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n≥0 be the sequence of Padovan numbers defined by P 0 = 0, P 1 = 1 = P 2 , and P n+3 = P n+1 + Pn for all n ≥ 0. In this paper, we find all Padovan numbers that are concatenations of two repdigits.

Introduction

We consider the sequence (P n ) n≥0 of Padovan numbers defined by P 0 = 0, P 1 = 1, P 2 = 1, and P n+3 = P n+1 + P n for all n ≥ 0. This is sequence A000931 on the On-Line Encyclopedia of Integer Sequences (OEIS) [8]. The first few terms of this sequence are (P n ) n≥0 = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, . . . . A repdigit is a positive integer N that has only one distinct digit when written in its decimal expansion. That is, N is of the form

N = d • • • d times = d 10 -1 9 , (1.1) 
for some positive integers d, with 0 ≤ d ≤ 9 and ≥ 1. The sequence of repdigits is sequence A010785 on the OEIS. Diophantine equations involving repdigits and Padovan numbers have been considered in various papers in the recent years. For example: in [START_REF] García Lomelí | Repdigits as sums of two Padovan numbers[END_REF], García Lomelí and Hernández Hernández found all repdigits that can be written as a sum of two Padovan numbers; in [START_REF] Ddamulira | Repdigits as sums of three Padovan numbers[END_REF], the author found all repdigits that can be written as a sum of three Padovan numbers.

Main Result

In this paper, we study the problem of finding all Padovan numbers that are concatenations of two repdigits. More precisely, we completely solve the Diophantine equation

P n = d 1 • • • d 1 1 times d 2 • • • d 2 2 times = d 1 10 1 -1 9 × 10 2 + d 2 10 2 -1 9 , (2.1) in non-negative integers (n, d 1 , d 2 , 1 , 2 ) with n ≥ 0, 1 ≥ 2 ≥ 1, and 0 ≤ d 2 < d 1 ≤ 9.
Our main result is the following. This paper is inspired by the result of Alahmadi, Altassan, Luca, and Shoaib [START_REF] Alahmadi | Fibonacci numbers which are concatenations of two repdigits[END_REF], in which they find all Fibonacci numbers that are concatenations of two repdigits. Our method of proof involves the application of Baker's theory for linear forms in logarithms of algebraic numbers, and the Baker-Davenport reduction procedure. Computations are done with the help of a computer program in Mathematica.

Preliminary results

3.1. The Padovan sequence. Here, we recall some important properties of the Padovan sequence {P n } n≥0 . The characteristic equation Ψ(x) := x 3 -x -1 = 0, has roots α, β, γ = β, where

α = r 1 + r 2 6 , β = -(r 1 + r 2 ) + √ -3(r 1 -r 2 ) 12 (3.1)
and

r 1 = 3 108 + 12 √ 69 and r 2 = 3 108 -12 √ 69. (3.2)
Furthermore, the Binet formula is given by

P n = aα n + bβ n + cγ n for all n ≥ 0, (3.3) 
where

a = α + 1 (α -β)(α -γ) , b = β + 1 (β -α)(β -γ) , c = γ + 1 (γ -α)(γ -β) = b. (3.4)
The minimal polynomial of a over the integers is given by

23x 3 -23x 2 + 6x -1,
has zeros a, b, c with |a|, |b|, |c| < 1. Numerically, the following estimates hold:

1.32 < α < 1.33; 0.86 < |β| = |γ| = α -1 2 < 0.87; 0.72 < a < 0.73; 0.24 <|b| = |c| < 0.25.

(3.5) From (3.1), (3.2) and (3.5), it is easy to see that the contribution the complex conjugate roots β and γ, to the right-hand side of (3.3), is very small. In particular, setting

e(n) := P n -aα n = bβ n + cγ n then |e(n)| < 1 α n/2 , (3.6) 
holds for all n ≥ 1. Furthermore, by induction, one can prove that 1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼ = S 3 .

α n-3 ≤ P n ≤ α n-1 holds for all n ≥ 1. (3.7) Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then, [K, Q] = 6. Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by G := Gal(K/Q) ∼ = {(
Thus, we identify the automorphisms of G with the permutations of the zeros of the polynomial Ψ. For example, the permutation (αβ) corresponds to the automorphism σ : α → β, β → α, γ → γ.

Linear forms in logarithms.

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -η (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of η. Then the logarithmic height of η is given by

h(η) := 1 d log a 0 + d i=1 log max{|η (i) |, 1} . 
In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next section of this paper without reference:

h(η 1 ± η 2 ) ≤ h(η 1 ) + h(η 2 ) + log 2; h(η 1 η ±1 2 ) ≤ h(η 1 ) + h(η 2 ); h(η s ) = |s|h(η) (s ∈ Z).
We recall the result of Bugeaud, Mignotte, and Siksek ([2], Theorem 9.4, pp. 989), which is a modified version of the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF], which is one of our main tools in this paper. Theorem 3.1. Let η 1 , . . . , η t be positive real algebraic numbers in a real algebraic number field K ⊂ R of degree D, b 1 , . . . , b t be nonzero integers, and assume that

Λ := η b1 1 • • • η bt t -1 = 0. Then, log |Λ| > -1.4 × 30 t+3 × t 4.5 × D 2 (1 + log D)(1 + log B)A 1 • • • A t , where B ≥ max{|b 1 |, . . . , |b t |}, and 
A i ≥ max{Dh(η i ), | log η i |, 0.
16}, for all i = 1, . . . , t.

Reduction procedure.

During the calculations, we get upper bounds on our variables which are too large, thus we need to reduce them. To do so, we use some result from the theory of continued fractions. For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő ( [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a). For a real number X, we write X := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.1. Let M be a positive integer, p q be a convergent of the continued fraction expansion of the irrational number τ such that q > 6M , and A, B, µ be some real numbers with A > 0 and B > 1. Furthermore, let ε := µq -M τ q . If ε > 0, then there is no solution to the inequality 

0 < |uτ -v + µ| < AB -w , in positive integers u, v,
P n = d 1 • • • d 1 1 times d 2 • • • d 2 2 times = d 1 • • • d 1 1 times × 10 2 + d 2 • • • d 2 2 times = d 1 10 1 -1 9 × 10 2 + d 2 10 2 -1 9 (by (1.1)) = 1 9 d 1 × 10 1 + 2 -(d 1 -d 2 ) × 10 2 -d 2 .
Thus,

P n = 1 9 d 1 × 10 1+ 2 -(d 1 -d 2 ) × 10 2 -d 2 . (4.1)
We prove the following lemma, which gives a relation on the size of n versus 1 + 2 . Proof. The proof follows easily from (3.7). One can see that

α n-3 < P n < 10 1 + 2 .
Taking the logarithm on both sides, we get that (n -3) log α < ( 1 + 2 ) log 10, which leads to

n log α < ( 1 + 2 ) log 10 + 3 log α < ( 1 + 2 ) log 10 + 1. (4.2)
For the lower bound, we have that

10 1+ 2-1 < P n < α n-1 .
Taking the logarithm on both sides, we get that

( 1 + 2 -1) log 10 < (n -1) log α,
which leads to

( 1 + 2 ) log 10 -3 < ( 1 + 2 -1) log 10 + log α < n log α. (4.3)
Comparing (4.2) and (4.3) gives the result in the lemma.

Next, we examine (4.1) in two different steps.

Step 1. Substituting (3.3) in (4.1), we get that

aα n + bβ n + cγ n = 1 9 d 1 × 10 1+ 2 -(d 1 -d 2 ) × 10 2 -d 2 .
By (3.6), this is equivalent to

9aα n -d 1 × 10 1+ 2 = -9e(n) -(d 1 -d 2 ) × 10 2 -d 2 ,
from which we deduce that

9aα n -d 1 × 10 1 + 2 = 9e(n) + (d 1 -d 2 ) × 10 2 + d 2 ≤ 9α -n/2 + 9 × 10 2 + 9 < 30 × 10 2 .
Thus, dividing both sides by

d 1 × 10 1 + 2 we get that 9a d 1 • α n • 10 -1-2 -1 < 30 × 10 2 d 1 • 10 1+ 2 < 30 10 1 . (4.4) Put Λ 1 := 9a d 1 • α n • 10 -1-2 -1. (4.5) 
Next, we apply Theorem 3.1 on (4.5). First, we need to chech that Λ 1 = 0. If it were, then we would get that

aα n = d 1 9 • 10 1+ 2 .
Now, we apply the automorphism σ of the Galois group G on both sides and take absolute values as follows.

d 1 9 • 10 1+ 2 = |σ(aα n )| = |bβ n | < 1,
which is false. Thus, Λ 1 = 0. So, we apply Theorem 3.1 on (4.5) with the data:

t := 3, η 1 := 9a d 1 , η 2 := α, η 3 := 10, b 1 := 1, b 2 := n, b 3 := -1 -2 .
By Lemma 4.1, we have that 1 + 2 < n. Therefore, we can take B := n. Observe that K := Q(η 1 , η 2 , η 3 ) = Q(α), since a = α(α + 1)/(3α 2 -1), so D := 3. We have Comparing the above inequality with (4.4) gives 1 log 10 -log 30 < 1.45 × 10 30 (1 + log n), leading to 1 log 10 < 1.46 × 10 30 (1 + log n).

(4.6)

Step 2. By (3.6), we rewrite (4.1) as

9aα n -d 1 × 10 1 -(d 1 -d 2 ) × 10 2 = -9e(n) -d 2 ,
from which we deduce that

9aα n -d 1 × 10 1 -(d 1 -d 2 ) × 10 2 = |9e(n) + d 2 | ≤ 9α -n/2 + 9 < 18.
Thus, dividing both sides by 9aα n we get that

d 1 × 10 1 -(d 1 -d 2 ) 9a • α -n • 10 2 -1 < 18 9aα n < 2 α n . (4.7) Put Λ 2 := d 1 × 10 1 -(d 1 -d 2 ) 9a • α -n • 10 2 -1. (4.8)
Next, we apply Theorem 3.1 on (4.8). First, we need to chech that Λ 2 = 0. If not, then we would get that

aα n = d 1 × 10 1 -(d 1 -d 2 ) 9 • 10 2 .
Then, we apply the automorphism σ of the Galois group G on both sides and take absolute values as follows.

d 1 × 10 1 -(d 1 -d 2 ) 9 • 10 2 = |σ(aα n )| = |bβ n | < 1,
which is false. Thus, Λ 2 = 0. So, we apply Theorem 3.1 on (4.8) with the data:

t := 3, η 1 := d 1 × 10 1 -(d 1 -d 2 ) 9a , η 2 := α, η 3 := 10, b 1 := 1, b 2 := -n, b 3 := 2 .
As before, we have that 2 < n. Thus, we can take B := n. Similary, Q(η 1 , η 2 , η 3 ) = Q(α), so we take D := 3. Furthermore, we have [8] OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences, https://oeis.org, 2019.
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Lemma 4 . 1 .

 41 All solutions of the Diophantine equation (4.1) satisfy ( 1 + 2 ) log 10 -3 < n log α < ( 1 + 2 ) log 10 + 1.

h(η 1 )

 1 = h(9a/d 1 ) ≤ h(9) + h(a) + h(d 1 ) ≤ log 9 + 1 3 log 23 + log 9 ≤ 5.44. Furthermore, h(η 2 ) = h(α) = (1/3) log α and h(η 3 ) = h(10) = log 10. Thus, we can take A 1 := 16.32, A 2 := log α, and A 3 := 3 log 10. Theorem 3.1 tells us that log |Λ 1 | > -1.4 × 30 6 × 3 4.5 × 3 2 (1 + log 3)(1 + log n)(16.32)(log α)(3 log 10) > -1.45 × 10 30 (1 + log n).

h(η 1 ) = h d 1 × 2 ≤ 1 2 ≤ 1 .< 1 .

 121211 10 1 -(d 1 -d 2 ) 9a ≤ h(d 1 × 10 1 -(d 1 -d 2 )) + h(9a) ≤ h(d 1 × 10 1 ) + h(d 1 -d 2 ) + h(9) + h(a) + log 2 ≤ h(d 1 ) + 1 h(10) + h(d 1 ) + h(d 2 ) + h(9) + h(a) + 2 log 46 × 10 30 (1 + log n) 48 × 10 30 (1 + log n).Thus, we can takeA 1 := 4.44 × 10 30 (1 + log n), A 2 := log α, and A 3 = 3 log 10. Theorem 3.1 tells us that log |Λ 2 | > -1.4 × 30 6 × 3 4.5 × 3 2 (1 + log 3)(1 + log n)(4.44 × 10 30 (1 + log n))(log α)(3 log 10) > -2.38 × 10 43 (1 + log n) 2 .

  The proof of Theorem 2.1 4.1. The small ranges. With the help of Mathematica, we checked all the solutions to the Diophantine equation (2.1) in the ranges 0 ≤ d 2 < d 1 ≤ 9 and 1 ≤ 2 ≤ 1 ≤ n ≤ 500 and found only the solutions stated in Theorem 2.1. From now on we assume that n > 500.

	and w with		
	u ≤ M and w ≥	log(Aq/ε) log B	.

The following Lemma is also useful. It is due to Gúzman Sánchez and Luca ([6], Lemma 7). Lemma 3.2. If r ≥ 1, H > (4r 2 ) r , and H > L/(log L) r , then

L < 2 r H(log H) r .

4.

4.2. The initial bound on n. We rewrite (2.1) as
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Comparing the above inequality with (4.7) gives, n log α -log 2 < 2.38 × 10 43 (1 + log n) 2 , which is equivalent to n < 1.70 × 10 44 (log n) 2 .

(4.9)

Applying Lemma 3.2 on (4.9) with the data r = 2, H := 1.70 × 10 44 , and L := n, gives n < First, we return to (4.4) and put

The inequality (4.4) can be rewritten as e -Γ1 -1 < 30 10 1 . Assume that 1 ≥ 2, then the right-hand side in the above inequality is at most 3/10 < 1/2. The inequality |e x -1| < y for real values of x and y implies that x < 2y. Thus,

Dividing through by log α gives

So, we apply Lemma 3.1 with the data:

Let τ = [a 0 ; a 1 , a 2 , . . .] = [8; 5, 3, 3, 1, 5, 1, 8, 4, 6, 1, 4, 1, 1, 1, 9, 1, 4, 4, 9, 1, 5, 1, 1, 1, 5, 1, 1, 1, 2, 1, . . .] be the continued fraction expansion of τ . We choose M := 8 × 10 48 which is the upper bound on

With the help of Mathematica, we find out that the convergent p q = p 106 q 106 = 177652856036642165557187989663314255133456297895465 21695574963444524513646677911090250505443859600601 , is such that q = q 106 > 6M . Furthermore, it yields ε > 0.0375413, and therefore either 1 ≤ log ((60/ log α)q/ε) log 10 < 53, Thus, we have that 1 ≤ 53. For fixed 0 ≤ d 2 < d 1 ≤ 9 and 1 ≤ 1 ≤ 53, we return to (4.7) and put

From the inequality (4.7), we have that e Γ2 -1 < 2 α n . Since n > 500, the right-hand side of the above inequality is less than 1/2. Thus, the above inequality implies that

Dividing through by log α gives,

Again, we apply Lemma 3.1 with the data:

We take the same τ and its convergent p/q = p 106 /q 106 as before. We choose 2 < 8 × 10 48 := M . With the help of Mathematica, we get that ε > 0.0000903006, and therefore n ≤ log ((4/ log α)q/ε) log α < 446.

Thus, we have that n ≤ 446, contradicting the working assumption that n > 500. Hence, Theorem 2.1 is proved.