

α

)
, (16)

q∗↑(z, p, ξ) = max
(
D(p)− z, q◦ +

p− c+ ξ

α

)
. (17)

Hence,

H↓(z, p, ξ) =
1

2

((√
α(z −D(p) + q0) +

1√
α

(p− c+ ξ)

)
−

)2

+Hmin(z, p), (18)

H↑(z, p, ξ) =
1

2

((√
α(z −D(p) + q0) +

1√
α

(p− c+ ξ)

)
+

)2

+Hmin(z, p). (19)

Assumption 3.1. Hereafter, we assume that for all k ∈ [kmin, kmax], z ∈ [zmin, zmax], ξ ∈ R, the
function p 7→ Hmin(z, p) + ξb(k, z, p) is strongly concave.

Boundary conditions at k = kmin. In view of the assumptions made on σ, it is not restrictive to
focus on the deterministic case: we take σ = 0 for simplicity.
The state constraint kt ≥ kmin implies that q∗(kmin, z) + z −D(p(kmin, z)) ≥ 0. Two situations may
occur:

1. If ∂kU(k,z)−c+p(k,z)
α + z − D(p) + q◦ > 0 for k near kmin, then the optimal strategy results in

increasing the level of storage. This means that in (7), the drift DξH(z, p, ∂kU) is positive for
k near kmin, and no boundary condition is needed for p.
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2. On the contrary, if ∂kU(k,z)−c+p(k,z)
α + z −D(p) + q◦ ≤ 0 for k near kmin, then the optimal drift

of kt in (2) must vanish at k = kmin, i.e. q+ z−D(p(kmin, z)) = 0. This relation and the strict
monotonicity of D imply that p can be considered as the control variable at k = kmin. In other
words, the monopoly directly controls the price in this situation.

On the other hand, ruling out opportunities of arbitrage and taking into account the subopti-
mality due to the state constraints, we see that the price process obeys the following inequality:
if kt = kmin, then

pt ≥ E
(
e−rδtpt+δt −

∫ t+δt

t
g(ks)ds

∣∣∣∣ (kt, zt)) .
Since the optimal drift of kt is 0, we obtain that

rp(kmin, z)− b
(
kmin, z, p(kmin, z)

)
∂zp(kmin, z) + g(kmin) ≥ 0. (20)

Another way to understand (20) is as follows: we expect that, in the present case, p is nonin-
creasing with respect to k for k near k = kmin. Indeed, if p was increasing with respect to k
for k near k = kmin, then the arbitragists would increase the level of storage, i.e. dkt would be
positive, in contradiction with the assumption. Then, plugging this information in (7) implies
(20).

Turning back to the monopolist, we deduce from the considerations above that, among the
strategies consisting of keeping kt fixed at kmin for zt = z, the optimal one is

q∗ = D(p∗)− z, (21)

p∗ = argmax
π:rπ≥b(kmin,z,π)∂zp−g(kmin)

F (π, ∂zU), (22)

where
F (π, ∂zU) = Hmin(z, π) + b(kmin, z, π)∂zU, (23)

and Hmin(z, π) is defined in (15). Note that π∗ is unique from Assumption 3.1 and depends on
z, ∂zU, ∂zp. In this situation, the nonlinear boundary condition

p = p∗(z, ∂zU, ∂zp) (24)

must be imposed at (kmin, z).

Summary. Setting p(kmin,+, z) = lim
k−kmin→0+

p(k, z), another way of formulating the boundary con-

ditions at k = kmin is:

• The nonlinear condition (24) , i.e.

p = p∗(z, ∂zU, ∂zp), (25)

understood in a weak sense, (i.e. it holds only if the optimal drift ∂kU(k, z)− c+ p(k, z) is ≤ 0
near k = kmin), and where p∗(z, ∂zU, ∂zp) achieves the maximum in (28) below

• the equation for U can be written

−rU + max(A,B) = 0, (26)

with

A = H↑(z, p(kmin,+, z), ∂kU) + b
(
kmin, z, p(kmin,+, z)

)
∂zU, (27)

B = max
π:rπ≥b(kmin,z,π)∂zp−g(kmin)

F (π, ∂zU), (28)

and F is given by (23).

Note that, to the best of our knowledge, this set of boundary conditions, associated to the system
(6-7) and to the state constraint k ≥ kmin, has never been proposed and a fortiori analyzed.
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Boundary conditions at k = kmax. Arguing as above and setting p(kmax,−, z) = limk−kmax→0− p(k, z),
the boundary conditions at k = kmax can be written as follows:

• A nonlinear condition for p of the form

p = p∗∗(z, ∂zU, ∂zp), (29)

understood in a weak sense (i.e. it holds only if the optimal drift ∂kU(k, z)− c+ p(k, z) is ≥ 0
near k = kmax), where p∗∗(z, ∂zU, ∂zp) achieves the maximum in (32) below (it is unique from
Assumption 3.1).

• An equation for U :
−rU + max(C,D) = 0, (30)

with

C = H↓(z, p(kmax,+, z), ∂kU) + b(kmax, z, p)∂zU, (31)

D = max
π:rπ≤b(kmax,z,π)∂zp−g(kmax)

G(π, ∂zU), (32)

and
G(π, ∂zU) = Hmin(z, π) + b(kmax, z, π)∂zU. (33)

3.2 The boundary conditions associated with the model discussed in paragraph 2.2

The boundary conditions associated with the system (9-10) are obtained in the same manner as in
the previous case. To avoid repetitions, we focus on the boundary k = kmin, because the needed
modifications with respect to paragraph 3.1.2 are similar for k = kmax and k = kmin. The interested
reader will easily find the boundary conditions at k = kmax from paragraph 3.1.2 and what follows.
As above, we set

Hj,min(p) = min
ξ
Hj(p, ξ) = −α

2
(D(p)− zj − q◦)2 + (p− c)(D(p)− zj), (34)

Hj,↓(p, ξ) = max
q≤D(p)−zj

(
−α

2
(q − q◦)2 + (p− c)q + ξ(q + zj −D(p)

)
(35)

=
1

2

((√
α(zj −D(p) + q◦) +

1√
α

(p− c+ ξ)

)
−

)2

+Hj,min(p),

Hj,↑(p, ξ) = max
q≥1−zj−εp

(
−α

2
(q − q◦)2 + (p− c)q + ξ(q + zj −D(p)

)
(36)

=
1

2

((√
α(zj −D(p) + q◦) +

1√
α

(p− c+ ξ)

)
+

)2

+Hj,min(p).

The optimal values of q in the definition of Hj,↓(p, ξ) and Hj,↑(p, ξ) are

q∗j,↓(p, ξ) = min
(
D(p)− zj , q◦ +

p− c+ ξ

α

)
, (37)

q∗j,↑(p, ξ) = max
(
D(p)− zj , q◦ +

p− c+ ξ

α

)
. (38)

Boundary conditions at k = kmin. Setting p`,+ = lim
k−kmin→0+

p`(k), ` = 0, 1, the boundary

conditions at k = kmin are as follows: for i = 0, 1 and j = 1− i,
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• a condition of the form

pj = p∗j (Uj , U`, p`,+), with ` = 1− j, (39)

understood in a weak sense, (i.e. it holds only if U ′j(k)− c+ pj(k) ≤ 0 for k near kmin), where
p∗j (Uj , U`, p`,+) achieves the maximum in (42) below (it is supposed to be unique).

• the equation for Uj can be written

−rUj + max(A,B) = 0, (40)

with

A = Hj,↑(pj,+, U
′
j) + λj(kmin, pj,+)(U` − Uj), (41)

B = max
p:(r+λj(kmin,p))p−λj(kmin,p)p`,++g(kmin)≥0

Fj(p, Uj , U`), (42)

with ` = 1− j, and

Fj(p, Uj , U`) = Hj,min(p) + λj(kmin, p)(U` − Uj). (43)

3.3 The boundary conditions associated with the model discussed in paragraph 2.3

Here also, we focus on k = kmin to avoid repetitions. Let us set

Hmin(p) = min
ξ
H(p, ξ) = −α

2
(D(p)− z − q◦)2 + (p− c)(D(p)− z), (44)

H↓(p, ξ) = max
q≤D(p)−z

(
−α

2
(q − q◦)2 + (p− c)q + ξ(q + z −D(p)

)
(45)

=
1

2

((√
α(z −D(p) + q◦) +

1√
α

(p− c+ ξ)

)
−

)2

+Hmin(p),

H↑(p, ξ) = max
q≥1−z−εp

(
−α

2
(q − q◦)2 + (p− c)q + ξ(q + z −D(p)

)
(46)

=
1

2

((√
α(z −D(p) + q◦) +

1√
α

(p− c+ ξ)

)
+

)2

+Hmin(p).

Boundary conditions at k = kmin. Setting p+ = lim
k−kmin→0+

p(k), the boundary conditions at

k = kmin are as follows:

• a condition of the form
p = p∗, (47)

understood in a weak sense, (i.e. it holds only if U ′(k) − c + p(k) ≤ 0 for k near kmin), where
p∗ achieves the maximum in (50) below (p∗ is unique).

• the equation for U can be written

−rU + max(A,B) = 0, (48)

with

A = H↑(p+, U
′), (49)

B = max
p:rp+g(kmin)≥0

Hmin(p). (50)
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4 Mathematical analysis of the boundary conditions in the one
dimensional model

In what follows, we explain why the boundary conditions discussed in paragraph 3.3 permit to
determine in a unique way the behavior of a solution of (11)-(12) near the boundary. Although the
argument proposed below is rather formal, we think that is gives useful information on the solutions.
More precisely, we are going to see that the boundary conditions induce a unique expansion of the
function p and of the derivative of the value function V = ∂kU near the boundary. The system of
PDEs staisfied by p and V is as follows:

0 = −rV +
(
σ(k)σ′(k) +DξH(p, V )

)
V ′ +DpH(p, U ′)p′ +

σ2(k)

2
V ′′, (51)

0 = −rp+DξH(p, V )p′ − g(k) +
σ2(k)

2
p′′, (52)

for k ∈ (kmin, kmax). We focus on the boundary conditions at k = kmin.
First, in the case in which the drift DξH(p, V ) is positive near kmin, p and V are expected to be
smooth at the boundary.
Hence, we focus on the case in which the driftDξH(p, V ) points toward the boundary (i.e. DξH(p, V ) ≤
0). We make the following ansatz:

V (k) = V (kmin) + γ(k − kmin)n + o((k − kmin)n), (53)

p(k) = p(kmin)− β(k − kmin)m + o((k − kmin)m), (54)

with n,m ≤ 1. For shortening the notation, let us define the pair (V0, p0) := (V (kmin), p(kmin)).

4.1 A singularity is expected

Let us explain why a singular behavior should be expected near the boundary k = kmin. Indeed,
assume that this is not the case and that m = n = 1; in this situation, from the assumption made
on the sign of the drift near the boundary and the constraint kt ≥ kmin, we deduce that

0 = DξH(p0, V0) = (
1

α
+ ε)p0 +

1

α
V0 −

c

α
+ z − 1− q◦. (55)

Then, plugging the ansatz for V and p into (51)-(52) and focusing on the zeroth order terms, we
obtain that {

rV0 = β( 1
α(p0 − c+ V0) + εV0 + q◦),

rp0 = −g(kmin).
(56)

The equations in (56) and (55) form a linear system which is overdetermined except for a single
value of β. Thus, the values of V0, p0 and β are determined. Passing to the first order terms in the
expansion of the system, we obtain two second order polynomial equations in γ and β, while β is
already known. It is then easy to observe that for a generic choice of the parameters, this system of
second order equations is not consistent with the already obtained values of V0, p0 and β.

Remark 4.1. Recall that in the case in which the drift is positive near kmin, no singularity is
expected.

4.2 Characterization of the singularity

Proposition 4.2. If V and p satisfy (53) and (54), then n = m = 1/2 and the pair (V0, p0) is
completely determined by the values of z, ε, α, q◦. Moreover, if (αε)2 + αε > 1, then there is at most
one pair (γ, β) such that (53) and (54) hold.
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Remark 4.3. The latter condition on αε will be fullfilled in the numerical simulations in § 6 below.

Remark 4.4. The value of p0 is obviously p∗ which has been defined in paragraph 3.3.

Proof. Plugging the ansatz into (51)-(52), and using both the boundedness of g and the fact that σ
vanishes near kmin, we deduce that

(1 + αε)V0 + p0 = c− αq◦ (57)

by identifying the higher order terms in the expansion. From the state constraint and the sign
assumption on the drift, the following also holds:

(1 + αε)p0 + V0 = c+ α(1− z)− αq◦. (58)

Since αε /∈ {−2; 0}, we deduce that
V0 =

z − 1 + ε(c− αq◦)
ε(2 + αε)

,

p0 =
ε(c− αq◦) + (1 + αε)(1− z)

ε(2 + αε)
.

(59)

Identifying the higher order terms in the expansion, we see that if n 6= m, then β = γ = 0. Therefore,
n = m. Now, if 2n− 1 /∈ {0; 1}, identifying the terms of order 2n− 1 leads to{

−(1 + αε)β + γ = 0,

(1 + αε)γ − β = 0.
(60)

The latter system yields that γ = β = 0. Thus n ∈ {1/2; 1}. The only possible value of n is 1/2
since the case n = 1 has already been ruled out.
Considering the zeroth order terms, we conclude that{

0 = −rV0 + 1
2α(γ − β)2 − εγβ,

0 = −rp0 − β
2α(γ − β) + ε

2β
2 − g(kmin).

(61)

Let us introduce the parameter

λ =
rV0

rp0 + g(kmin)
, (62)

which is well defined since g ≥ 0, p0 > 0. Observe that 0 ≥ λ ≥ −1. We deduce that

1

2α
(γ − β)2 − εγβ = −λ β

2α
(γ − β) + λ

ε

2
β2, (63)

then that
γ2 + (1− λ(1 + αε))β2 − (1 + 2αε− λ)γβ = 0. (64)

Defining the numbers x± by

x± =
1 + 2αε− λ±

√
(1 + 2αε− λ)2 − 4(1− λ(1 + αε))

2
, (65)

we finally obtain that
(γ − x+β)(γ − x−β) = 0. (66)

Rewriting the second equation in (61), we obtain

2αg(kmin) + 2αrp0 = β((αε+ 1)β − γ). (67)

Thus, γ = x+β is impossible if x+ > 1 + αε. An easy calculation leads to the fact that this last
condition is satisfied (i.e. x+ is large enough) if

(αε)2 + αε− 1 > 0. (68)
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5 Approximation by a finite difference method

Let us focus on the case when

b(k, z, p)
∂p

∂z
= (φ(k) + κ(λp− µ))

∂p

∂z

=
∂

∂z

(
φ(k)p+

κ

2λ
(λp− µ)2

)
.

(69)

We are going to use the latter conservative form in the numerical scheme for (7). Note that

φ(k)p+
κ

2λ
(λp− µ)2 =

κλ

2

(
p− µ

λ
+
φ(k)

κλ

)2

− φ2(k)

2κλ
+
µ

λ
φ(k)

It is useful to introduce the following numerical flux function:

Ψ(k, p`, pr) =


max

p`≤p≤pr

(
φ(k)p+

κ

2λ
(λp− µ)2

)
, if p` ≤ pr,

min
pr≤p≤p`

(
φ(k)p+

κ

2λ
(λp− µ)2

)
, if p` ≥ pr,

(70)

and straightforward calculus leads to

Ψ(k, p`, pr) = −φ
2(k)

2κλ
+
µ

λ
φ(k) +

κλ

2
max

((
pr −

µ

λ
+
φ(k)

κλ

)2

+

,

(
p` −

µ

λ
+
φ(k)

κλ

)2

−

)
. (71)

Consider a uniform grid on the rectangle [kmin, kmax] × [zmin, zmax]: we set ki = kmin + i∆k,
i = 0, . . . , N , with ∆k = kmax−kmin

N and zj = zmin + j∆z, j = 0, . . . ,M , with ∆z = kmax−kmin
M The

discrete approximation of U(ki, zj) and p(ki, zj) are respectivelly named Ui,j and pi,j .

5.1 The discrete version of the system (6-7)

We use the following notation for the three nodes centered finite difference approximation of the
second order derivative with respect to k:

(D2
kU)i,j =

Ui+1,j − 2Ui,j + Ui−1,j

∆k2
.

Consider also the first order one sided finite difference approximations of ∂kU and ∂zU , namely

(Dk,`U)i,j =
Ui,j − Ui−1,j

∆k
, (Dk,rU)i,j =

Ui+1,j − Ui,j
∆k

,

(Dz,`U)i,j =
Ui,j − Ui,j−1

∆z
, (Dz,rU)i,j =

Ui,j+1 − Ui,j
∆z

.

The advection term with respect to z in (6) will be discretized with a first order upwind scheme.
The discrete version of the Hamiltonian H involves the function H : R4 → R,

H(z, p, ξ`, ξr) = H↓(z, p, ξ`) +H↑(z, p, ξr)−Hmin(z, p),

where H↓, H↑ and Hmin are respectively defined in (18), (19) and (15). Note that H is nonincreasing
with respect to ξ` and nondecreasing with respect to ξr.
The discrete version of (6) (monotone and first order scheme) is as follows:

0 =


−rUi,j +

σ2(ki)

2
(D2

kU)i,j

+H
(
zj , pi,j , (Dk,`U)i,j , (Dk,rU)i,j

)
+ max (0, b(ki, zj , pi,j)) (Dz,rU)i,j + min (0, b(ki, zj , pi,j)) (Dz,`U)i,j

(72)
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for i = 1, . . . , N − 1 and j = 0, . . . ,M . Note that the scheme is actually well defined at j = 0 (with
a slight abuse of notation), because, since b(ki, zmin, pi,j) ≥ 0, it does not involve Ui,−1. A similar
remark can be made in the case when j = M .
We choose the following discrete version of (7):

g(ki) = −rpi,j +
σ2(ki)

2
(D2

kp)i,j

+
∂H↓
∂ξ

(
zj , pi,j , (Dk,`U)i,j

)
(Dk,`p)i,j +

∂H↑
∂ξ

(
zj , pi,j , (Dk,rU)i,j

)
(Dk,rp)i,j (73)

+
1

∆z
(Ψ(ki, pi,j , pi,j+1)−Ψ(ki, pi,j−1, pi,j)) ,

for i = 1, . . . , N − 1 and j = 0, . . . ,M .

5.2 The discrete scheme at i = 0

In order to write the discrete version of the boundary conditions at k = kmin, we set

Aj =

{
H↑(zj , p0,j , (Dk,rU)0,j)
+ max (0, b(kmin, zj , p0,j)) (Dz,rU)0,j + min (0, b(kmin, zj , p0,j)) (Dz,`U)0,j ,

(74)

Bj = max
p:Kj(p0,j−1,p,p0,j+1)≤g(kmin)

Fj(p, U), (75)

where

Kj(p0,j−1, p, p0,j+1) = −rp+
1

∆z

(
Ψ(kmin, p, p0,j+1)−Ψ(kmin, p0,j−1, p)

)
, (76)

and

Fj(p, U) = Hmin(zj , p) + max (0, b(kmin, zj , p)) (Dz,rU)0,j + min (0, b(kmin, zj , p)) (Dz,`U)0,j . (77)

The numerical scheme correponding to the boundary condition at i = 0 consists of two equations
for each 0 ≤ j ≤M :

1. the first equation is
−rU0,j + max(Aj , Bj) = 0, (78)

2. the second equation is either (79) or (80) below:

(a) if the maximum in (78) is achieved by Aj , then

g(kmin) =


−rp0,j +

∂H↑
∂ξ

(
zj , p0,j , (Dk,rU)0,j

)
(Dk,rp)0,j

+
1

∆z

(
Ψ(kmin, p0,j , p0,j+1)−Ψ(kmin, p0,j−1, p0,j)

) (79)

(b) otherwise (the maximum in (78) is achieved by Bj),

p0,j = p∗j (U,P ), (80)

where p∗j (U,P ) achieves the maximum in (75).

Remark 5.1. There is a unique solution to

rp =
1

∆z
(Ψ(kmin, p, p0,j+1)−Ψ(kmin, p0,j−1, p))− g(kmin). (81)
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Indeed, (81) can be written χ(q) = −g(kmin), with

χ(q) =r

(
µ

λ
− φ(kmin)

κλ

)
+ rq

− κλ

2∆z
max

(
(q0,j+1)2

+ , (q)
2
−

)
+

κλ

2∆z
max

(
(q)2

+, (q0,j−1)2
−

)
.

(82)

The function χ is increasing and limq→±+∞ χ(q) = ±∞. Note also that

χ′(q) = r +
κλ

∆z
q
(
−1q≤−(q0,j+1)+

+ 1q≥(q0,j−1)−

)
.

Setting

Q = −
(
µ

λ
− φ(kmin)

κλ

)
+

κλ

2r∆z
(q0,j+1)2

+ −
κλ

2r∆z
(q0,j−1)2

− −
g(kmin)

r
,

we see that

q =



r −
√
r2 + 2κλ

∆z

(
r
(
µ
λ −

φ(kmin)
κλ

)
+ κλ

2∆z (q0,j−1)2
− + g(kmin)

)
κλ
∆z

if Q < − (q0,j+1)+ ,

Q, if Q ∈
[
− (q0,j+1)+ , (q0,j−1)−

]
,

−r +

√
r2 − 2κλ

∆z

(
r
(
µ
λ −

φ(kmin)
κλ

)
− κλ

2∆z (q0,j+1)2
+ + g(kmin)

)
κλ
∆z

if Q > (q0,j−1)− .

(83)

Then p satisfies the constraint in (75) if and only if p ≥ q + µ
λ −

φ(kmin)
κλ , and Bj is computed by

maximizing a concave and quadratic function on the set p ≥ q + µ
λ −

φ(kmin)
κλ .

5.3 The discrete scheme at i = N

For brevity, we do not write the numerical scheme correponding to the boundary condition at k =
kmax, because the equations (two equations for each value of j, 0 ≤ j ≤ M ,) may be obtained in
exactly the same way as in the previous paragraph.

5.4 Solving the system of nonlinear equations: a long time approximation

The system of equations including (72, (73)) for 0 < i < N and 0 ≤ j ≤M , and the discrete versions
of the boundary conditions at k = kmin and k = kmax described above, can be written in an abstract
form as follows:

F(U ,P) = 0, (84)

where F is a nonlinear map from R2(N+1)(M+1) to R2(N+1)(M+1) such that the Jacobian matrix of
F(U ,P) has negative diagonal entries.

We aim at solving the discrete system (84) by a long time approximation involving an explicit
scheme. The reason for choosing an explicit scheme lies in the complexity of the boundary conditions.
Finding an implicit or semi-implicit scheme consistent with the nonlinear boundary conditions seems
challenging.

We fix a time step ∆t > 0.
Setting U ` = (U `i,j)0≤i≤N,0≤j≤M and P` = (p`i,j)0≤i≤N,0≤j≤M , we compute the sequence (U `,P`)

by the induction:
(U `+1,P`+1) = (U `,P`)−∆tF(U `,P`), (85)

and expect that the sequence converges as `→ +∞. It the latter case, the limit is a solution of (84).
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6 Numerical simulations

The numerical simulations reported below aim at describing some aspects of the short term dynamics
of the oil market. We believe that they make it possible to explain the sharp falls in the prices that
have beeen observed in 2015 and 2020.

6.1 Case one

We take

b(k, z, p) = a

(
kmax − k

kmax − kmin

)2

− 2a

(
k − kmin

kmax − kmin

)2

+ κ(λp− µ),

g = 10

(
k − kmin

kmax − kmin

)3

,

with

r = 0.1,

ε = 4. 10−4,

a = 0.02,

κ = 6.66 10−4, λ = 0.4, µ = 10,

q◦ = 0.42, α = 104,

c = 10.

We set kmin = 0, kmax = 0.07, zmin = 0.35 and zmax = 0.75.
The mesh parameters are N = M = 200, and the time step is ∆t = 0.00001.

Figure 1: Case one: the optimal production level of the monopolist: we see that the optimal level
of production displays a shock whose amplitude is maximal for at the k = kmin and vanishes at
k = kmax.
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Figure 2: Case one: the k component of the optimal drift, which gives the dynamics of the storage
level. Note that it behaves like

√
k − kmin when it is nonpositive near k = kmin, and that it behaves

like
√
kmax − k when it is nonnegative near k = kmax.

Figure 3: Case one: the z component of the optimal drift, which gives the dynamics of the production
level of the fringe
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Figure 4: Case one: the optimal drift

Figure 5: Case one: the contours of the invariant measure: it is concentrated around the stable cycle.
Within the cycle, the density of the measure is much higher in the region close to the lines k = kmin

and kmax, because the drift is small there.
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Figure 6: Case one: the price; there is also a shock in the price. Note that the price takes negative
values for large values of z, but that such large values are irrelevant in the oil industry (the level of
production of the competitive fringe is close to 0.58 and does not vary more than 5%). The negative
values of pt are due to the fact that we chose not to put any constraints on the production level q.

Comments on case 1 To be completed
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6.2 Case two

We take

b(k, z, p) = a

(
kmax − k

kmax − kmin

)2

− a
(

k − kmin

kmax − kmin

)2

+ κ(λp− µ),

g = 10

(
k − kmin

kmax − kmin

)3

,

with

r = 0.1,

ε = 4. 10−4,

a = 0.01,

κ = 6.66 10−4, λ = 0.4, µ = 10,

q◦ = 0.42, α = 104,

c = 10.

Compared to case one, we also add viscosity in the z-variable: νz = 10−4.
We set kmin = 0, kmax = 0.07, zmin = 0.35 and zmax = 0.75.
The mesh parameters are N = M = 200, and the time step is ∆t = 0.00001.

Figure 7: Case two: the optimal production level of the monopolist.

19



Figure 8: Case two: the k component of the optimal drift.

Figure 9: Case two: the z component of the optimal drift.
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Figure 10: Case two: the optimal drift.

Figure 11: Case two: the contours of the invariant measure.
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Figure 12: Case two: the price.

Comments on case 2 To be completed
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