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The aim of this work is to design and analyze multi-modes semi-active suspension using a Continuously Variable Damper (CVD). A modeling approach for the CVD is presented, and three suspension modes are developed. The studied damper can achieve different suspension modes by controlling the actuation force, which makes its damping adjustment more efficient. By applying an appropriate control strategy to the damper based on minimizing the quadratic gap between the control actuation force for each mode and a control target, satisfaction of both ride comfort and driving safety can be realized. The control target is synthesized using CRONE-SkyHook approach. Performances of the proposed method are validated through a speed bump profile and a real measured road profile.

INTRODUCTION

Vehicle suspension should be able to ensure different performances on the aspects of vibratory isolation, road handling and ride comfort [START_REF] Hamrouni | Skyhook and CRONE active suspensions: A comparative study[END_REF]). Based on the external power input, vehicle suspension can be classified on three categories: passive, semi-active and active. Semi-active suspensions have been extensively studied because of their high performances when compared to the passive ones, and the low energy consumption when compared to active ones [START_REF] Jialing | A review on the development status of automotive semi-active suspension systems[END_REF]).

Since 1980, several studies have been conducted to develop semi-active suspension using Continuously Variable Dampers (CVD) [START_REF] Ivers | Experimental comparison of passive, semi-active on/off, and semi-active continuous suspensions[END_REF]; [START_REF] Heo | Modelling of continuously variable damper for design of semi-active suspension systems[END_REF]). A CVD can yields variable damping force at a given damper velocity. Thus, it is possible to obtain a satisfaction of driving comfort and driving safety by adopting an appropriate implementable algorithm. Different types of CVD, such as electromagnetic actuators [START_REF] Gysen | Active electromagnetic suspension system for improved vehicle dynamics[END_REF]), pneumatic actuators [START_REF] Bouvin | CRONE control of a pneumatic self-leveling suspension system[END_REF]), and hydropneumatic actuators [START_REF] Rizzo | A New CRONE Suspension: More Compact and More Efficient: Part 1Problematics and Specifications[END_REF]), are often considered as the actuator of the damping adjustment. Many existent methods focused on developing a practical, implementable and lower cost control scheme [START_REF] Liu | General theory of skyhook control and its application to semi-active suspension control strategy design[END_REF]). These methods include SkyHook control, Groundhook control, Hybrid control, PID control, Fuzzy logic control... The most implemented controller from a commercial point of view is the SkyHook damping concept.

Although CVD can realize greatly adjustable characteristics, a small damping variation doesn't significantly influence the control performances of a suspension system [START_REF] Chen | Performance simulation and testing of multi-levels-damping adjustable hydraulic shock absorber[END_REF]; [START_REF] Sun | Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model[END_REF]). Therefore, a CVD with multiple damping modes achieved by a simple control strategy and a reliable regulation mechanism may be more reliable and efficient [START_REF] Wei | Damping multimode switching control of semiactive suspension for vibration reduction in a wheel loader[END_REF]).

Compared with the conventional semi-active suspension using CVD, the aim of this study is to design a new semiactive suspension with different damping modes. Each suspension mode ensure either vibratory isolation or chassis holding. By just comparing the damper efforts of each mode with a target one, multi-mode switching damping characteristics are achieved. A Robust Control Frequency Synthesis (CRONE) technique [START_REF] Moreau | From analysis to synthesis of vehicle suspensions: The CRONE approach[END_REF]), combined with the SkyHook one, are used to synthesize the target mode that satisfy both vibratory isolation and chassis holding.

The remainder of this paper is organized as follows. Section 2 details the analysis and design scheme for a quarter-car vehicle suspension model. Section 3 presents the design methodology of the three suspension modes. The CRONE-SkyHook approach used to design the target effort for the semi-active damper, and the switching control strategy, are described in section 4. In section 5, simulation results are presented to show the performance of the proposed © 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/ Version of Record: https://www.sciencedirect.com/science/article/pii/S2405896320318152 switching strategy. Finally, conclusions are given in section 6.

VEHICLE SUSPENSION MODELING

Analysis and design method

Results presented in this paper are part of the hierarchical chassis control of an autonomous vehicle for which the operating domain is divided into three sub-domains: lowfrequency comfort, road behavior and active safety in emergency situations [START_REF] Bouvin | Hierarchical approach for global chassis control[END_REF]). This study concerns the low-frequency comfort domain which corresponds to the range [0.5, 5.5] Hz for vertical dynamics, and for horizontal dynamics to longitudinal and transverse accelerations lower than |0.4| g. The vertical dynamics has no significant influence on the horizontal dynamics in this field. A two degrees of freedom (2-DOF) quarter vehicle model instead of the 14-DOF can then be used in the exploratory phase. Note that we dispose of a 14-DOF vehicle model operating in MATLAB/Amesim cosimulation and used for validation before implantation and vehicle test.

A full car model can be simplified to the well known quarter vehicle model. Fig. 1 shows the quarter-car model with 2-DOF, reflecting the Chassis/Road transfer in the range of [0.5, 5.5]Hz, where m 1 is the unsprung mass, z 1 (t) is its displacement and v 1 (t) its velocity, m 2 is the sprung mass, z 2 (t) is its displacement and v 2 (t) its velocity, k 1 is the vertical stiffness of the tire, k 2 is the stiffness coefficient of the suspension, b 1 is the damping coefficient of the tire, b 2 is the damping coefficient of the suspension. f 0 (t) and v 0 (t) are respectively the load transfer and the road vertical excitation applied to the quarter-vehicle. 

I s (s) = F s (s) V 12 (s) = k 2 s + b 2 , (1) 
where

V 12 (s) = V 1 (s) -V 2 (s).
(2)

The admittance A 2 (s) between F Σ2 (s) [N ], the algebraic sum of the forces applied to m 2 , and the velocity V 2 [m/s], is expressed by

A 2 (s) = V 2 (s) F Σ2 (s) = 1 m 2 s . (3) 
The open loop transfer function β(s), expressed by the product of the impedance of the suspension and the admittance of the sprung mass A 2 (s) is

β(s) = I s (s)A 2 (s) = V 2 (s) V 1 (s) -V 2 (s) | F0=0 . (4) 
After development, the transfer function β(s) can be written in the following form:

β(s) = 1 + s w 2 w n2 s 2 , (5) 
where

w 2 = k 2 b 2 ; w n2 = k 2 m 2 (6)
The transfer function between the suspension effort F s (s) and the sprung force

F k (s) is F s (s) F k (s) = D s (s) = 1 + s w 2 . ( 7 
)
Using the Laplace variable s equals jω, the gain and the phase of D s (jω) in the frequency domain are expressed respectively by

ρ (ω) = |D s (jω) | = 1 + j ω ω 2 = 1 + ω ω 2 2 (8a) φ (ω) = arg [D s (jω)] = arg|1 + j ω ω 2 | = arctg ω ω 2 . ( 8b 
)
Add to that, the transfer in absolute transmission T 21 (s)

T 21 (s) = Z 2 (s) Z 1 (s) = V 2 (s) V 1 (s) = β(s) 1 + β(s) . (9) 
Then, to specify the resonance peak Q 2 of the frequency response of T 21 (jω), a phase margin should be imposed to the transfer β(jω).

The phase margin M φ calculated at the proper angular frequency w n2 of the sprung mass m 2 is defined as follows:

M φ = π + arg (β(jω n2 )) = π + arg 1 + jω n2 w 2 + arg ω n2 jω n2 2 . ( 10 
)
Let the phase

φ = arg 1 + jω n2 ω 2 ≥ 0, ( 11 
)
and knowing that

arg w n2 jω n2 2 = -π, (12) 
it results

M φ = π + φ -π ⇒ φ ≈ M φ . ( 13 
)
If the requirement resonant peak is chosen to be Q 2 ≤ 2, the phase margin M φ should be M φ > 40 • . (14) So, the vehicle holding is directly linked to the phase lead provided by the D s (jω) in the vicinity of ω n2 .

Metallic suspension

The metallic suspension is taken as a benchmarking system in this study. So, relations between different variable parameters should be defined in term of transfer functions.

The transfer function between Z 2 (s) and Z 0 (s) is

Z 2 (s) Z 0 (s) = (b 1 s + k 1 ) (b 2 s + k 2 ) den(s) , ( 15 
)
where

den(s) = m 1 m 2 s 4 + (m 2 (b 1 + b 2 ) + m 1 b 2 )s 3 +(m 2 (k 1 + k 2 ) + m 1 k 2 + b 1 b 2 )s 2 +(k 1 b 2 + b 1 k 2 )s + k 1 k 2 . ( 16 
)
The transfer function Z 1 /Z 0 is defined by

Z 1 (s) Z 0 (s) = (b 1 s + k 1 ) m 2 s 2 + b 2 s + k 2 den(s) . ( 17 
)
The transfer function Z 2 /F 0 is equal to

Z 2 (s) F 0 (s) = m 1 s 2 + (b 1 + b 2 )s + (k 1 + k 2 ) den(s) . ( 18 
)
Parametric variables of the metallic suspension are chosen to be those of Citroën C4 Picasso (Table 1). The viscous damping coefficient b 2 is fixed to obtain a resonance factor Q 2 = 2. Note that the damping of the wheel dynamic is defined by

ξ 1 = b 1 + b 2 2 (k 1 + k 2 )m 1 , (19) 
and the damping of the chassis dynamic is

ξ 2 = b 2 2 √ k 2 m 2 . ( 20 
)

CONTROL OF MULTI-MODES SEMI-ACTIVE SUSPENSION

The studied suspension system is composed of passive metallic spring damper units associated to actuators enabling the vehicle high regulation. b 20 is the damping coefficient of the passive damper and F a is the controlled actuation force (Fig. 3-Functional Level).

The suspension force is then described by the following equation

F s (s) = k 2 s + b 20 V 12 (s) + F a (s). (21)

Degraded mode suspension

For passive suspension, the actuation F a equals zero and hence the force suspension ( 21) is equal to

F s (s) = k 2 s + b 20 V 12 (s). ( 22 
)
This mode is dimensioned to ensure a minimal wheel holding. For that, b 20 should be computed to guarantee a maximal resonance factor Q 1 = 3 of the frequency response Z 1 /Z 0 of the tyre, and therefore a minimum damping factor ξ 1 = 0.15.

For the passive suspension design, a high damping coefficient b 20 is required to attenuate the peak of the sprung mass resonance. However, high frequency attenuation is degraded in this case.

Multi-modes semi-active suspension

For a component point of view, the quarter-car semi-active suspension system can be modeled as described in Fig. 3, The equivalent expressions of the control actuation force f a for each mode are as follows

f a1 (t) = b 20 v 12 (t) f a2 (t) = b 2 v 12 (t) f a3 (t) = b 3 v 12 (t) . ( 24 
)
The domain of definition of each mode is detailed in Fig. 4.

where As expected, none of the architectures can ensure the best chassis holding and the best vibratory isolation at the same time. However, each mode (from 1 to 3) has a frequency range where it provides better performances as shown in Fig. 5.

fa max (t) = a 0 v 12 (t) , ∀ v 12 (t) < v lim sign(v 12 (t))fa 0 + a 1 (v 12 (t) -v lim ) , ∀ v 12 (t) ≥ v lim (25a) fa min (t) = b 20 v 12 (t), (25b) 

AUTOMATIC CONTROL STRATEGY

CRONE-SkyHook based target effort

In this section, the aim is to synthesize a target mode which can improve both chassis holding and vibratory isolation in a very significant way. For that, a CRONE-SkyHook strategy is used. An additional controller C csh (s) is added to the quarter-car model (Fig. 6). The impedance of the additional system is

C csh (s) = F a csh (s) V 2 (s) = b csh 1 + s ωn n , ( 26 
)
where n ∈ R + and b csh is the control parameter to be synthesized. In order to facilitate comparison with the traditional SkyHook method, the order n is set to zero. C csh (s) is chosen to be a low pass filter in order to act for chassis holding and limit the action of b csh in low frequency.

Then, the modified impedance of the sprung mass becomes

A 2 (s) = 1 m 2 s + C csh (s) . ( 27 
)
By supposing n = 0, the open-loop transfer β (s) is expressed by

β (s) = k 2 s + b 20 1 m 2 s + C csh (s) = ω 1 s 1 + s ω2 0 1 + s ω3 , (28) 
where

ω 1 = k 2 b csh ; ω 20 = k 2 b 20 ; ω 3 = b csh m 2 (29)
Supposing that ω 20 = ω 3 , (30) then β (s) becomes

β (s) = ω 1 s , (31) 
and the new transfer in absolute transmission T 21 (s) becomes

T 21 (s) = 1 1 + s ω1 . ( 32 
)
From ( 28),( 30) and ( 31), it results

b csh = k 2 m 2 b 20 . (33) 
Finally, the target effort designed by the CRONE-SkyHook strategy is

f a csh (t) = b csh v 12 (t). ( 34 
)
Remark 1: Note that this result can only be achieved with an active device (which is not the case here). The interest therefore lies in the simplicity of the calculation of the target effort f a csh (t) which leads to a Chassis/Road frequency response which is sufficiently discriminating compared to the frequency responses of each of the three modes (Fig. 7). 

Decision criterion

The choice of the specified mode, and hence of the control, can be done by minimizing the quadratic difference between a target effort and the predicted effort for each suspension modes. It is therefore sufficient to switch at each step time to the mode which has the smallest gap with the target effort. Thus, the gap G between the target effort and the efforts is defined a following:

G =    f atarget (t) -f a1 (t) 2 f atarget (t) -f a2 (t) 2 f atarget (t) -f a3 (t) 2    . (35) 
where f atarget = f a csh is synthesized with the CRONE-SkyHook strategy.

Remark 2: The dynamics of the actuator is an important factor that affects the operation performance of the multimodes semi-active suspension system. To improve the control performance of the proposed control scheme, the dynamic of the actuator is modeled as a second order filter with 60ms of response time.

PERFORMANCE COMPARISON

Isolated Obstacle

Simulation in time domain were carried out for a vehicle driving over a speed bump at V x = 15km/h. The geometric profile of the obstacle is defined as follows

       z 0 (x) = h 2 (tanh(a(x -x 0 )) -tanh(a(x -(x 0 + L))) x(t) = V x t a = 2 h tanα , (36) 
where x 0 = 5m is the position of the first inflection point, L = 30m is length between the two inflection points, h = 0.01m is the height of the obstacle and α = 10 • is the approach angle at the inflection point.

The isolated obstacle is used to check the coherence of the temporal results with the frequency results. Thus, the length of the obstacle is defined in such a way that the transitional regime of the climb phase is completed before going on to the transitional regime of the descent phase. Thus, the duality between time and frequency domain can be checked. Fig. 8 shows the dynamic of the chassis displacement for the whole length of the obstacle, where z 0 is the speed bump profile, z 2i , i = 1, 2, 3 are the body displacement related to the three suspension modes, z 2 csh is the body displacement issued from the use of the CRONE-SkyHook controller, and z 2 is the resulted body displacement using the switched control scheme. The zoom in the transitional regime of the climb phase shows that, in the first steps, the vibratory isolation is improved. Then, a reduction of the first overshoot and a decrease of the oscillatory nature of the response z 2 (t) are obtained with the piloted suspension, an thus chassis holding is improved. Note that the piloted suspension is chosen to be initialized with the 'mode 2'. Fig. 9 presents the target effort f a csh , the resulted effort f a , as well as efforts of the three suspension modes which are predicted at each instant and then used for the decision test. It can be seen from Fig. 9 that the resulted f a is acceptable compared to the predicted ones. The analysis of the cumulative time per mode shows that that the third mode of suspension ensuring chassis holding, is predominant for such type of obstacle.

Road profile

A stochastic road excitation is used to validate performances of the proposed multi-modes semi-active suspension using a CVD. The used road profile is measured with a constant vehicle speed of 60km/h. Fig. 10 describes the controlled vertical displacement z 2 (t) and compared to the measured road z 0 (t). A performance indicator based on the Root Mean Square (RMS) can be calculated for the entire duration of the profile:

J = RM S [z 2 (t)] RM S [z 0 (t)] , (37) 
where RM S [z 2 (t)] is the root mean square of the vertical displacement z 2 (t), calculated for the benchmarking metal suspension and for the controlled suspension, and then normalized by RM S [z 0 (t)] (the root mean square of the measured road z 0 (t)).

A such criterion can be interpreted as following

• J > 1 → an amplified transmission;

• J = 1 → a neutral transmission;

• J < 1 → an attenuated transmission.

The value of the performance indicator for this road profile is J = 0.9652. Thus, the piloted suspension has improved the vibratory isolation. The analysis of the histogram of commutations for the measured road profile shows that 'mode 1' is dominant. Thus, the vibratory isolation is predominant during this road profile.

CONCLUSION

In this study, a continuously variable damper with three suspension modes has been proposed for semi-active vehicle suspension. By simply controlling the actuating force, the damper can achieve effectively adjustable damping and meet the set requirements as ride comfort and driving safety. The control strategy is based on the minimization of the quadratic difference between the control actuation force for the three suspension modes, and a target developed by a new CRONE-SkyHook technique. Numerical simulations are used to validate the performance of the proposed semi-active suspension. Results show that the control strategy can effectively improve vehicle ride comfort and safety performances. Future works will focus on road behavior and active safety in emergency situations of autonomous vehicle.
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 1 Fig. 1. Quarter-car vehicle suspension model. The block-diagram shown in Fig. 2 issued from the quart vehicle model highlights the preponderant role of suspension, modeled by the impedance I s (s) and the admittance A 2 (s) (Rizzo et al. (2009)). The suspension impedance I s ,

Fig. 3 .

 3 Fig. 3. From Functional level to Component level. where f a (t) = b(t)v 12 (t). (23) According to the concrete structure of damper, three modes of the damper based on the control actuation force can be summarized: • 'Mode 1' is designed to ensure vibration isolation performances; • 'Mode 2' is equivalent to the metallic suspension; • 'Mode 3' is modeled to ensure chassis holding.
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 45 Fig. 4. The variation ranges of the suspension efforts for the three suspension modes.are the upper and the lower bound of the suspension effort, respectively. Note that f amax and f amin are issued from the technical documentation of the CVD, implemented in PSA commercialized vehicles. This CVD is electrically piloted in order to obtain 'Mode 1' and 'Mode 2'.Fig.5presents a comparison between frequency responses Z 2 (jω)/Z 0 (jω) of the three suspension modes in the range [0.5, 5.5]Hz.

Fig. 6 .

 6 Fig. 6. Generalized schema of the loop.

Fig. 7 .

 7 Fig. 7. Comparison between control effort for the three suspension modes and CRONE-SkyHook target effort.

Fig. 8 .

 8 Fig. 8. Time responses of the body displacement z 2 (t).

Fig. 9 .

 9 Fig. 9. Suspension forces at the transitional regime of the climb phase.

Fig. 10 .

 10 Fig. 10. Comparison between time responses of the vertical displacement z 2 (t) and the measured road z 0 (t).

Table 1 :

 1 Citroën C4 Picasso parameters

	Setting Values Units
	m 1	41.3	kg
	m 2	271	kg
	k 2	26043	N/m
	k 1	300000 N/m
	b 2	1875	Ns/m
	b 1	50	Ns/m
	ω n1	88.85	rad/s
	ω n2	9.81	rad/s
	ξ 2 ,	0.353	
	ξ 1	0.262	

*This work took place in the framework of the OpenLab 'Electronics and Systems for Automotive' combining IMS laboratory and PSA Groupe company.