
HAL Id: hal-02517784
https://hal.science/hal-02517784v1

Preprint submitted on 24 Mar 2020 (v1), last revised 29 Apr 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elementary Functions and Approximate Computing
Jean-Michel Muller

To cite this version:

Jean-Michel Muller. Elementary Functions and Approximate Computing. 2020. �hal-02517784v1�

https://hal.science/hal-02517784v1
https://hal.archives-ouvertes.fr

1

Elementary Functions and Approximate Computing
Jean-Michel Muller* * Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR

5668, F-69007 Lyon, France

Abstract—We review some of the classical methods used for
quickly obtaining low-precision approximations to the elementary
functions. Then, for each of the three main classes of elementary
function algorithms (shift-and-add algorithms, polynomial or
rational approximations, table-based methods, bit-manipulation
techniques), we examine what can be done for obtaining very
fast estimates of a function, at the cost of a (controlled) loss in
terms of accuracy.

I. INTRODUCTION

WE call “elementary functions” the most commonly
used mathematical functions: sin, cos, tan, sin−1,

cos−1, tan−1, sinh, cosh, tanh, sinh−1, cosh−1, tanh−1, and
exponentials, and logarithms in radices 𝑒, 2 and 10. This paper
is devoted to the approximate evaluation of these functions
(we will also add to the list, in Section VI the square root and
the inverse square root). These functions cannot be obtained
exactly through a finite number of arithmetic operations, one
can only approximate them. Therefore, in a way, all elementary
function algorithms are “approximate algorithms”. The usual
implementations of the elementary functions aim at very
good accuracy (the ultimate goal being correct rounding: we
always obtain the machine number nearest to the exact result).
However, as pointed-out in [1] some applications (e.g., ma-
chine learning, pattern recognition, digital signal processing,
robotics, and multimedia) only require at times a rather rough
estimate of a function.

Hence, for these applications, it is worth examining if
somehow relaxing the accuracy constraints can lead to a
significant gain in terms of performance.

This of course is not a new idea. Before the advent of
pocket calculators, many recipes were used for obtaining a
quick approximation to some function in mental math. Most
of them were linear or piecewise linear approximations, with
very simple slopes so that multiplications could be avoided as
much as possible. For example, in decimal arithmetic, a rule
of thumb1 for estimating the decimal logarithm of 𝑚 × 10𝑘

(where 1 ≤ 𝑚 < 10) was to replace it by 𝑘 + 𝑚/10. The
maximum absolute error was less than 0.204: this is not big
accuracy, but much enough for estimating the pH of an acid
solution in mental math.

From a computational point of view, an essential differ-
ence between the elementary functions and the arithmetic
operations is that the elementary functions are nonlinear. A
consequence of that nonlinearity is that a small input error
can sometimes imply a large output error. Hence a very careful
error control is necessary, especially when approximations are
cascaded: approximate computing cannot be quick and dirty

1Useful in chemistry and described at https://www.studentdoctor.net/2018/
12/20/quickly-calculate-logarithms-without-a-calculator-mcat-tips-and-tricks/

computing. For instance, implementing 𝑥𝑦 as 2𝑦 log2(𝑥) and
using for that approximate radix-2 logarithm and exponential
can lead to a very inaccurate result. To illustrate that, assume
that we use the binary32/single precision format of the IEEE
754 Standard for Floating-Point Arithmetic [2], that the radix-2
logarithms and exponentials are computed using Mitchell’s ap-
proximate algorithm (formulas (2) and (3) below), and that the
multiplication 𝑦× log2(𝑥) is correctly rounded in the binary32
format. With the floating-point inputs 𝑥 = 1093369/220 ≈
1.042718 and 𝑦 = 5421709/214 ≈ 330.915, the computed
result is 1191181/64 ≈ 18612.2, whereas the exact value of
𝑥𝑦 is 1027254.94 · · · . Even the order of magnitude is wrong.

There are, roughly speaking, three families of elementary
function algorithms [3], and for each of these families, one can
find strategies for improving speed at the cost of a (controlled!)
loss in terms of accuracy:

∙ shift-and-add algorithms require a number of iterations
proportional to the desired number of digits in the result.
This is a rather slow convergence, but their main advan-
tage is that the iterations are very simple, multiplication-
free (they just use additions and shifts), and use a very
small silicon area. The most famous algorithm in that
family is CORDIC [4], [5];

∙ polynomial or rational approximations where the func-
tion to be evaluated is replaced by an approximating
polynomial or rational function, preliminarily obtained
using Remez’s algorithm [6] or a more sophisticated
method [7];

∙ table-based methods that range from “pure tabulation”
of the function when the precision is very small (we just
store its value for all possible inputs) to most sophis-
ticated algorithms that use lookups in tables and a few
arithmetic operations.

There are also in-between methods that combine two of
these strategies (for example Tang’s “table driven” methods,
e.g., [8], [9], that use tables to reduce the input argument to a
tiny interval, and polynomials of low degree for approximating
the function in that interval). In general the shift-and-add
algorithms are more suited for hardware implementations, the
polynomial/rational approximations can be used in hardware
or software, and there are table-based methods targeted either
at software [10] or hardware [11] implementation.

To these three classical classes of methods, one can
add another one, specific to approximate computing: bit-
manipulation techniques [12], [13], [14], that use specific
properties of the binary format used for representing numbers
(for instance: in floating-point arithmetic, the exponent part of
the representation of 𝑥 encodes an approximation to log2 |𝑥|).

The paper is organized as follows. In Section II, we review
some classical approximate methods for rough elementary

2

function approximation. As said above, many of them boil
down to piecewise linear approximations, where the slopes are
very simple (typically, powers of 2), so that multiplication by
them is straightforward. Section III deals with shift-and-add
algorithms. Section IV is devoted to polynomial and rational
approximations of functions. In Section V, we examine some
of the recent table-based methods. Finally, Section VI presents
bit-manipulation techniques.

II. SOME CLASSICAL TRICKS OF THE TRADE

for the radix-2 logarithm [15] is a well-known bit-
manipulation technique. It consists in approximating

log2
(︀
2𝑘 · (1 + 𝑓)

)︀
, (1)

where 0 ≤ 𝑓 < 1, by
𝑘 + 𝑓, (2)

with absolute error bounded by 0.0861. Mitchell’s goal was
to use an approximate radix-2 logarithm and exponential to
implement approximate multiplication and division. Figure 1
shows a plot of Mitchell’s approximation: it clearly illustrates
the fact that Mitchell’s algorithm computes a linear interpola-
tion of the logarithm function at the powers of 2.

Fig. 1. Mitchell’s approximation to log2(𝑥), along with the exact log2
function, plotted for 1/4 ≤ 𝑥 ≤ 3.

Mitchell’s approximation is nothing but the piecewise linear
interpolation of log2(𝑥) at the powers of 2. Its interesting
property is that it comes at almost no cost: a hardware
implementation of that method, assuming operands in binary
fixed-point arithmetic, requires a leading zero counter for
finding 𝑘, and a shifter for extracting the bits of 𝑥. We need no
multiplication, and no table lookup. Since the approximation
is always below the true radix-2 logarithm, one can diminish
the absolute error at the cost of an extra addition, by adding
half the maximum error of the approximation (2) to it.

The radix-2 exponential of 𝑥 is, in a similar fashion,
approximated by

2⌊𝑥⌋ · (1 + frac(𝑥)) . (3)

Variants of Mitchell’s algorithm have been introduced,
where log2

(︀
2𝑘 · (1 + 𝑥)

)︀
is approximated by 𝑘+ ℓ(𝑥), where

ℓ(𝑥) is a piecewise linear function of 𝑥 [16], [17], with very
simple linear coefficients (so that a multiplication by them
reduces to a few additions and shifts). Marino suggests using
ℓ(𝑥) equal to 𝑥 plus a piecewise order-2 correcting term, with
a suitable approximation to 𝑥2 [18].

Mitchell’s technique, possibly with variants, is still used
and in the recent period authors have suggested using it for
implementing logarithmic number systems [19] and neural
networks [20]. Exponentials and logarithms are important
in deep neural networks [21]. Approximate multipliers that
extend Mitchell’s technique are presented and analyzed in [22].

Functions arctan(𝑥) and arctan(𝑦/𝑥) are useful in signal
processing and computer vision, hence several authors have
suggested very simple approximations to them (a comparison
of the methods known in 2011 is given in [23]). Abramowitz
and Stegun [24] have suggested, for |𝑥| ≤ 1:

arctan𝑥 ≈ 𝑥

1 + 0.28𝑥2
. (4)

If |𝑥| > 1, one can use arctan(𝑥) = 𝜋/2 − arctan(1/𝑥).
The absolute error of the approximation (4) is less than
4.883× 10−3. Unfortunately, the constant 0.28 is not repre-
sentable with a finite number of bits in binary. It must be
rounded and the resulting rounding error must be taken into
consideration. Lyons [25] rather suggests, still for |𝑥| ≤ 1, the
approximation

arctan𝑥 ≈ 𝑥

1 + 0.28125𝑥2
. (5)

The approximation error of (5) is slightly larger (just below
4.911 × 10−3) than that of (4), but, even if is not straight-
forward when it is written in decimal, the constant 0.28125
is much more friendly: it is equal to 9/32 = 2−2 + 2−5, so
that multiplying by that constant boils down to performing an
addition and two shifts. Variants can be explored. Using the
Sollya tool presented in Section IV, one finds the following
approximation to arctan(𝑥) in [−1, 1]:

arctan𝑥 ≈ 𝑥
0.999755859375+0.03125·|𝑥|+0.24609375·𝑥2 . (6)

The absolute error of that approximation is 2.374 × 10−3.
Since 0.03125 = 2−5, multiplying by that coefficient reduces
to performing a shift, and since 0.24609375 = 2−2 − 2−8,
multiplying by that coefficient boils down to performing
one addition and two shifts. The constant coefficient of the
denominator, 0.999755859375, is in fact very simple: it is
equal to 1− 2−12.

Girones et al. [26] consider approximations of arctan(𝑦/𝑥)
suitable for object recognition in computer vision. For (𝑥, 𝑦)
in the first quadrant, their favored approximation is of the form

arctan
(︁𝑦
𝑥

)︁
≈ 𝜋

2
· 𝑘𝑥𝑦 + 𝑦2

𝑥2 + 2𝑘𝑥𝑦 + 𝑦2
, (7)

3

with 𝑘 ≈ 0.596227. The absolute error of (7) is bounded by
0.00283. Girones et al. give similar approximations for the
other quadrants. See also [27]. Approximation (7) corresponds
to an approximation to arctan(𝑧) (with 𝑧 = 𝑦/𝑥) valid for all
real 𝑧:

arctan(𝑧) ≈ sign(𝑧) · 𝑘 · |𝑧|+ 𝑧2

1 + 2𝑘 · |𝑧|+ 𝑧2
. (8)

Such “uniform” approximations have larger errors than
approximations in a closed interval, but they allow one to avoid
tests and range reduction techniques. The simplest one foir tha
arctangent function is the following [28]:

arctan𝑥 ≈ 𝜋

2
· 𝑥

|𝑥|+ 1
, (9)

for all 𝑥, with absolute error ≤ 0.072.
As noticed by Markstein [29], one frequently needs the

cosine and sine of the same angle 𝜃 simultaneously (e.g., for
performing rotations or computing Fourier transforms). Even
in classical (i.e., nonapproximate) computing, this allows one
to save delay, memory and power by sharing large parts of
the calculation (range reduction, processing of “special” cases
such as NaNs, even polynomial approximations) between
the two functions. Below is an elegant method suggested
in [30] for obtaining a (rather rough, however—there are
slightly better, yet slightly less simple, other methods in [30])
approximation to these two values simultaneously. We assume
|𝜃| ≤ 𝜋/2. First, compute

𝑥 = 𝐾 · 𝜃 − 1

2
, (10)

with

𝐾 =
81

128
= 0.10100012. (11)

Then, compute

𝑆 = −𝑥2 +
3

4
+ 𝑥, (12)

and

𝐶 = −𝑥2 +
3

4
− 𝑥. (13)

Note that the only difference between 𝑆 and 𝐶 is the last
operation: most of the computation is common. Constant 𝐾
is an approximation to 2/𝜋. Multiplying by 𝐾 only requires
three shifts and 2 additions, since its binary representation
contains only 3 ones. We have

|𝑆 − sin(𝜃)| < 0.054, (14)

and

|𝐶 − cos(𝜃)| ≤ 0.063. (15)

Fig. 2 gives a plot of 𝐶 and 𝑆, compared with sin(𝜃) and
cos(𝜃).

Fig. 2. The two approximations 𝑆 and 𝐶 to sin(𝜃) and cos(𝜃) given by
(12) and (13) [30].

III. SHIFT-AND-ADD ALGORITHMS

Shift-and-Add algorithms can be traced back to one of the
first methods (the “radix method”) designed by Henry Briggs
(1561–1631) for building the first tables of logarithms [31]. In
its first and simplest version, due to Volder [4], the CORDIC
algorithm based upon the following iteration,⎧⎪⎪⎨⎪⎪⎩

𝑥𝑛+1 = 𝑥𝑛 − 𝑑𝑛𝑦𝑛2
−𝑛

𝑦𝑛+1 = 𝑦𝑛 + 𝑑𝑛𝑥𝑛2
−𝑛

𝑧𝑛+1 = 𝑧𝑛 − 𝑑𝑛 arctan 2
−𝑛,

(16)

where the terms arctan 2−𝑛 are precomputed and stored, and
𝑑𝑛 = ±1. Hence the only “multiplications” that appear in (16)
are by ±1 and by powers of 2. They are straightforwardly
implemented in hardware (especially if 𝑛 is small, which will
be the case if we aim at low accuracy). Detailed descriptions
of CORDIC can be found in [32], [33], [3].

In the rotation mode of CORDIC, we choose 𝑑𝑛 =
sign(𝑧𝑛). If

|𝑧0| ≤
∞∑︁
𝑘=0

arctan 2−𝑘 = 1.74328662047234 · · · , (17)

then (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)
𝑡 converges to

𝐾 ×

⎛⎝ 𝑥0 cos 𝑧0 − 𝑦0 sin 𝑧0
𝑥0 sin 𝑧0 + 𝑦0 cos 𝑧0

0

⎞⎠ , (18)

where 𝐾 =
∏︀∞

𝑛=0

√
1 + 2−2𝑛 = 1.646760258121 · · · . For

instance, the sine and cosine of 𝑧0 can be computed by
choosing 𝑥0 = 1/𝐾 and 𝑦0 = 0. In the vectoring mode, we

4

choose 𝑑𝑛 = −sign(𝑦𝑛), and we obtain

𝑧𝑛 → 𝑧0 + arctan

(︂
𝑦0
𝑥0

)︂
. (19)

Slight modifications to (16) make it possible to evaluate
several other functions with CORDIC:

√
𝑥, cosh(𝑥), sinh(𝑥),

arcsin(𝑥), arccos(𝑥), 𝑒𝑥, ln(𝑥), etc.
A more sophisticated algorithm, for evaluating exponentials

and logarithms, is the following (it is a variant of an algorithm
introduced by Takagi in [34]). We perform the iteration

𝐿𝑛+1 = 𝐿𝑛 − ln (1 + 𝑑𝑛2
−𝑛)

𝐸𝑛+1 = 𝐸𝑛 (1 + 𝑑𝑛2
−𝑛) = 𝐸𝑛 + 𝑑𝑛𝐸𝑛2

−𝑛,
(20)

with 𝐿𝑛 and 𝐸𝑛 represented in signed-digit arithmetic (i.e.,
radix 2 and digits −1, 0 and 1) to allow fully parallel,
carry-free additions (a very similar strategy is possible with
carry-save arithmetic), with the constants ln (1± 2−𝑛) pre-
calculated and stored, and where 𝑑𝑛 is chosen as follows:

∙ for computing exponentials: if 𝐿*
𝑛 is 2𝑛𝐿𝑛 truncated after

the first fractional digit, we choose

𝑑𝑛 =

⎧⎨⎩ −1 if 𝐿*
𝑛 ≤ −1

0 if −1/2 ≤ 𝐿*
𝑛 ≤ 0

+1 if 𝐿*
𝑛 ≥ 1/2.

(21)

This choice will ensure 𝐸𝑛 → 𝐸1𝑒
𝐿1 , provided that

𝐿1 ∈

[︃ ∞∑︁
𝑖=1

ln
(︀
1− 2−𝑖

)︀
,

∞∑︁
𝑖=1

ln
(︀
1 + 2−𝑖

)︀]︃
≈ [−1.24206, 0.868876].

(22)

∙ for computing logarithms: if 𝜆𝑛 is 2𝑛(𝐸𝑛 − 1) truncated
after the first fractional digit, we choose

𝑑𝑛 =

⎧⎨⎩ +1 if 𝜆𝑛 ≤ −1/2
0 if 𝜆𝑛 = 0 or 1/2

−1 if 𝜆𝑛 ≥ 1.
(23)

This choice will ensure 𝐿𝑛 → 𝐿1 + ln(𝐸1), provided
that

𝐸1 ∈

[︃ ∞∏︁
𝑖=1

(1− 2−𝑖),

∞∏︁
𝑖=1

(1 + 2−𝑖)

]︃
≈ [0.28879, 2.38423].

(24)

For details, proofs, similar algorithms, and how the
choice (23) can be implemented just by examining a window
of 4 digits, see [3].

A detailed ad hoc error analysis that takes into account the
chosen algorithm, the input domain and the precision of the
intermediate operands is necessary, but roughly speaking, to
obtain 𝑛 bits of accuracy in the result with these algorithms,
we need to perform slightly more than 𝑛 iterations.

Hence, to obtain fast approximations with these algorithms,
a first solution is just to stop the iterations as soon as we have
enough accuracy for the target application. This allows for a
fine tuning of the tradeoff between speed and accuracy. This
is what Mikaitis et al. do for implementing the exponential
function on a neuromorphic chip [35], using iteration (20).
This is a clear advantage of shift-and-add algorithms: with

the other classes of algorithms (polynomials, tables), the
implementation is designed for a specific target accuracy,
whereas the same implementation of CORDIC, for instance,
can be used for 4-bit or for 64-bit approximations, it suffices to
stop the iterations at the desired step. However, the intrinsically
linear convergence of these algorithms (number of bits of
accuracy proportional to the number of iterations) makes them
less interesting than polynomial approximations beyond single
precision.

Fig. 3. CORDIC approximation to cos(𝑥) with 5 iterations only, plotted
with the real function cos(𝑥). The number of scales doubles each time we
perform one more iteration.

A more subtle way of simplifying the calculations at the
cost of a small loss in accuracy is to notice that the constants
arctan(2−𝑛) and ln(1 ± 2−𝑛) that appear in (16) and (20)
satisy ⃒⃒

arctan(2−𝑛)− 2−𝑛
⃒⃒
≈ 2−3𝑛

3
, (25)

⃒⃒
ln(1 + 2−𝑛)− 2−𝑛

⃒⃒
≈ 2−2𝑛

2
, (26)

and ⃒⃒
ln(1− 2−𝑛) + 2−𝑛

⃒⃒
≈ 2−2𝑛

2
. (27)

Hence, if 2−𝑡 is the target accuracy, as soon as 𝑛 > 𝑡/3,
arctan(2−𝑛) can be replaced by 2−𝑛 in (16), and as soon
as 𝑛 > 𝑡/2, ln(1 + 𝑑𝑛2

−𝑛) can be replaced by 𝑑𝑛2
−𝑛

in (20). Beyond the obvious gain in terms of silicon area,
this can be exploited in several ways: Ahmed [36] uses that
property for replacing the last 𝑡/2 iterations of CORDIC by
one multiplication (by remarking that when arctan(2−𝑛) is
replaced by 2−𝑛 starting from step 𝑛0, iteration (16) is nothing
but a multiplication by 𝑧𝑛0

). Baker [37] uses that property
for avoiding the comparisons required for choosing 𝑑𝑛. In
a similar fashion, Juang et al. [38] use that property for
generating the terms 𝑑𝑛 in (16) in parallel in two phases in a
dedicated architecture, and Chen et al. [39], [40] modify their

5

architecture to avoid the need for two phases for generating
the terms 𝑑𝑛, at the cost of being nonexact: their algorithm is
an intrinsically approximate CORDIC algorithm.

Another way of accelerating shift-and-add algorithms is to
consider high radix variants [41], that require less iterations
at the cost of significantly more complex iterations. To our
knowledge, this has never been done for doing approximate
computing.

IV. POLYNOMIAL AND RATIONAL APPROXIMATIONS

Polynomial approximations are the most widely used
method for designing elementary function software. They can
be used for any accuracy target (a few bits to hundreds of
bits). If 𝒫𝑛 is the set of the polynomials of degree less than
or equal to 𝑛, the minimax degree-𝑛 polynomial for function
𝑓 in [𝑎, 𝑏] is the polynomial 𝑝* that satisfies

max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)− 𝑝*(𝑥)| = min
𝑞∈𝒫𝑛

(︂
max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)− 𝑞(𝑥)|
)︂
. (28)

An algorithm due to Remez [6], [42] computes 𝑝*. The
approximation error decreases with 𝑛, but the speed with
which it decreases depends much on the function (see [3, Table
3.3 and Fig. 3.9]).

A straightforward way of saving delay, silicon area (for
hardware implementations) and energy using polynomial ap-
proximations is to lower the degree of the approximating
polynomial. However, one can replace that solution or combine
it with a more involved trick: one can force some of the
polynomial coefficients to be very simple (say, they fit into
a very small number 𝑘 of bits), so that a multiplication by
them reduces to a very small number of additions. One can
even force some small coefficients to be zero. However, all this
must be done with care: as we are going to see below with an
example, rounding to 𝑘 bits the coefficients of the minimax
polynomial does not, in general, give the best approximation
to 𝑓 among the elements of 𝒫𝑛 whose coefficients fit into 𝑘
bits.

Such “sparse-Coefficient” polynomial approximations have
been considered in [43]. A first strategy for obtaining them was
introduced in [44]. The state-of-the-art tool for obtaining such
approximations is Sollya2, developed by Chevillard, Joldes
and Lauter [45]. Sollya uses techniques presented in [7] by
Brisebarre and Chevillard, based on the theory of Euclidean
lattice reduction.

To illustrate what can be done with Sollya, let us consider
the following example. One wishes to approximate the expo-
nential function in [0, 1] by a very small polynomial: a degree-
2 polynomial, with coefficients that fit in at most 4 bits (so
that a multiplication by such coefficients is straightforward).

First, let us eliminate the degree-2 Taylor expansion of the
exponential at the origin: it approximates the exponential in
[0, 1] with maximum error around 0.218, which is quite large.

The minimax approximation to 𝑒𝑥 in [0, 1] is given by the
Remez algorithm. It is equal to

2http://sollya.gforge.inria.fr

𝑃1(𝑥) = 1.0087560221136893228 · · ·
+ 0.8547425734330620925 · · · × 𝑥
+ 0.84602721079860449719 · · · × 𝑥2.

(29)

Such a polynomial can be generated by the Sollya Remez
command. The error of that approximation can be obtained
using the Sollya command

supnorm(P1,exp(x),[0;1],absolute,2^(-40));

That command generates an interval, of length bounded by
around 2−40 that is guaranteed to contain the approximation
error. Here, the obtained error is 8.7561×10−3. Unfortunately,
the polynomial 𝑃1 does not satisfy our requirements: its
coefficients do not fit in 4 bits. In general, the coefficients
of the minimax polynomial to a nontrivial function do not fit
exactly in a finite number of bits. The first idea that springs
in mind is to round each of the coefficients of 𝑃1 to 4 bits.
This gives a polynomial 𝑃2 equal to

𝑃2(𝑥) = 1 +
7

8
𝑥+

7

8
𝑥2. (30)

That polynomial approximates 𝑒𝑥 in [0, 1] with maximum
error 3.671× 10−2: we have lost much accuracy by rounding
the coefficients of 𝑃1. However, there is no reason for 𝑃2 to be
the best approximating polynomial to 𝑒𝑥 among the degree-2
polynomials with 4-bits coefficients.

We obtain a best or nearly best approximating polynomial
to 𝑒𝑥 among the degree-2 polynomials with 4-bits coefficients
using the Sollya command line

P3 = fpminimax(exp(x),2,[|4...|],[0;1],absolute);

The obtained polynomial is

𝑃3(𝑥) = 1 +
15

16
𝑥+

3

4
𝑥2, (31)

and the approximation error is less than 3.0782×10−2, which
is significantly better than the one of 𝑃2. Sollya returns a
certified approximation error (we can ask it to output a proof),
obtained using techniques presented in [46]. The only “real”
multiplication3 required when evaluating 𝑃3 is for computing
𝑥2: the multiplications by 15/16 and 3/4 are straightforwardly
replaced by one shift and one subtraction. Fig. 4 plots the
difference between 𝑃3(𝑥) and 𝑒𝑥, and the difference between
𝑃2(𝑥) and 𝑒𝑥.

With polynomial approximations, chance plays a role:
depending on the function, the domain, and the requested
accuracy, we may have very low degree and very simple
coefficients (such as powers of 2) which will make these
approximations very attractive, or not.

To obtain the overall error when using a polynomial ap-
proximation 𝑝 to some function 𝑓 , we must add to the
“approximation error” (i.e., the maximum of |𝑓 − 𝑝| in the
considered interval) the error committed when evaluating 𝑝.
Errors on evaluating a polynomial can be computed using
Melquiond’s Gappa tool [47], [48], [49].

3And of course it can be an approximate multiplication: there is no need
for it to be much more accurate than the final approximation to the function.

6

Fig. 4. Plot of 𝑃3(𝑥)−𝑒𝑥 (obtained through Sollya) and 𝑃2(𝑥)−𝑒𝑥 (Remez
polynomial with coefficients rounded to 4 bits), for 𝑥 ∈ [0, 1].

Some authors have attempted to generate function approx-
imations automatically [50], [51]. This allows one to explore
a large design space (one can try many different solutions),
and to compute “just right”: the approximations are especially
suited to the exact needs of the considered application. “Com-
puting just right” is the motto of the Flopoco tool4. That
tool was built by De Dinechin and his students [52], [53].
It mainly (but not solely) targets FPGA implementation of
arithmetic operators and functions. An example of the use of
Flopoco for computing reasonably low precision (12 or 16
bits) arctan(𝑦/𝑥) is given in [54].

Polynomials approximations are valid in a bounded interval
𝐼 only. One needs to use ad hoc (i.e., dependent on algebraic
properties of the function being approximated) techniques to
reduce the initial input argument to some element of 𝐼 . Some
choices may seem obvious at first glance, but one needs to
be cautious. For instance, Goldberg [55] shows that for the
log2 function, the counterintuitive choice 𝐼 = [0.75, 1.5] is far
better than the straightforward choice 𝐼 = [1, 2].

Division is a significantly slower arithmetic operation than
multiplication. As a consequence, when very fast approxima-
tions are at stake, rational approximations to functions are
seldom advisable. However, there are exceptions to that rule:

∙ some functions have a behavior (such as poles, or finite
limits at ±∞) that is “highly nonpolynomial”. Correctly
approximating these functions by polynomials would
require large degrees and/or dividing the input domain
into many subdomains, with a different approximation for
each subdomain (and, at run time, many tests necessary
for finding in which subdomain the input variable lies);

∙ in some cases, one may want to obtain uniform approxi-
mations to a given function in the whole real line (or in a

4http://flopoco.gforge.inria.fr

half line), to avoid having to perform a preliminary range
reduction. This will, in general, be impossible to do with
polynomials: they have only one kind of behavior at ±∞.

An illustration of these exceptions is the approximation (9)
to the arctangent, valid for all real inputs. Incidentally, one
can improve (9) slightly. For instance, one can obtain

arctan(𝑥) ≈ 𝑥
85
128 + 157

256 · |𝑥|
, (32)

for all real 𝑥, with absolute error less than 6.24× 10−2, or

arctan(𝑥) ≈ 𝑥+ 𝑥2

31
32 + 61

64 · 𝑥+ 655
1024 · 𝑥2

, (33)

for all positive real 𝑥, with error less than 7.44× 10−3.
Winitzki [28] gives the approximation (9). He also gives the

following uniform (valid in [0,+∞)) approximation to erf(𝑥):

erf(𝑥) = 1− 𝑒−𝑥2

𝑥
√
𝜋
· 𝑔(𝑥), (34)

with

𝑔(𝑥) ≈ 𝑥
√
𝜋 + (𝜋 − 2)𝑥2

1 + 𝑥
√
𝜋 + (𝜋 − 2)𝑥2

. (35)

Note in (35) the similarity between the numerator and
denominator: almost all the computation necessary for their
evaluation is shared). Winitzki claims that it provides a uni-
form approximation to erf with an error less than 0.02. He
also gives uniform approximations to Bessel functions, the
Airy function, and Lambert’s 𝑊 function. His approxima-
tions somehow generalize Padé-Hermite approximants [56]:
he builds rational functions whose first terms of the series
expansions at 0 and ∞ coincide with those of the function.

V. TABLE-BASED METHODS

A. Simple tabulation of the function

When we need less than around 8 to 12 bits of accuracy, it
is tempting to simply tabulate the function in a table addressed
by the most significant bits of the input operand. Let 𝑓 be the
function, let 𝑥 = 0.𝑥1𝑥2𝑥3 · · ·𝑥𝑛 be the input operand, repre-
sented in binary fixed point arithmetic (assuming 0 ≤ 𝑥 < 1
to simplify the presentation), and assume that we build a table
with 𝑝 address bits (i.e., 2𝑝 elements). Let 𝑇𝑥1𝑥2𝑥3···𝑥𝑝 be the
value stored in the table at the location addressed by the first
𝑝 bits of 𝑥. For all numbers in the interval

𝐼𝑥1𝑥2𝑥3···𝑥𝑝 =
[︁
0.𝑥1𝑥2𝑥3 · · ·𝑥𝑝, 0.𝑥1𝑥2𝑥3 · · ·𝑥𝑝 + 2−𝑝

)︁
,

the same result will be returned. What is the best value to
store? The first idea that springs in mind is to choose

𝑇𝑥1𝑥2𝑥3···𝑥𝑝
= 𝑓(0.𝑥1𝑥2𝑥3 · · ·𝑥𝑝). (36)

In general (36) is not the best idea: in most cases, 𝑓 is
monotonic in the interval 𝐼𝑥1𝑥2𝑥3···𝑥𝑝

, so that in that inter-
val, 𝑓(𝑥) will either be always larger or always less than
𝑓(0.𝑥1𝑥2𝑥3 · · ·𝑥𝑝). The value that minimizes the absolute
error is

𝑇𝑥1𝑥2···𝑥𝑝 =
1

2

(︂
min

𝐼𝑥1𝑥2···𝑥𝑝

𝑓(𝑥) + max
𝐼𝑥1𝑥2···𝑥𝑝

𝑓(𝑥)

)︂
. (37)

7

Since in general 𝑓 is monotonic in 𝐼𝑥1𝑥2𝑥3···𝑥𝑝
, the “min”

and the “max” in (37) are almost always attained at the
two extremal points 0.𝑥1𝑥2 · · ·𝑥𝑝 and 0.𝑥1𝑥2 · · ·𝑥𝑝 + 2−𝑝.
Interestingly enough, if the value being tabulated serves as a
seed value for a few Newton-Raphson iterations, storing the
value (37) that minimizes the initial error (i.e., the distance
between the seed value and the value of the function) is
not necessarily the best choice: one can store in the table a
value that minimizes the final error (i.e., the distance between
the result obtained after the iterations and the value of the
function). This is investigated in [57].

B. Bipartite and multipartite table methods

Since the size of a table increases exponentially with the
number of address bits, simple tabulation of a function (as
described in the previous section) becomes impossible if
accurate results are at stake. The bipartite and multipartite
table methods make it possible to extend the domain of
applicability of table methods to around 20 bits of accuracy.
Sunderland et al. [58], have suggested a way of computing an
approximation to the sine of a 12-bit number 𝑥 less than 𝜋/2,
using small tables. Their method consists in splitting the binary
representation of 𝑥 into three 4-bit words 𝐴, 𝐵, and 𝐶, with
𝐴 < 𝜋/2, 𝐵 < 𝜋/32 and 𝐶 < 𝜋/512, so that 𝑥 = 𝐴+𝐵+𝐶,
and to use

sin(𝐴+𝐵 + 𝐶) ≈ sin(𝐴+𝐵) + cos(𝐴) sin(𝐶). (38)

Formula (38) is easily deduced from

sin(𝐴+𝐵 + 𝐶) = sin(𝐴+𝐵) cos(𝐶)
+ cos(𝐴+𝐵) sin(𝐶),

(39)

and the fact that, since 𝐶 is small, cos(𝐶) is very close to 1
and sin(𝐶) is small enough so that approximating cos(𝐴+𝐵)
by cos(𝐴) in (39) has little influence on the final result.

By using (38), instead of one table with 12 address bits (i.e.,
with 212 elements), one needs two tables—one for sin(𝐴 +
𝐵) and one for cos(𝐴) sin(𝐶))—each of them with 8 address
bits only. This results in a total table size 8 times smaller.
The largest absolute error committed by using (38) is 8.765×
10−4 = 2−10.16.

This was the first use of what is now called the bipartite
table method. That method was re-discovered (in a totally
different context) and named bipartite by DasSarma and Mat-
ula [59], who wanted to generate seed values for computing
reciprocals using the Newton–Raphson iteration. The bipartite
method was later on generalized to arbitrary functions by
Schulte and Stine [60], [61], [62].

Assume we wish to approximate 𝑓(𝑥), where 𝑥 is a 𝑝-bit
fixed-point number in [0, 1]. Define 𝑘 = ⌈𝑝/3⌉. We split 𝑥
into three 𝑘-bit numbers 𝑥0, 𝑥1, and 𝑥2, so that

𝑥 = 𝑥0 + 2−𝑘𝑥1 + 2−2𝑘𝑥2,

where 𝑥𝑖 is a multiple of 2−𝑘 and 0 ≤ 𝑥𝑖 < 1. The bipartite
method consists in approximating 𝑓(𝑥) by

𝐴(𝑥0, 𝑥1) +𝐵(𝑥0, 𝑥2) (40)

where
𝐴(𝑥0, 𝑥1) = 𝑓(𝑥0 + 2−𝑘𝑥1)

𝐵(𝑥0, 𝑥2) = 2−2𝑘𝑥2 · 𝑓 ′(𝑥0).
(41)

This is illustrated by Figure 5.
How does it work? First, the order-1 Taylor-Lagrange for-

mula for 𝑓 at point 𝑥0 + 2−𝑘𝑥1 gives

𝑓(𝑥0 + 2−𝑘𝑥1 + 2−2𝑘𝑥2)

= 𝑓(𝑥0 + 2−𝑘𝑥1) + 2−2𝑘𝑥2 · 𝑓 ′(𝑥0 + 2−𝑘𝑥1) + 𝜖1,
(42)

with

|𝜖1| ≤
1

2
· (2−2𝑘𝑥2)

2 max
[0,1]

|𝑓 ′′| ≤ 2−4𝑘−1 max
[0,1]

|𝑓 ′′|. (43)

Then, we can replace the term 𝑓 ′(𝑥0 + 2−𝑘𝑥1) in (42) by
𝑓 ′(𝑥0), using the order-0 Taylor-Lagrange formula for 𝑓 ′:

𝑓 ′(𝑥0 + 2−𝑘𝑥1) = 𝑓 ′(𝑥0) + 𝜖2, (44)

with

|𝜖2| ≤ 2−𝑘 · |𝑥1| ·max
[0,1]

|𝑓 ′′| ≤ 2−𝑘 max
[0,1]

|𝑓 ′′|. (45)

Combining (42), (43), (44), and (45), we obtain

𝑓(𝑥0+2−𝑘𝑥1+2−2𝑘𝑥2) = 𝐴(𝑥0, 𝑥1)+𝐵(𝑥0, 𝑥2)+ 𝜖, (46)

with

|𝜖| = |𝜖1 + 2−2𝑘𝑥2𝜖2| ≤
(︀
2−4𝑘−1 + 2−3𝑘

)︀
·max
[0,1]

|𝑓 ′′|. (47)

If the values of 𝐴(𝑥0, 𝑥1) and 𝐵(𝑥0, 𝑥2) stored in the tables
are rounded to the nearest 𝑝-bit number, then the total error
of the approximation is bounded by

2−𝑝 +
(︀
2−4𝑘−1 + 2−3𝑘

)︀
max
[0,1]

|𝑓 ′′|. (48)

Hence, if |𝑓 ′′| has the same order of magnitude as |𝑓 |
(otherwise the method needs to be slightly modified), we
obtain an error only slightly larger than the one we would
get by fully tabulating 𝑓 , with 2 tables of 2𝑝/3 address bits
instead of one with 𝑝 address bits, which is a very significant
improvement.

Figure 6 gives a plot of the bipartite approximation to ln(𝑥)
in [1/4, 1], assuming 𝑘 = 2 (this is a toy example, since in
this case a 3𝑘-address-bit table would be very cheap: with a
larger 𝑘, the approximation would not be discernable from the
function on the plot). In Fig. 6, the approximation is always
larger than the logarithm. A variant of the bipartite method,
called symmetric bipartite tables method [60], [61], [62] makes
it possible to use that phenomenon to lower the error.

Figure 7 compares the error of the bipartite approximation to
ln(𝑥) in [1/2, 1] for 𝑘 = 5 with the error resulting from reading
the logarithm in a 15-address-bit table. This corresponds to a
rather cheap implementation: we just need to add two values
read in tables with 210 = 1024 elements, instead of reading
one value in a table with 215 = 32768 elements. The price to
pay is a significant loss in accuracy: maximum error around
1.2× 10−4 instead of 6.1× 10−5.

The bipartite method is not the only method that decom-
poses a function into a sum of simpler-to-tabulate functions.

8

𝑥0 𝑥1 𝑥2

𝑘

𝐴(𝑥0, 𝑥1) 𝐵(𝑥0, 𝑥2)

+

≈ 𝑓(𝑥)

𝑘 𝑘 𝑘 𝑘

Fig. 5. The bipartite method. The 3𝑘-bit input 𝑥 is split into three 𝑘-
bit numbers 𝑥0, 𝑥1, and 𝑥3. Instead of using one 3𝑘-address-bit table for
storing the values 𝑓(𝑥), we use two 2𝑘-address-bit tables: one stores the
values 𝐴(𝑥0, 𝑥1) = 𝑓(𝑥0 + 2−𝑘𝑥1), and the other one stores the values
𝐵(𝑥0, 𝑥2) = 2−2𝑘𝑥2 · 𝑓 ′(𝑥0). The number 𝑓(𝑥) is approximated by
𝐴(𝑥0, 𝑥1) +𝐵(𝑥0, 𝑥2).

Fig. 6. Bipartite approximation of ln(𝑥) in [1/4, 1] with 𝑘 = 2, along with
the exact ln function.

Hassler and Takagi have presented such a method, based on the
representation of the function by partial product arrays [63].

To improve the bipartite method, instead of using two tables,
one can try to use several, even smaller, tables. This leads to
the idea of multipartite table methods, introduced by Schulte
and Stine [62]. Later on, De Dinechin and Tisserand improved
these multipartite methods [64] and made them very attractive.
A recent analysis of that class of algorithms and a new

Fig. 7. Error of a bipartite approximation of ln(𝑥) in [1/2, 1] with 𝑘 = 5,
compared with the error of a 15-address-bit table.

variant called hierarchical multipartite methods are presented
by Hsiao et al. in [65].

VI. BIT-MANIPULATION TECHNIQUES

So far, we have adapted to the context of approximate
computing techniques that are used in classical computing.
Let us now examine methods that are specific to approximate
computing. These methods are very fast, but do not allow one
to obtain more than a few (say, 5-6) bits of precision. Several
algorithms use the fact that the exponent part of the floating-
point representation of a number 𝑥 encodes ⌊log2 |𝑥|⌋. Using
shifts and integer operations, one can modify the exponent,
or move it to the fraction part. For instance, dividing by two
the exponent gives a rough approximation to

√
𝑥 (we will

give a somehow better approximation below). That division
by 2 cannot be implemented just by a right-shift, because in
IEEE-754, the exponents are represented with a bias: if 𝑥 is
not a subnormal number and 𝑒𝑥 = ⌊log2 |𝑥|⌋, the number
stored in the exponent part is 𝑒𝑥 + 𝑏, where 𝑏 is equal to
15 in the binary16 format, 127 in binary32/single precision,
and 1023 in binary64/double precision. Hence in practice, one
performs a right-bit shift, and adds (with an integer addition,
not a floating-point one) a “magic constant” to compensate
for the bias (the magic constant can be tuned to minimize
the maximum relative error). This gives rise to fast methods,
used in computer graphics, for computing square roots or
inverse square roots [13], [14] (frequently, the initial estimate
is improved by performing one or two steps of the Newton-
Raphson iteration). Let us now give a few examples.

Consider the IEEE-754 binary32 (a.k.a. single precision)
representation of a floating-point number 𝑥, depicted Fig. 8.
It is made-up with a 1-bit sign 𝑆𝑥, a 8-bit biased exponent

9

𝐸𝑥, and a 23-bit fraction 𝐹𝑥 such that

𝑥 = (−1)𝑆 × 2𝐸𝑥−127 ×
(︀
1 + 2−23 · 𝐹𝑥

)︀
. (49)

Alternatively, the same bit-chain, if interpreted as 2’s com-
plement integer, represents the number

𝐼𝑥 = (1− 2𝑆𝑥) · 231 +
(︀
223 · 𝐸𝑥 + 𝐹𝑥

)︀
. (50)

31 30 23 22 0

𝑆𝑥 𝐸𝑥 𝐹𝑥

Fig. 8. The IEEE-754 binary32 (a.k.a. single precision) representa-
tion of a floating-point number 𝑥. The floating-point exponent 𝑒𝑥 of 𝑥
is 𝐸𝑥 − 127, the significand 𝑚𝑥 of 𝑥 is 1 + 2−23 · 𝐹𝑥, so that
𝑥 = (−1)𝑆 × 2𝐸𝑥−127 ×

(︀
1 + 2−23 · 𝐹𝑥

)︀
.

Let us assume that a fast conversion from integer to floating-
point is available. Call Float the corresponding function:
Float(𝐼) is the floating-point number mathematically equal
to 𝐼 . Beware, if 𝑦 = Float(𝐽), and 𝐼𝑥 = 𝐽 , 𝑥 is not equal
to 𝑦: we have mathematical equality of the integer 𝐽 and the
real 𝑦, and equality of the binary representations of 𝐽 and 𝑥.

Assume 𝑥 is a nonnegative FP number:

𝑥 = (1 + 𝑓𝑥) · 2𝑒𝑥 = 2𝐸𝑥−127 ×
(︀
1 + 2−23 · 𝐹𝑥

)︀
. (51)

From (50) and 𝐼1 = 127× 223, one easily deduces

2−23(𝐼𝑥 − 𝐼1) = (𝐸𝑥 − 127) + 2−23 · 𝐹𝑥

= 𝑒𝑥 + 𝑓𝑥

≈ log2(𝑥).

(52)

Blinn [13] suggests to use (52), i.e., to approximate log2(𝑥)
by 2−23 · Float(𝐼𝑥 − 𝐼1). One easily notices that this is the
same approximation (hence, with the same maximum absolute
error bound 0.0861) as Mitchell’s approximation (2).

The square root approximation suggested by Blinn is
slightly more complex. Still consider a floating-point number
𝑥 as in (51).

∙ If 𝑒𝑥 is even (i.e., 𝐸𝑥 is odd), we use the approximation√︀
(1 + 𝑓𝑥) · 2𝑒𝑥 ≈

(︂
1 +

𝑓𝑥
2

)︂
· 2

𝑒𝑥
2 , (53)

i.e., we use the Taylor series for
√
1 + 𝑓 at 𝑓 = 0;

∙ if 𝑒𝑥 is odd (i.e., 𝐸𝑥 is even), we use the approximation√︀
(1 + 𝑓𝑥) · 2𝑒𝑥 =

√︀
(2 + 2𝑓𝑥) · 2𝑒𝑥−1

=
√
4 + 𝜖𝑥 · 2

𝑒𝑥−1
2

≈
(︀
2 + 𝜖𝑥

4

)︀
· 2

𝑒𝑥−1
2

=
(︁

3
2 + 𝑓𝑥

2

)︁
· 2

𝑒𝑥−1
2 ,

(54)

i.e., we use the Taylor series for
√
4 + 𝜖𝑥 at 𝜖𝑥 = 0, with

𝜖𝑥 = 2𝑓𝑥 − 2.
In both cases, this consists in approximating 𝑥 by 𝑦, such that

𝐼𝑦 =

⌊︂
𝐼𝑥
2

⌋︂
+ 127 · 222. (55)

That approximation is very fast: one just performs a one-
position right shift and an integer addition. However, as one

can see on Fig. 9, it is a rather rough approximation. The
largest relative error, obtained by exhaustive testing (sub-
normal numbers excluded) is 0.0607. As one can notice,
the approximation is always larger then the exact square-
root. Hence it is possible to obtain a better approximation
by replacing the constant 127 · 222 = 532676608 in (55)
by a slightly smaller number. Figure 10 shows the relative
difference between the approximation and the square root if
we replace the constant by 532369100. With that constant, the
largest relative error becomes 0.03476.

Fig. 9. Relative difference between Blinn’s approximation to
√
𝑥 and the

actual
√
𝑥 in [1, 4] (function Asqrt in [13]).

Fig. 10. Relative difference between Approximation (55) to
√
𝑥 with the

constant 127 · 222 replaced by 532369100 and the actual
√
𝑥 in [1, 4].

Very similarly, the inverse square root of 𝑥 is approximated

10

by 𝑦 such that [13]

𝐼𝑦 = −
⌊︂
𝐼𝑥
2

⌋︂
+ℳ, (56)

with
ℳ = 127 ·

(︀
223 + 222

)︀
. (57)

Again, this is a very fast (one shift and one integer addition)
yet rather crude approximation, as shown in Fig. 12. The
maximum relative error (obtained through exhaustive testing)
is 0.0887. As we can notice from Fig. 12, the approximation is

Fig. 11. Relative difference between Blinn’s approximation (56) to 1/
√
𝑥

and the actual 1/
√
𝑥 in [1, 4] (function Ainversesqrt in [13]).

always larger than 1/
√
𝑥. One can therefore get a significantly

better approximation by replacing in (56) the constant given
in Eq. (57) by a slightly different value:

ℳ = 1597463007. (58)

That “magic constant” (probably better known by its hex-
adecimal floating-point representation 0x5F3759DF) has an
interesting history [66]. It has been used in a famous video
game. The largest relative error (obtained through exhaustive
testing) using that constant is 0.0344. The magic constant
(58) is not optimal: Moroz et al. [14] give a slightly better
constant, ℳ = 1597465647, for which the largest relative
error is 0.03422.

This approximation can be very significantly improved by
performing one or two steps of the Newton-Raphson iteration
for 1/

√
𝑥:

𝑦𝑛+1 = 𝑦𝑛 ·
(︂
3

2
− 1

2
· 𝑥 · 𝑦2𝑛

)︂
. (59)

Iteration (59) converges to 1/
√
𝑥 as soon as 𝑦0 ∈

(0,
√
3/

√
𝑥). Convergence is very fast (quadratic) if 𝑦0 is

close to 1/
√
𝑥. That iteration is frequently used [67] for

implementing the inverse square root and the square root
(
√
𝑥 is obtained as 𝑥 × (1/

√
𝑥)). See [68] for more details.

Fig. 12. Relative difference between approximation (56) to 1/
√
𝑥 and the

actual 1/
√
𝑥 in [1, 4] with the “magic constant” 127 ·

(︀
223 + 222

)︀
replaced

by 1597463007.

The coefficients 3/2 and 1/2 in (59) are the best ones only
asymptotically (as the number of iterations goes to infinity or,
equivalently, as 𝑦𝑛 goes to 1/

√
𝑥). However, as noticed by

Blinn [13], if one performs just one or two iterations with the
first term 𝑦0 deduced from (56), one can get a better accuracy
with slightly different coefficients. Blinn suggests

𝑦1 = 𝑦𝑛 ·
(︀
1.47− 0.47 · 𝑦2𝑛

)︀
. (60)

Figure 13 plots the relative error of these various approxi-
mations.

Fig. 13. Relative difference between the approximation obtained by getting
𝑦0 from (56) and then performing (59) or (60) and the exact 1/

√
𝑥.

11

A careful error analysis of this class of methods for approx-
imating the inverse square root, along with a derivation of the
optimal values of the “magic constant” ℳ in (56) is given by
Moroz et al. [14]. In particular, the best choice for the constant
slightly depends on whether we directly use the estimate (56)
as an approximation to 1/

√
𝑥 or we perform one or two

Newton-Raphson iterations to get a better approximation. In a
recent paper [69] based on a similar analysis, Walczyk et al.
also suggest modified Newton-Raphson iterations that give a
better result.

VII. DISCUSSION

It is difficult to compare the methods presented in this paper,
since they differ in terms of versatility (which functions can be
implemented with the method?), accuracy and scalability (does
the considered method still work if we need better accuracy?).
However, let us summarize their main properties.

∙ for software implementations, if rather rough approxima-
tions suffice (typically, relative error of a few percents),
bit-manipulations techniques are hard to beat. Typically,
a logarithm or a square root are approximated with one
addition and a shift. These approximations can also be
used as “seed values” for obtaining better approxima-
tions using Newton-Raphson iterations. However, these
methods are limited to a small set of functions (radix-2
exponentials and logarithms, small powers);

∙ for hardware implementations, shift-and-add algorithms
have the great advantage of allowing fine tuning of the
speed-vs-accuracy compromise. Obtaining 𝑛 bits of ac-
curacy with these methods requires to perform a number
of shifts and additions proportional to 𝑛 (and we need to
store around 𝑛 𝑛-bit constants). These methods scale-
up quite well (even if for large 𝑛—which is not the
topic of this paper—they become less interesting that
polynomial approximations), but they are interesting for
moderate precision (for instance, De Dinechin et al. [54]
find that when low-precision FPGA implementation of
the arctan function, CORDIC is a good candidate).
These methods cannot be used for all functions (they
are all based on an algebraic property of the function
being computed, such as 𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦), but the set
of implementable functions is rather large: it includes
exponentials, logarithms, trigonometric functions, square
roots;

∙ table-based methods are in-between, they have been used
in hardware and software implementations. They make
it possible to get higher accuracies than bit-manipulation
techniques and are faster than shift-and-add algorithms,
but they don’t scale up well: even if bipartite and
multipartite methods are very helpful for reducing the
table size, that size remains an exponential function of
the number of input bits. They are very versatile (any
continuous function can be tabulated);

∙ polynomial approximations have been used either in
software and hardware. They are very versatile and scale-
up well: any continuous function can be approximated
within any desired accuracy by a polynomial. However,

the necessary degree (for a given input interval and a
given accuracy target) depends much on the function.
Depending on the function, it may be possible to find
approximations with simple coefficients.

VIII. CONCLUSION

We have reviewed the main methods that can be used
for getting fast approximations to the elementary functions.
No general advice can be given on which method is to be
preferred: this depends much on the function being approxi-
mated the requested accuracy, the underlying technology, and
possible constraints on table size.

REFERENCES

[1] W. Liu, F. Lombardi, and M. Schulte, “A retrospective and prospective
view of approximate computing [point of view],” Proceedings of the
IEEE, vol. 108, no. 3, pp. 394–399, March 2020.

[2] IEEE, “IEEE 754-2019 standard for floating-point arithmetic,”
July 2019. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?
punumber=8766227

[3] J.-M. Muller, Elementary Functions, Algorithms and Implementation,
3rd ed. Birkhäuser Boston, MA, 2016.

[4] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334,
Sep. 1959.

[5] ——, “The birth of CORDIC,” Journal of VLSI Signal Processing
Systems, vol. 25, no. 2, pp. 101–105, Jun. 2000.

[6] E. Remez, “Sur un procédé convergent d’approximations successives
pour déterminer les polynômes d’approximation,” C.R. Académie des
Sciences, Paris, vol. 198, pp. 2063–2065, 1934, in French.

[7] N. Brisebarre and S. Chevillard, “Efficient polynomial 𝐿∞ approxima-
tions,” in 18th IEEE Symposium on Computer Arithmetic (ARITH-18),
Montpellier, France, 2007, pp. 169–176.

[8] P. T. P. Tang, “Table-driven implementation of the exponential function
in IEEE floating-point arithmetic,” ACM Transactions on Mathematical
Software, vol. 15, no. 2, pp. 144–157, Jun. 1989.

[9] ——, “Table-driven implementation of the logarithm function in IEEE
floating-point arithmetic,” ACM Transactions on Mathematical Software,
vol. 16, no. 4, pp. 378–400, Dec. 1990.

[10] S. Gal, “Computing elementary functions: a new approach for achieving
high accuracy and good performance,” in Accurate Scientific Computa-
tions. Lecture Notes in Computer Science, vol. 235. Springer-Verlag,
Berlin, 1986, pp. 1–16.

[11] W. F. Wong and E. Goto, “Fast hardware-based algorithms for el-
ementary function computations using rectangular multipliers,” IEEE
Transactions on Computers, vol. 43, no. 3, pp. 278–294, Mar. 1994.

[12] N. N. Schraudolph, “A fast, compact approximation of the exponential
function,” Neural Computation, vol. 11, no. 4, pp. 853–862, 1999.

[13] J. F. Blinn, Notation, Notation, Notation, Jim Blinn’s Corner, ser.
The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling. Morgan Kaufmann, 2003.

[14] L. Moroz, C. Walczyk, A. Hrynchyshyn, V. Holimath, and J. Cieśliński,
“Fast calculation of inverse square root with the use of magic constant
– analytical approach,” Applied Mathematics and Computation, vol.
316, pp. 245 – 255, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0096300317305763

[15] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, vol. EC-11,
no. 4, pp. 512–517, Aug 1962.

[16] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-
power logarithmic converter,” IEEE Transactions on Computers, vol. 52,
no. 11, pp. 1421–1433, Nov 2003.

[17] T. Juang, S. Chen, and H. Cheng, “A lower error and rom-free
logarithmic converter for digital signal processing applications,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 12,
pp. 931–935, Dec 2009.

[18] D. Marino, “New algorithms for the approximate evaluation in hardware
of binary logarithms and elementary functions,” IEEE Transactions
on Computers, vol. C-21, pp. 1416–1421, 1972, reprinted in E. E.
Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society
Press, Los Alamitos, CA, 1990.

12

[19] V. Mahalingam and N. Ranganathan, “Improving accuracy in Mitchell’s
logarithmic multiplication using operand decomposition,” IEEE Trans-
actions on Computers, vol. 55, no. 12, pp. 1523–1535, Dec 2006.

[20] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers for
convolutional neural networks,” IEEE Transactions on Computers,
vol. 68, no. 5, pp. 660–675, May 2019.

[21] B. Yuan, “Efficient hardware architecture of softmax layer in deep neural
network,” in 2016 29th IEEE International System-on-Chip Conference
(SOCC), Sep. 2016, pp. 323–326.

[22] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers for low
power error-tolerant applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868, Sep. 2018.

[23] A. Ukil, V. H. Shah, and B. Deck, “Fast computation of arctangent
functions for embedded applications: A comparative analysis,” in 2011
IEEE International Symposium on Industrial Electronics, June 2011, pp.
1206–1211.

[24] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions
with formulas, graphs and mathematical tables, ser. Applied Math.
Series 55. National Bureau of Standards, Washington, D.C., 1964.

[25] R. Lyons, “Another contender in the arctangent race,” IEEE Signal
Processing Magazine, vol. 21, no. 1, pp. 109–110, Jan 2004.

[26] X. Girones, C. Julia, and D. Puig, “Full quadrant approximations for the
arctangent function [tips and tricks],” IEEE Signal Processing Magazine,
vol. 30, no. 1, pp. 130–135, Jan 2013.

[27] S. Rajan, Sichun Wang, R. Inkol, and A. Joyal, “Efficient approximations
for the arctangent function,” IEEE Signal Processing Magazine, vol. 23,
no. 3, pp. 108–111, May 2006.

[28] S. Winitzki, “Uniform approximations for transcendental functions,” in
Computational Science and Its Applications — ICCSA 2003, V. Kumar,
M. L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 780–789.

[29] P. Markstein, “Accelerating sine and cosine evaluation with compiler as-
sistance,” in 16th IEEE Symposium on Computer Arithmetic (ARITH16).
IEEE Computer Society Press, Los Alamitos, CA, Jun. 2003, pp. 137–
140.

[30] O. Niemitalo, “DSP trick: Simultaneous parabolic approximation
of sin and cos,” 2001, available at https://dspguru.com/dsp/tricks/
parabolic-approximation-of-sin-and-cos/.

[31] D. Roegel, “A reconstruction of the tables of Briggs’ Arithmetica
logarithmica (1624),” Inria, France, Tech. Rep. inria-00543939, 2010,
available at https://hal.inria.fr/inria-00543939.

[32] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, San Francisco, CA, 2004.

[33] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50
years of CORDIC: Algorithms, architectures, and applications,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 9,
pp. 1893–1907, Sept 2009.

[34] N. Takagi, “Studies on hardware algorithms for arithmetic operations
with a redundant binary representation,” Ph.D. dissertation, Dept. Info.
Sci., Kyoto University, Japan, 1987.

[35] M. Mikaitis, D. R. Lester, D. Shang, S. Furber, G. Liu, J. Garside,
S. Scholze, S. Höppner, and A. Dixius, “Approximate fixed-point
elementary function accelerator for the spinnaker-2 neuromorphic chip,”
in 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH), June
2018, pp. 37–44.

[36] H. Ahmed, “Efficient elementary function generation with multipliers,”
in 9th IEEE Symposium on Computer Arithmetic, 1989, pp. 52–59.

[37] P. W. Baker, “Suggestion for a fast binary sine/cosine generator,” IEEE
Transactions on Computers, vol. C-25, no. 11, Nov. 1976.

[38] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, “Para-CORDIC: parallel
CORDIC rotation algorithm,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 51, no. 8, pp. 1515–1524, Aug 2004.

[39] L. Chen, F. Lombardi, Jie Han, and Weiqiang Liu, “A fully parallel
approximate CORDIC design,” in 2016 IEEE/ACM International Sym-
posium on Nanoscale Architectures (NANOARCH), July 2016, pp. 197–
202.

[40] L. Chen, J. Han, W. Liu, and F. Lombardi, “Algorithm and design of a
fully parallel approximate coordinate rotation digital computer (cordic),”
IEEE Transactions on Multi-Scale Computing Systems, vol. 3, no. 3, pp.
139–151, July 2017.

[41] M. Ercegovac, “Radix-16 evaluation of certain elementary functions,”
IEEE Transactions on Computers, vol. C-22, no. 6, pp. 561–566, 1973.

[42] L. Trefethen, Approximation Theory and Approximation Practice.
SIAM, 2013.

[43] N. Brisebarre, J.-M. Muller, and A. Tisserand, “Sparse-coefficient poly-
nomial approximations for hardware implementations,” in 38th IEEE
Conference on Signals, Systems and Computers. IEEE, Nov. 2004.

[44] ——, “Computing machine-efficient polynomial approximations,” ACM
Transactions on Mathematical Software, vol. 32, no. 2, pp. 236–256,
Jun. 2006.

[45] S. Chevillard, M. Joldeş, and C. Lauter, “Sollya: An environment for
the development of numerical codes,” in 3rd International Congress on
Mathematical Software (ICMS), ser. Lecture Notes in Computer Science,
vol. 6327. Springer, Heidelberg, Germany, September 2010, pp. 28–31.

[46] S. Chevillard, J. Harrison, M. Joldeş, and C. Lauter, “Efficient and accu-
rate computation of upper bounds of approximation errors,” Theoretical
Computer Science, vol. 412, no. 16, pp. 1523–1543, 2011.

[47] M. Daumas and G. Melquiond, “Certification of bounds on expressions
involving rounded operators,” ACM Transactions on Mathematical Soft-
ware, vol. 37, no. 1, pp. 2:1–2:20, Jan. 2010.

[48] F. de Dinechin, C. Lauter, and G. Melquiond, “Assisted verification of
elementary functions using Gappa,” in Proceedings of the 2006 ACM
Symposium on Applied Computing, 2006, pp. 1318–1322.

[49] ——, “Certifying the floating-point implementation of an elementary
function using Gappa,” IEEE Transactions on Computers, vol. 60, no. 2,
pp. 242–253, 2011.

[50] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Lauter, “Code
generators for mathematical functions,” in 22nd IEEE Symposium on
Computer Arithmetic, Jun. 2015, pp. 66–73.

[51] O. Kupriianova and C. Lauter, “Metalibm: A mathematical functions
code generator,” in Mathematical Software – ICMS 2014, H. Hong and
C. Yap, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
713–717.

[52] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[53] F. de Dinechin, “Reflections on 10 years of FloPoCo,” in ARITH 2019 -
26th IEEE Symposium on Computer Arithmetic. Kyoto, Japan: IEEE,
Jun. 2019, pp. 1–3. [Online]. Available: https://hal.inria.fr/hal-02161527

[54] F. de Dinechin and M. Istoan, “Hardware implementations of fixed-point
Atan2,” in 22nd Symposium of Computer Arithmetic. IEEE, Jun. 2015.

[55] D. Goldberg, “Fast approximate logarithms, part i: The
basics,” may 205, ebay Tech Blog “Applied math in
engineering”, available at https://tech.ebayinc.com/engineering/
fast-approximate-logarithms-part-i-the-basics/.

[56] G. A. Baker, Essentials of Padé Approximants. Academic Press, New
York, NY, 1975.

[57] P. Kornerup and J.-M. Muller, “Choosing starting values for certain
Newton–Raphson iterations,” Theoretical Computer Science, vol. 351,
no. 1, pp. 101–110, Feb. 2006.

[58] D. A. Sunderland, R. A. Strauch, S. W. Wharfield, H. T. Peterson, and
C. R. Cole, “CMOS/SOS frequency synthesizer LSI circuit for spread
spectrum communications,” IEEE Journal of Solid State Circuits, vol.
SC-19, no. 4, pp. 497–506, 1984.

[59] D. DasSarma and D. W. Matula, “Faithful bipartite ROM reciprocal
tables,” in 12th IEEE Symposium on Computer Arithmetic (ARITH-12),
Jun. 1995, pp. 17–28.

[60] M. J. Schulte and J. Stine, “Symmetric bipartite tables for accurate func-
tion approximation,” in 13th IEEE Symposium on Computer Arithmetic,
1997.

[61] M. J. Schulte and J. E. Stine, “Accurate function evaluation by sym-
metric table lookup and addition,” in IEEE International Conference
on Application-Specific Systems, Architectures and Processors (Zurich,
Switzerland), 1997, pp. 144–153.

[62] ——, “Approximating elementary functions with symmetric bipartite
tables,” IEEE Transactions on Computers, vol. 48, no. 8, pp. 842–847,
Aug. 1999.

[63] H. Hassler and N. Takagi, “Function evaluation by table look-up and
addition,” in 12th IEEE Symposium on Computer Arithmetic, Bath, UK,
Jul. 1995.

[64] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Transactions on Computers, vol. 54, no. 3, pp. 319–330, Mar. 2005.

[65] S. Hsiao, C. Wen, Y. Chen, and K. Huang, “Hierarchical multipartite
function evaluation,” IEEE Transactions on Computers, vol. 66, no. 1,
pp. 89–99, Jan 2017.

[66] Wikipedia contributors, “Fast inverse square root — Wikipedia,
the free encyclopedia,” 2020, [Online; accessed 11-March-2020].
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Fast_
inverse_square_root&oldid=940101226

13

[67] M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein, “Correct-
ness proofs outline for Newton–Raphson based floating-point divide
and square root algorithms,” in 14th IEEE Symposium on Computer
Arithmetic (ARITH-14), Apr. 1999, pp. 96–105.

[68] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2018, ACM G.1.0;
G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-3-319-76525-9.

[69] C. J. Walczyk, L. V. Moroz, and J. L. Cieśliński, “A modification of the
fast inverse square root algorithm,” Computation, vol. 7, no. 3, 2019.

