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ABSTRACT

In this paper we study the Stochastic Volatility Inspired model (SVI). Until recently, it was
not possible to find sufficient conditions that would guarantee the absence of static arbitrage in
this SVI model. Recently, we proposed a new numerical method based on Sequential Quadratic
Programming (SQP) algorithm to resolve this problem. The main contribution in this paper is
that we provide sufficient conditions that guarantee an SVI static arbitrage-free. These conditions
ensure that the probability density function will remain positive.Finally, we present several com-
putational synthetic examples with static arbitrage and we show how to fix them.Next, we use real
market data coming from 23 indexes to calibrate the SVI model. The calibration method is ro-
bust and easy to implement,it guarantees calibration arbitrage free (calendar spread and butterfly
arbitrage).

Keywords: Implied/Local Volatility, SVI, Arbitrage-Free,butterfly spread, calendar spread, Cal-
ibration, Quadratic Programming.
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Introduction

The implied volatility is an important element used for pricing and hedging in the financial market.
It can be obtained by inverting Black-Scholes formula (1973) for a given strike and maturity. These
values are explicitly available only for some strikes and maturities. For this reason we need a model
that allow to obtain an accurate values close to those observed in the market.

Many interpolation techniques has been proposed in the last decades, we can class them in two
categories: mathematical interpolation models and financial interpolation models. The appropriate
model should respect some static arbitrage free condition.

Many authors in the past such as Dupire (1994) [1], Derman and Kani (1994) [2], and Rubinstein
(1994) tried to model local volatility, we propose here an overview of the most recent methods used
to resolve this problem.

Kahalé (2004) [3] presented an interpolation method for implied volatilities in the equity and
forex markets using one-dimensional interpolation algorithm with smoothness properties. Kahalé
assumes arbitrage-free in the input market volatilities and computes an interpolating surface for
all strikes and maturities in three-step procedure: in the first step he interpolates the (call) price
for each maturity using piecewise convex polynomials. Hence, the call price function obtained
is arbitrage free and after he calculates the implied volatility by inverting the BS formula, in the
second step he interpolates linearly the total implied variance. Finally, he makes some adjustments
to the call prices to ensure that IVS is globally arbitrage-free.

Jim Gatheral (2004) presented for the first time the Stochastic Volatility Inspired model (SVI)
in the Global Derivatives and Risk Management conference in Madrid.Benko et al.(2007) [4] applied
non-parametric smoothing methods to estimate the implied volatility (IV). They combine the IV
smoothing with the state-price density (SPD) estimation in order to correct the arbitrage condition
reflected by the non-positive SPD, for this, they used the local polynomial smoothing technique.

Fengler (2009) [5] proposed an approach for smoothing the implied volatility smile and provides
a methodology for arbitrage free interpolation. His methodology consists in using the natural
smoothing splines under suitable shape constraints. This method works even when the input data
is not arbitrage free.

Andreasen-Huge (2010) [6] presented an interpolation and extrapolation method of European
option prices based on a one step implicit finite difference Euler scheme applied to a local volatility
parametrization. Glaser and Heider (2012)[7] use locally constrained least squares approximations
to construct the arbitrage-free call price surfaces. They calculate derivatives of the call surface
to obtain implied volatility, local volatility and transition probability density.Fingler-Hin (2013)
[8] use semi-nonparametric estimator for the entire call price surface based on a tensor-product
B-spline. Gatheral & Jacquier (2014) [9] presents the stochastic volatility inspired model (SVI)
a parametric model of the implied volatility smile. The model fits very well the equity market,
however, no condition is known that could guarantee the arbitrage free of the model. This is the
main challenge in our project.

Several problems arise in the past regarding the SVI calibration.In this paper, we study deeply
the framework the SVI model and calibration of the model.The main result that we provide is a
sufficient conditions that guarantee SVI calibration arbitrage free.

The rest of this paper is organized as follows: in the first part we present the SVI model
formulation and the different forms such as the natural SVI, Jump-Wings SVI. We also define the
characterization of static arbitrage: calendar spread and butterfly.Next, we study the volatility in
the wings where We provide for the first time an analytical sufficient conditions that guarantee
an SVI model arbitrage-free.In the second part, we present the SVI parameters boundaries and
the initial guess. Finally, we illustrate the performance of our calibration method first using two
synthetic examples with aribtrage and after that using real market data coming from 23 indexes.
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Chapter 1

Stochastic Volatility Inspired SVI

In this section, we present the general framework of the SVI model as presented by Jim Gatheral
and Antoine Jacquier in [9].Next, we describe the characterisation of static arbitrage which in-
cludes calendar spread and butterfly arbitrage and finally, we present the main result: a sufficient
conditions that ensure a positive probability density function using SVI’s parameters.

1.1 History of SVI

The stochastic volatility inspired model (SVI) was used for the first time at Merrill Lynch in 1999
by Jim Gatheral, and presented in 2004 at the annual conference of Global Derivatives in Madrid.
As traders and practitioners require intuitive interpretation of the SVI parameters, Gatheral and
Jacquier show in [10] that the SVI model could be the convergence of the total implied variance
under Heston model for large enough maturity T , additionally, they provide an intuitive interpre-
tation for SVI parameters.

The success of this model is due to its particular features:

1. For a fixed time to expiry T , the implied Black-Scholes variance σ2
BS(k, T ) is linear, with

respect to the log forward moneyness strike k := log(K/FT ) as |k| → ∞ ,where K is the
strike and FT is the forward price of the stock.This linearity is consistent with Roger Lee’s
moment formula [11].

2. It fits very well listed option prices, and careful choice of parameters allows for an arbitrage
free interpolation.

1.2 SVI Model Formulation

The original SVI formulation is the so called the raw SVI presented in 2004. This formulation is
very tractable. We will present other formulation such as: the natural SVI parameterization and
the SVI Jump-Wings (SVI-JW) parameterization.

1.2.1 The raw SVI parameterization

The raw SVI parameterization is a parametric model with 5 parameters χR = {a, b, ρ,m, σ}, it
models the total implied variance w (k;χR) := σ2

imp(k;χR)T.

w (k;χR) = a+ b
{
ρ(k −m) +

√
(k −m)2 + σ2

}
(1.1)

Where k := log( KFT
) is the log forward moneyness and K is the strike.

For every k ∈ IR , and the set of the models parameters χR is given by;
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a ∈ IR
b ≥ 0
|ρ| < 1
m ∈ IR
σ > 0

a+ bσ
√

1− ρ2 ≥ 0

The last condition is calculated using the fact that the minimum of the total implied variance is
positive; w(k;χR) ≥ 0.

This choice of using the log forward moneyness is motivated by scaling reason: dividing the
strike by the forward price and taking the logarithm does not change our computation, we get a
small numbers on the X axis in the same order with the total variance in the Y axis. We adapt
the notation of log forward moneyness strike k.

w (k;χR) = σ2
imp(k;χR)T. = a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
(1.2)

In practical applications, the model parameters are adopted to each option expiry.For a fixed
maturity T , the smile (or slice) is the total variance

w (k;χR) := σ2
imp(k;χR)T

We define also:

• The total implied variance: w(k, T ) = Tσ2
BS(k, T )

• The implied variance: v(k, T ) = σ2
BS(k, T ) = w(k, T )/T

• The map of the volatility surface: (k, T ) 7−→ w(k, T )

• The slice function: for any fixed expiry T > 0, k 7→ w(k, T )

Now we consider the effects and the interpretation of changing the parameters χR = {a, b, ρ,m, σ}
as describes in the figure (1.1).

• a: determines the overall level of variance: an increasing a increases the general level of
variance, a vertical translation of the smile.

• b: controls the angle between the left and right asymptotes: increasing b increases the slopes
of both the left and right wings, tightening the smile.

• ρ: determines the orientation of the graph: increasing ρ decreases the slope of the left wing,
and increases the slope of the right wing, it’s a counter-clockwise rotation of the smile.

• m: horizontal translation of the smile: increasing m translates the smile to the right.

• σ: determines curvature of the smile: increasing σ reduces the at-the-money (ATM) curvature
of the smile.

The total implied variance w (k;χN ) has the left and right asymptotes that respect the assumption
of linear wings, this result is consistent with the Roger Lee’s moment formula [11].

WL(k) = a+ b(ρ− 1)(k −m) k → −∞
WR(k) = a+ b(ρ+ 1)(k −m) k →∞

(1.3)
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Figure 1.1: The effects of the parameters χR = {a, b, ρ,m, σ} in SVI model

1.2.2 The natural SVI parameterization
Gatheral and Jacquier propose in [9] another formulation of the natural SVI parameterization, it
describes the total implied variance with parameters χN = {∆, µ, ρ, ω, ζ}.

w (k;χN ) = ∆ + ω

2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1− ρ2)

}
(1.4)

with ω ≥ 0,∆ ∈ IR, µ ∈ IR, |ρ| < 1 and ζ > 0

We can show the relationship between the raw and the natural SVI model.

Lemma 1.1 The parametrisation between the raw and the natural SVI is given by

(a, b, ρ,m, σ) =
(

∆ + ω

2
(
1− ρ2) , ωζ2 , ρ, µ− ρ

ζ
,

√
1− ρ2

ζ

)
(1.5)

and the inverse mapping between the natural and the raw SVI is

(∆, µ, ρ, ω, ζ) =
(
a− ω

2
(
1− ρ2) ,m+ ρσ√

1− ρ2
, ρ,

2bσ√
1− ρ2

,

√
1− ρ2

σ

)
(1.6)
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1.2.3 The SVI Jump-Wings (SVI-JW) Parameterization
The SVI-Jump-Wings (SVI-JW) is parameterization of the implied variance v(k, T ) rather than
the implied total variance w(k, T ). This kind of parameterization is intuitive for traders, and the
parameters have a financial meaning.The model’s parameterization was inspired by a similar pa-
rameterization attributed by Gatheral to Tim Klassen.

For a fixed time to expiry t > 0, and a parameters set χJ = {vt, ψt, pt, ct, ṽt}, the (SVI-JW)
parameters defined from the row SVI is given by

vt =
a+ b

{
−ρm+

√
m2 + σ2

}
t

ψt = 1
√
wt

b

2

(
− m√

m2 + σ2
+ ρ

)
pt = 1

√
wt
b(1− ρ)

ct = 1
√
wt
b(1 + ρ)

ṽt = 1
t

(
a+ bσ

√
1− ρ2

)
(1.7)

Setting wt := vtt, we notice that this parametrization dependency on time to expiration t, hence
the (SVI-JW) could be view as a generalisation of the raw SVI.

The SVI-JW parameters interpretation is as following :

• vt is the ATM variance.

• ψt is ATM skew.

• pt is the slope of the left (put) wing.

• ct is the slope of the right (call) wing.

• ṽt is the minimum implied variance.

1.3 Characterisation of Static Arbitrage
The definition of static arbitrage is an arbitrage that does not require rebalancing of positions
between two times.

The total implied variance w(·, t) should satisfy the following conditions to be arbitrage free as
presented in the following theorem [12].

Theorem 1.1 If the two-dimensional map w : IR × IR+ → IR+ satisfies:
(i) w(·, t) is of class C2(IR) for each t ≥ 0
(ii) w(k, t) > 0 for all (k, t) ∈ IR × IR∗+
(iii) w(k, ·) is non-decreasing for each k ∈ IR
(iv) for each (k, t) ∈ IR × IR∗,+ probability density function P (k), is non-negative.
(v) w(k, 0) = 0 for all k ∈ IR
(vi) limk↑∞ d+(k,w(k, t)) = −∞, for each t > 0

Then the corresponding call price surface (K, t) 7→ BS(K,w(log(K), t)) is free of static arbi-
trage.

Definition 1.1 Let w : IR×IR∗+ → IR+ be a two-dimensional map satisfying Theorem 3.3(i)-(ii)

• w is said to be free of calendar spread arbitrage if condition (iii) in Theorem 3.3 holds;

• w is said to be free of butterfly arbitrage if condition (iv) in Theorem 3.3 holds.

7



To check the arbitrage as explained in [13] and [14], we have to verify that the risk neutral
density (RND) produces a volatility curve that is arbitrage-free.This RND will be used to calculate
the price of call/put options that should be also arbitrage-free.

There are two ways to check for arbitrage:

1. The risk neutral density (RND) test for butterfly arbitrage.

2. The test based on option strategies for butterfly and calendar spread arbitrage.

Breeden and Litzenberger [15], derive an expression of the discounted risk neutral density
fST

(S∗) as function of the second derivative of the call price C(K) with respect to the strike K

e−rT fST
(S∗) = ∂2C

∂K2

∣∣∣∣
K=S∗

(1.8)

1.3.1 RND tests for arbitrage
To satisfy this type of test we have to check the most common feature for a density function:

• Using the RND, we can obtain the call/put prices observed in the market by numerical
integration of the RND.

• The RND is a positive function and its integral is equal to the one.

• Using the call price function C(K), with strike K, the RND should produce monotonically
decreasing call option prices with respect to the strike K.
The call price C(K) is

C(K) = e−rT
∫ ∞
K

(ST −K) fST
(s)ds (1.9)

and we should ensure that the first derivative with respect to the strike is negative then;

∂C

∂K

∣∣∣∣
K=K1

= −e−rT
∫ ∞
K1

fST
(s)ds < 0 (1.10)

• The last condition is the convexity of the call price C(K) with respect to the strike K. If
we consider to strikes K1 < K2, then the first derivative mentioned above should increases
in strike

∂C

∂K

∣∣∣∣
K=K2

− ∂C

∂K

∣∣∣∣
K=K1

= e−rT
∫ K2

K1

fST
(s)ds > 0 (1.11)

Defnition 1.2 A volatility surface is free of static arbitrage if and only if both of the following
conditions are satisfied:

1. It is free of calendar spread arbitrage;

2. Each time slice is free of butterfly arbitrage.

Note that the first condition guarantees the monotonicity of European call option prices with
respect to theirs maturities. The butterfly arbitrage guarantees the existence of a non negative
probability density. Now, we will analyze each condition separately.

1.3.2 Calendar Spread Arbitrage
Calendar spread arbitrage refers to the monotonicity of European call option prices with respect
to maturity. In order to obtain no arbitrage condition with respect to implied volatility, we need
to transform this condition.

To obtain a calendar spread, we will buy and sell options with the same strike price but for
different maturities. For simplify, we assume also that there are no dividend or interest rate.
Let C(T,K) the price of a call with expiry T and strike K. We know that if T1 < T2 then we have
calendar spread arbitrage if C(T1,K) > C(T2,K).
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Our strategy: we buy (long) call option C(T2,K) (the cheap) and we sell (short) the call C(T1,K)
(the expensive), then, the difference will be x = C(T1,K)− C(T2,K) > 0.

At T1 our position is x+ C (T2)−max {ST1 −K, 0}

• If (ST1 ≤ K), then the total profit is: x+ C (T2)

• If (ST1 > K), and the profit will be: x+ C (T2)− ST1 +K

At T2 :

• If (ST2 > K), we buy the stock by paying the amount K that we had received at T1, and
return the stock that we had short at T1. The net profit for our trading strategy is x > 0.

• If (ST2 < K), we buy the stock by paying T2 and return the stock that we short at T1. Note
that, we had received k at time T1, our net profit is then K − ST2 + x > x > 0.

Lemma 1.2 A volatility surface w is free of calendar spread arbitrage if

∂Tw(k, T ) ≥ 0, for all k ∈ IR and T > 0

Proof : Let (Xt)t≥0 be a martingale, L ≥ 0 and 0 ≤ t1 < t2. Then the inequality is true

E
[
(Xt2 − L)+

]
≥ E

[
(Xt1 − L)+

]
(1.12)

Let consider two options C1, C2with strikes K1, K2 and expiry time t1,t2 respectively.
If the two options have the same moneyness (log-moneyness or log-strike := log

(
K
FT

)
) we get:

K1

Ft1
= K2

Ft2
=: ek (1.13)

Then, the process (Xt)t≥0 defined by Xt := St/Ft is martingale for all t ≥ 0 , and the following
relation holds if the dividends are proportional:

C2

K2
= e−kE

[(
Xt2 − ek

)+] ≥ e−kE
[(
Xt1 − ek

)+] = C1

K1
(1.14)

This means that if the moneyness is constant, option prices are non-decreasing in time to
maturity (∂tCBS(k, ω(k, t)) ≥ 0 . If this is valid for the Black-Scholes prices CBS(y, ω(k, t)), then
ω(k, t) is strictly increasing, i.e (∂tw(k, t) ≥ 0).
We can interpret the absence of calender spread by the fact that there are no cross lines on the
total variance : when the maturity goes up , the SVI slice will be translated up.

1.3.3 Butterfly arbitrage
We consider the butterfly arbitrage for the slice of implied volatility k 7→ w(k, t).

In the real market the butterfly spread is a strategy with options, which combines simultaneous
buying and selling of three similar types options (either calls or puts) with strikesK−ε < K < K+ε
and which have the following characteristics:

• The options have the same maturity

• The options are listed on the same underlying

• The strike K − ε and K + ε are equidistant from K as in figure (1.2).

The butterfly consists of the purchase of a call option with strike K − ε, the sale of 2 call options
with strike K and the purchase of a third option with strike K + ε.

In other side, we know that the second derivative of the call price with respect to the strike k
is

d2C(K,T )
dK2 = lim

ε→0

C(K − ε, T )− 2C(K,T ) + C(K + ε, T )
ε2 (1.15)

We consider the following European payoff:
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Figure 1.2: Butterfly Spread

• 1
ε2 calls with strike K − ε

• 1
ε2 calls with strikes K + ε

• −2
ε2 calls with strikes k

This strategy is called the butterfly spread, and the absence of butterfly arbitrage implies that
the price of a butterfly spread is positive and the call price must to be convex with

C(K − ε, T )− 2C(K,T ) + C(K + ε, T ) ≥ 0 (1.16)

Let’s back to the our SVI model, we will find an equivalent condition to the call price convexity
defined in (1.15) in terms of the implied total variance w(k).

recall the Black-Scholes formula for a European call option price in terms of the total implied
variance w(k)

CBS(k,w(k)) = S
(
N (d+(k))− ekN (d−(k))

)
, for all k ∈ IR (1.17)

with;
d±(k) := −k/

√
w(k)±

√
w(k)/2

Let P be the probability density function of ST , then

p(k) = ∂2C(k)
∂K2

∣∣∣∣
K=Ftek

= ∂2CBS(k,w(k))
∂K2

∣∣∣∣
K=Ftek

, k ∈ IR (1.18)

p(k) = g(k)√
2πw(k)

exp
(
−d−(k)2

2

)
(1.19)

Where the function g : IR → IR

g(k) :=
(

1− kw′(k)
2w(k)

)2
− w′(k)2

4

(
1

w(k) + 1
4

)
+ w′′(k)

2 (1.20)

The condition g(k) > 0 is equivalent to the market implied volatility density P (k) is positive.

Defnition 1.3 A slice is said to be free of buttery arbitrage if the corresponding density define in
(1.19) is non-negative, which is equivalent to g(k) ≥ 0.

Lemma 1.3 The map k 7→ w(k, t) is free arbitrage if and only if g(k) ≥ 0 for all k ∈ IR and
limt→+∞ d+(k) = −∞

Proof : let P the probability density function that can be calculated from the call price function
C(k) using the formula of Breeden-Litzemberger is:

p(k) = ∂2C(k)
∂K2

∣∣∣∣
K=Ftek

= ∂2CBS(k,w(k))
∂K2

∣∣∣∣
K=Ftek

, k ∈ IR (1.21)
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By diferentiating the Black-Scholes formula for any k ∈ IR, we get ;

p(k) = g(k)√
2πw(k)

exp
(
−d−(k)2

2

)
(1.22)

We note that the integral of the density function may not all time equal to 1, and we need to
impose asymptotic boundary conditions. The limit of the call option limk→+∞ CBS(k,w(k)) = 0,
is equivalent to limk→+∞ d+(k) = −∞.

Now we will summarize the characterisation of static arbitrage that we will use in practice in the
next section of calibration.

AOA Characterisation Call criterion equivalent criterion equivalent criterion
Butterfly arbitrage (convexity) ∂2C(k)

∂K2

∣∣∣
K=Ftek

≥ 0 p(k) ≥ 0 g(k) ≥ 0
Limit Price function limK→+∞ CBS(T, k) = 0 limt→+∞ d+(k) = −∞ b(1 + ρ) < 2
Calendar Spread (monotonicity) T −→ CBS(T,K)↗ ∂CBS(T,x)

∂T ≥ 0 ∂Tw(k, T ) ≥ 0

Table 1.1: Summary of the static arbitrage

Axel Vogt example of arbitrage: generated by a parametrisation of SVI with T=1

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) (1.23)
These parameters give a positive total variance function w,however, the density function p(k) and
the g(k) function defined in (2.20), are negative. We will show explicitly, in the next section, how
to tackle this problem.

Figure 1.3: Plots of the total variance smile w (left) and the function g (right), using Axel Vogt’s
parameters

1.4 Volatility on the wings (main result)
Inspired by the work done by Jäckel in [16], in this section we will present the main result: an
asymptotic study of the function g(k), for large strikes, in order to get sufficient conditions that
ensure a probability density function P (k) positive and hence, an SVI butterfly arbitrage free.

We recall the g : IR → IR

g(k) :=
(

1− kw′(k)
2w(k)

)2
− w′(k)2

4

(
1

w(k) + 1
4

)
+ w′′(k)

2 (1.24)

In the wings we know that the total implied variance w (k;χN ) has the left and right asymptotes
that respect the assumption of linear wings, this result is consistent with the Roger Lee’s moment
formula mentioned in [11].{

WR(k) = b(ρ+ 1)k + [a− bm(ρ+ 1)] k → +∞
WL(k) = b(ρ− 1)k + [a− bm(ρ− 1)] k → −∞ (1.25)
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In the general case (left and right wing), we consider the total implied variance w (k;χN ) for
large strikes

w(k) = α+ βk, and w′(k) = β, w′′(k) = 0
We replace in (1.24) and we get

g(k) =
(

1− k

2
β

(α+ βk)

)2
− β2

4

(
1

α+ βk
+ 1

4

)
(1.26)

After simplification we get the following quadratic equation

g(k) = β2

4

(
1− β2

4

)
k2 + 1

4

(
4αβ − β3 − αβ3

2

)
k + 1

4

(
4α2 − αβ2 − α2β2

4

)
(1.27)

We calculate the discriminant ∆ of the quadratic function g(k) and we get

∆ = β4

16
(
β2 + α2 − 4α

)
(1.28)

In order to guarantee that the function g(k) is positive, we will be interested only to the case
where the discriminant ∆, of the quadratic function g(k), is strictly negative (∆ < 0) in both wings
sides and the first coefficient of the k2 is strictly positive.

Figure 1.4: Large strike asymptotics for the g(k) function

We study both wings, right and left, to find sufficient conditions for the butterfly arbitrage.

1.4.1 The right wing
We avoid the arbitrage in the right wing by considering that the discriminant ∆R is negative in
the right side of the quadratic function gR(k).

We recall the asymptotic formula, for large strikes, for the total implied variance

WR(k) = b(ρ+ 1)k + [a− bm(ρ+ 1)] = α+ βk k → +∞

Where for the right wing we have;

α = a− bm(ρ+ 1), β = b(ρ+ 1)

The discriminant ∆R is calculated by replacing α and β in (1.28)

∆R = b4(ρ+ 1)4

16
[
b2(ρ+ 1)2 + (a−mb(ρ+ 1))2 − 4(a− bm(ρ+ 1))

]
(1.29)
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If we consider, as first constraint, that the term b4(ρ+1)4

16 is strictly positive, the sign of ∆R will
be decided by the second term, and we get

(
∆R < 0

)
⇐⇒

(
b2(ρ+ 1)2 + (a−mb(ρ+ 1))2 − 4(a− bm(ρ+ 1)) < 0

)
⇐⇒ b2(ρ+ 1)2 <

(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
⇐⇒

(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
b2(ρ+ 1)2 > 1

Where; b2(ρ+ 1)2 > 0

∆R is negative, hence, the quadratic function gR(k) is strictly positive if the first coefficient of
this quadratic function is positive, i.e

β2

4

(
1− β2

4

)
> 0 ⇐⇒ b2(ρ+ 1)2

4

(
1− b2(ρ+ 1)2

4

)
> 0

We combine with the first constraint and we get

0 < b2(ρ+ 1)2 < 4

Finally, for the right wing, gR(k) is strictly positive if the following two conditions holds


(
a−mb(ρ+ 1)

)(
4− a+mb(ρ+ 1)

)
b2(ρ+ 1)2 > 1

0 < b2(ρ+ 1)2 < 4
(1.30)

1.4.2 The left wing
We fellow the same analysis as the previous one, the calculus is the same we change only the term
(ρ+ 1) by (ρ− 1).

We can avoid the arbitrage in the left wing by considering that the discriminant ∆L is negative
in the left side of the function gL(k).

We recall the total implied variance left asymptotic formula for the large strikes

WL(k) = b(ρ− 1)k + [a− bm(ρ− 1)] = α+ βk k → +∞

Where;
α = a− bm(ρ− 1), β = b(ρ− 1)

The discriminant ∆L is calculated by replacing α and β in (1.28)

∆L = b4(ρ− 1)4

16
[
b2(ρ− 1)2 + (a−mb(ρ− 1))2 − 4(a− bm(ρ− 1))

]
(1.31)

We consider the term b4(ρ−1)4

16 is strictly positive, the sign of ∆L will be decided by the second
term, and we get

(
∆L < 0

)
⇐⇒

(
b2(ρ− 1)2 + (a−mb(ρ− 1))2 − 4(a− bm(ρ− 1)) < 0

)
⇐⇒ b2(ρ− 1)2 <

(
a−mb(ρ− 1)

)(
4− a+ bm(ρ− 1)

)
⇐⇒

(
a−mb(ρ− 1)

)(
4− a+ bm(ρ− 1)

)
b2(ρ− 1)2 > 1
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Where; b2(ρ− 1)2 > 0

∆L is negative, hence, the quadratic function gL(k) is strictly positive if the first coefficient of
this quadratic function is positive, i.e

β2

4

(
1− β2

4

)
> 0 ⇐⇒ b2(ρ− 1)2

4

(
1− b2(ρ− 1)2

4

)
> 0

We combine with the term b4(ρ−1)4

16 is strictly positive, and we get

0 < b2(ρ− 1)2 < 4

Finally, for the right wing, gR(k) is strictly positive if the following two conditions are satisfied


(
a−mb(ρ− 1)

)(
4− a+mb(ρ− 1)

)
b2(ρ− 1)2 > 1

0 < b2(ρ− 1)2 < 4
(1.32)

We summary the necessary conditions that guarantee a butterfly arbitrage free for SVI model
in the following theorem.

Theorem 1.2

The total implied variance w(k, t) in the SVI model is said to be free of butterfly arbitrage
if the following conditions holds

(
a−mb(ρ+ 1)

)(
4− a+mb(ρ+ 1)

)
b2(ρ+ 1)2 > 1(

a−mb(ρ− 1)
)(

4− a+mb(ρ− 1)
)

b2(ρ− 1)2 > 1

0 < b2(ρ+ 1)2 < 4
0 < b2(ρ− 1)2 < 4
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Chapter 2

SVI Calibration Arbitrage Free

One of the desirable features of the SVI model is that it fits the input data very well especially in
the equity market.The problem that faced this model in the last decay is that arbitrage-freeness in
strike and maturity is not guarantee and it’s not automatically verified during the calibration step.
Usually, we calibrate the SVI model and next we check the arbitrage condition via the risk neutral
density(RND) if it’s positive.In practice, this is a quiet inconvenience and most practitioners require
a more robust approach in order to be implemented in the pricing library.

We provide solution for this problem by implementation of robust calibration method with
sufficient constraints that allow to calibrate the SVI model and also to eliminate both arbitrage
type automatically during the calibration step.We no longueur need to check the positivity of the
density function p(k). This calibration method is very important in practice: it allows to implement
the model in the pricing library and also to calculate the local volatility using Dupire formula.

Finally, we give some synthetic examples with arbitrage and we show in practice how our
algorithm could perform in this case. Also, we test the performance of our calibration method
using the implied volatility extracted from call/put options price listed on 23 indexes.

2.1 The Raw SVI calibration

The raw SVI model represents the total variance or the implied volatility of the call or put options
observed in the market. Therefore, we define a loss function to be optimized. This function is the
difference between the value of variance given by SVI model and the value of implied volatility
observed in the market.The minimization of this function will permit to calibrate SVI to observed
implied volatility.

Most algorithms require an initial guess of the model parameters, as well as boundaries conditions
and an objective function. The resulting parameters should respect the arbitrage free conditions:
butterfly arbitrage and calendar spread arbitrage.
Recall the expression of the raw SVI model with 5 parameters χR = {a, b, ρ,m, σ}.

w (k;χR) = a+ b
{
ρ(k −m) +

√
(k −m)2 + σ2

}
(2.1)

For every strike k ∈ IR, and

a ∈ IR
b ≥ 0
|ρ| < 1
m ∈ IR
σ > 0

a+ bσ
√

1− ρ2 ≥ 0

(2.2)

15



2.2 SVI’s Parameters Boundaries
We determine lower and upper boundaries for each SVI parameters (a, b, ρ,m, σ) in order to run
an efficient calibration that respect conditions related to the model and also to avoid arbitrage.

We have some restrictions on the parameters that follow from the parameterization of the model
in (1.1), such as;

b ≥ 0; | ρ |< 1; σ > 0.

Zeliade [17] present some parameter constraints and limiting cases.They incorporate also some
boundaries that are deduced the no arbitrage conditions.

• Parameter a and SVI Minimum
In this part we define the lower and upper bound of the parameter a.
w (k;χR) has a unique minimum if ρ2 6= 1 and it’s value is

Wmin(k) = a+ b σ
√

1− ρ2 (2.3)

This minimum is located at the point: k∗ = m− ρσ√
1−ρ2

.

We replace the positivity condition: a+ b σ
√

1− ρ2 > 0 by the restriction a > 0
which is stronger as both parameters b and σ are positive and obviously

√
1− ρ2 also. Finally,

we can conclude that the conditions

(a > 0) =⇒Wmin(k) = a+ b σ
√

1− ρ2 > 0 (2.4)

If we impose the condition a > 0,the question that comes up in mind: which lower bound
could a take. This is a very important question that we will discuss it in the calibration
section.
At the moment,we take an arbitrary small value amin = 10−5.

For the upper bound, and as the parameter a represents the overall level of total variance or
the vertical translation, hence, it could not suitable to get a value of a greater than the largest
value of the observed total variance.Therefore we impose for a the following boundaries

0 < amin = 10−5 ≤ a ≤ max(Wmarket
SV I ) (2.5)

• Parameter b and left wing
We can estimate the left and the right SVI asymptotes for large strikes;

WL(k) = a+ b(ρ− 1)(k −m)
WR(k) = a+ b(ρ+ 1)(k −m)

(2.6)

For the right wing the slop is b(ρ+ 1) and it should not exceed to 2 which is consistent with
Roger Lee formula value of implied volatility for the large strike tail [11].
We can also take the advantage from the others arbitrage constraints such as

lim
K→+∞

CBS(T, k) = 0 ⇐⇒ lim
t→+∞

d+(k) = −∞ (2.7)

We show that the condition limk→∞ d1(k,w(k)) = −∞, i.e :

lim
k→∞

d1 (k,wSVI(k)) = lim
k→∞

(
− k√

wSVI(k)
+ 1

2
√
wSVI(k)

)
= −∞ (2.8)

Is satisfied for a function w(k) if:

lim sup
k→∞

w(k)
2k < 1. (2.9)
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Or we have :
lim sup
k→∞

w(k)
k

= b(ρ+ 1) (2.10)

Finally, to be consistent with the Roger Lee’s moment formula, the right slope condition
should satisfy the inequality:

b(ρ+ 1) < 2. (2.11)

Using this last inequality we can conclude that for ρ 6= −1

b <
2

(ρ+ 1) (2.12)

For any | ρ |< 1, the minimum of the function f(ρ) = 2
(ρ+1) is f(1) = 1, (with | ρ |< 1).

For the b lower bound, we can take a small value around bmin = 10−3.

Finally we obtain that the b boundaries are:

0 < bmin = 10−3 < b < 1 (2.13)

• Correlation Parameter ρ
The correlation coefficient between the Brownian motion of the underlying and the implied
variance process is ρ, hence, it’s value will be in the interval ]− 1, 1[

• Translation Parameter m
By the same way, m is the horizontal translation of the smile to the right, and as the smile
could not more out side the zone limited by the log forward moneyness of our input data,
hence, we can cap it at some reasonably translation level as following.

2 min
i
ki ≤ m ≤ 2 max

i
ki (2.14)

Where ki is the log forward moneyness or log strike: ki := log
(
Ki

FT

)
.

• Curvature Parameter σ
The positive value of sigma (σ > 0) means that the total implied variance has a positive
at-the-money curvature.
As σ represents the curvature, it’s rare to see σ takes large value,in general, σ takes small
values around 0.01 or 0.02 for the short maturities and it goes more large for long maturities,
like 0.2 or 0.3 for 10 years time to expiry.
For this reason, we can cap σ by any arbitrary reasonable value σmax, a constant value such
as 1, 2 or other number.

0 < σmin = 0.01 ≤ σ ≤ σmax = 1 (2.15)

We can summarize the obvious boundaries for the SVI raw parameters model as following:



0 < amin = 10−5 ≤ a ≤ max(WSV I)
0 < bmin = 10−3 < b < 1
−1 < ρ < 1

2 min
i
ki ≤ m ≤ 2 max

i
ki

0 < σmin = 0.01 ≤ σ ≤ σmax = 1

(2.16)
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2.2.1 The Initial Guess
In order to run our calibration algorithm, we need to define the initial guess parameter’s values,
this values are very important and we should to care when we choose these right values. Also, the
initial point should below to the boundaries intervals for each variable.

For the first parameter a that represent the vertical translation, one of the reasonable value is
to be close to the minimum of the market total variance value, hence, we can take it

a = 1
2min(WSV I)

The parameter b could be taken as b = 0.1, in general this value is the middle between the b
value for the short maturities of one weeks to the large maturities of 10 years.

For the correlation parameter ρ, it’s obvious to guess it’s initial value for the equity market,
we are sure that it takes negative value and the initial guess should be

ρ = −0.5

Note that the extreme values of ρ are -1 and 1, for ρ = 1, the SVI model is graphically similar to
the payoff of the call, and for ρ = −1, the ρ = -1 , the SVI model ( the smile) is similar to the put
payoff.

Therefore ρ = −0.5, is a reasonable value for the smile in the equity market. We will see after
calibration that ρ vary with respect to the time to expiry: more the time to expiry is large, more
will decrease taking small negative values.

Regarding the horizontal translation parameter m: we notice that m can take as positive or
negative values: more the m value is high , more the smile will be translated to the right and vice
versa. The initial value m = 0.1, is a resealable value between the short and long maturities.

The last parameter is the curvature parameter σ which is strictly positive in general it’s values
are small around 0.01 for the short maturities ( weekly or monthly) and 0.2 for the large maturities
of 10 years, hence, taking σ = 0.1 will be acceptable value valid for the short and the long
maturities.

Note that these values are arbitrary and any other values close could be work also, finally, we
summarize the initial guess values for the SVI calibration in the box bellow.l

The Initial Guess



a = 1
2min(WSV I)

b = 0.1
ρ = −0.5
m = 0.1
σ = 0.1

(2.17)

2.2.2 The Butterfly Arbitrage Constraints
Let’s recall the expression of P , the probability density function that can be calculated from the
call price function C(k) using the formula of Breeden-Litzemberger [15].

p(k) = ∂2C(k)
∂K2

∣∣∣∣
K=Ftek

= ∂2CBS(k,w(k))
∂K2

∣∣∣∣
K=Ftek

, k ∈ IR (2.18)

By diferentiating the Black-Scholes formula for any k ∈ IR, we get;

p(k) = g(k)√
2πw(k)

exp
(
−d−(k)2

2

)
(2.19)

The limit of the call option limk→+∞ CBS(k,w(k)) = 0, which is equivalent to:

lim
k→+∞

d+(k) = −∞
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The SVI model is butterfly arbitrage free if the SVI parameters could guarantee that the proba-
bility density function P is positive for any log forwad moneyness k,hence, p(k) is positive if and
only if the function g(k) > 0 is also positive.

Where the function g : IR → IR

g(k) :=
(

1− kw′(k)
2w(k)

)2
− w′(k)2

4

(
1

w(k) + 1
4

)
+ w′′(k)

2 (2.20)

Finally, we can summarize all the constraints that could guarantee to get SVI model with ar-
bitrage free following these conditions:



0 < amin = 10−5 ≤ a ≤ max(WSV I)
0 < bmin = 10−3 ≤ b < 1
−1 < ρ < 1

2 min
i
ki ≤ m ≤ 2 max

i
ki

0 < σmin = 0.01 ≤ σ ≤ σmax = 1
g(k) > 0

(2.21)

We replace the condition g(k) > 0 by sufficient, butterfly arbitrage free, conditions presented
on (1.4.2) 

(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
b2(ρ+ 1)2 > 1(

a−mb(ρ− 1)
)(

4− a+ bm(ρ− 1)
)

b2(ρ− 1)2 > 1

0 < b2(ρ+ 1)2 < 4
0 < b2(ρ− 1)2 < 4

Let’s define the least-Squares objective function f (k;χR) to optimize, where χR = {a, b, ρ,m, σ}
is the set of the parameters model, for an expiry time fix T .

f (k;χR) =
n∑
i=1

(
ωmodelSV I(i) − ω

market
Total(i)

)2
(2.22)

f (k;χR) =
n∑
i=1

[
a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
− ωmarketTotal(i)

]2
(2.23)

Where ki := log
(
Ki

FT

)
The problem reduced to find the optimal model’s parameters χR = (a∗, b∗, ρ∗,m∗, σ∗).

2.3 SVI Summary

In this section, we redefine the SVI model framework and the parameters associate.We summary
all the necessary arbitrage free conditions and the parameters boundaries.It’s the recipe that we
need to use for the calibration.
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SVI Model

the model:The SVI model represents the total implied variance with 5 parameters χR =
{a, b, ρ,m, σ}

w (k;χR) = σ2
imp(k;χR)T = a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
(2.24)

1. Parameters: a > 0, 0 < b < 1, −1 < ρ < 1, m ∈ IR, σ > 0

2. Parameters Boundaries

• a: verticall translation with 0 < amin < a ≤ max(WMarket
SV I )

• b: wings slope: 0 < b < 1
• ρ: counter-clockwise rotation: −1 < ρ < 1
• m: horizontal translation: 2 min ki ≤ m ≤ 2 max ki
• σ: the smile curvature: 0 < σmin ≤ σ ≤ σmax

3. Butterfly arbitrage constraints

•
(
a−mb(ρ+ 1)

)(
4− a+mb(ρ+ 1)

)
− b2(ρ+ 1)2 > 0

•
(
a−mb(ρ− 1)

)(
4− a+mb(ρ− 1)

)
− b2(ρ− 1)2 > 0

• 0 < b2(ρ+ 1)2 < 4
• 0 < b2(ρ− 1)2 < 4

4. Calendar spread arbitrage constraints

• ∂Tw(k, T ) > 0 ⇐⇒ w(k, Ti) > w(k, Ti−1) for 1 ≤ i ≤ n

Remark: In the calibration algorithm, it’s better to avoid the division as operation in the
arbitrage constraints, represented in (1.4.1 and 1.4.2), as the term b2(ρ + 1)2 or b2(ρ − 1)2 could
be very small or close to zero and hence, the optimizer will diverge to infinity.

2.4 Input Data
We download Market data for example CallBS(k,w(k)) or PutBS(k,w(k)), for an expiry time T fix
with strikes K, and next we can extract the implied volatility from this market call or put prices
by inverting the black Scholes formula, finally, we get what we call the implied variance σ2

BS(k, T ).

Our data comes from an external American financial services company called SuperDeriva-
tives.The data is the prices of index options Call and Put listed on 23 indexes such as: EURO
STOXX 50, CAC 40, NIKKEI 225, FTSE Mid 250 Index, SWISS MARKET IND, Hang Seng,
NASDAQ 100, FTSE 100, MSCI world TR Index, Sao Paulo SE Bovespa Index,...etc.

We calculate the total implied variance: ωmarketTotal(i) = Tσ2
BS(k, T )

The log forward moneyness or log strike: x := log
(
K
FT

)
, where FT is the forward price.

We display a sample of data call and put prices listed in the EURO STOXX 50 index in the figure
(2.1).
We note in the figure (2.1) that our data respect some proprieties such positivity of both prices
call and put and secondly monotonicity: put options price are increasing, and call options price
are decreasing with respect to the strike. These proprieties are the basic requirements that our
data should respect.

2.5 Numerical Applications
We present in this section some synthetic numerical examples with arbitrage, theses examples are
our creation by variate the SVI parameters in order to get an arbitrage in the input data model
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Strikes Implied volatility % Call Put
2068.48 24.93 1268.59 7.25
2413.23 22.3 936.83 21.56
2757.98 19.39 621.99 52.79
3016.54 17.17 407.05 97.39
3585.37 12.86 77.18 338.53
3964.59 12.22 15.1 657.11
4481.71 12.98 1.87 1162.98
4998.83 14.17 0.35 1680.55
5688.33 15.65 0.05 2372.38
6033.07 16.32 0.02 2718.41
6377.82 16.96 0.01 3064.46
6722.57 17.56 0.01 3410.52
6894.94 17.86 0 3583.55

Table 2.1: Call and Put Price on 2019 /04/05 with, T =1.01 Y, from EURO STOXX 50

Figure 2.1: Call and Put option prices from Eurostoxx50, (T : 2019/04/05 to 2020/04/06 )

and next apply the calibration method to show its performance and eliminate the arbitrage.
We generate the log forward moneyness vector that taking values in the range [-1, 1] with 40

points.

2.5.1 Some Arbitrage Examples
Example arbitrage 01
We consider the raw SVI parameters

(a, b,m, ρ, σ) = (0.002, 0.8,−0.8, 0.05, 0.35) (2.25)

After calibration we get the SVI parameters that garantee an SVI butterfly arbitrage free ( i.e
positivity of the g(k) function and hence, the density function also).

(a, b,m, ρ, σ) = (0.182, 0.563,−0.99, 0.145, 0.03) (2.26)

We can see clearly in the figure (2.2) how the calibration method using sufficient conditions, for
butterfly arbitrage, performs to eliminate the butterfly arbitrage.
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Figure 2.2: arbitrage example 01: plots of the total variance (left), the function g(k) (right), and
the density function (down) with and without arbitrage.

Example arbitrage 02
We present another example of SVI with arbitrage and we show how our algorithm can perform
to eliminate the butterfly arbitrage in this case. In fact, we can found many others examples with
arbitrage: we can just fix a positive minimum of SVI and next to move up the right or the left
wing by changing in the value of b and ρ.

Let’s consider the following example

(a, b,m, ρ, σ) = (0.07, 0.95, 0.25, 0.4, 0.25) (2.27)

We display in the figure (2.3) below both: SVI with arbitrage using the parameters above.
The new SVI parameters with arbitrage free after calibration are

(a, b,m, ρ, σ) = (0.26, 0.638,−0.0164, 0.2535, 0.0328) (2.28)

By analyzing the two examples, we can see the performance of our algorithm to eliminate the
butterfly arbitrage, and to keep the SVI model as close as possible (best fit) to the input data.
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Figure 2.3: arbitrage example 02: plots of the total variance (left), the function g(k) (right), and
the density function (down) with and without arbitrage

2.5.2 Equity Indexes Calibration
After testing our algorithm in two synthetic arbitrage examples, in this section we will test the
performance of our calibration method using real market data.The input data is the options prices
(call and put) listed on 23 indexes such as: EURO STOXX 50, CAC 40, NIKKEI 225, FTSE Mid
250 Index, SWISS MARKET IND, Hang Seng, NASDAQ 100, FTSE 100, MSCI world TR Index,
Sao Paulo SE Bovespa Index,...etc. Our algorithm performs well with the 23 indexes, using the
same starting initial guess for the SVI parameters, and keeping the same boundaries as described
in (2.2.2).
We display the calibration result for one slice with

χR = (a∗ = 0.01, b∗ = 0.07, ρ∗ = 0.43,m∗ = 0.11, σ∗ = 0.12)

. After calibration, we obtained the total variance model in the figure (2.4).
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Figure 2.4: SVI fit from least-squares ( T=1.01Y : 2019 04 05 to 2020 04 06 )

Strike k Call Market Total Variance SVI Model Total variance
2068.48 1268.59 0.06249 0.06361
2413.23 936.83 0.050 0.04935
2757.98 621.99 0.03780 0.03720
3016.54 407.05 0.02964 0.02932
3585.37 77.18 0.01662 0.01674
3964.59 15.1 0.01501 0.01470
4481.71 1.87 0.01694 0.01700
4998.83 0.35 0.02018 0.02037
5688.33 0.05 0.02462 0.02479
6033.07 0.02 0.02678 0.02688
6377.82 0.01 0.02892 0.02887
6722.57 0.1 0.0310 0.03077
6894.94 0 0.03207 0.03169

Table 2.2: SVI fit for EURO STOXX 50 implied volatility ( T=1.01Y : 2019 04 05 to 2020 04 06 )

Now we display in the figure (2.5) above the calibration of our 14 slices maturities, using the
implied volatility of the call options listed on date of 05, April 2019, from the Euro Stoxx 50 index.
We calculate for each slice calibration the optimal parameters model and the mean square error
MSE.
The analyze of the SVI model fit (slices) shows that our calibration method is robust and it fits
very well as for the short maturity (one week) or to the large maturities (8-10 years).
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Figure 2.5: Plots of the SVI fits for the Euro Stoxx 50 implied volatility on April 05, 2019.
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2.5.3 Multi-Slices SVI Calibration
In this section, we present the SVI calibration for multi slices. We apply this method to calibrate
the SVI model in both axes: strikes and maturities. This calibration respect the SVI’s boundaries
and mostly both type of arbitrage: butterfly ( for the strike axis) and calendar spread (in the
maturity axis).

We present the objective function f (k;χR) as previously, where χR = {a, b, ρ,m, σ} is the set
of the model’s parameters, for an expiry time fix T .

f (k;χR) =
n∑
i=1

(
ωmodelSV I(i) − ω

market
Total(i)

)2
(2.29)

f (k;χR) =
n∑
i=1

[
a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
− ωmarketTotal(i)

]2
(2.30)

Where ki := log
(
Ki

FT

)
The non linear problem (NLP) is defined as



(NLP) : min
x∈R5

f (k;χR)

ad ≤ a ≤ au
bd ≤ b < bu

ρd < ρ < ρu

md ≤ m ≤ mu

σd ≤ σ ≤ σu
g (k;χR) > 0

∂Tw(k, T ) > ε, ∀k ∈ IR, T > 0

(2.31)

Like for the slice, the butterfly arbitrage constraint g (k;χR) > 0 should to be remplaced by the
following conditions;

•
(
a−mb(ρ+ 1)

)(
4− a+mb(ρ+ 1)

)
− b2(ρ+ 1)2 > 0

•
(
a−mb(ρ− 1)

)(
4− a+mb(ρ− 1)

)
− b2(ρ− 1)2 > 0

• 0 < b2(ρ+ 1)2 < 4

• 0 < b2(ρ− 1)2 < 4

In fact this calibration is similar to the previous one, however, we incorporate another constraint
that insure to avoid calendar spread arbitrage.In practice, we start the calibration with SVI slice
corresponding to the lowest maturity and we move up to the next maturity respecting the constraint
of non crossing slices as below; 

w(k, T0) > 0
w(k, T1) > w(k, T0)

...

w(k, Ti) > w(k, Ti−1) 1 ≤ i ≤ n

(2.32)

Fallowing this procedure, we can guarantee to get an SVI calibration with butterfly and cal-
endar spread arbitrage free in the same time by running only one calibration for all the slices.
Moreover, even if there is an arbitrage (butterfly or calendar spread) in our input data, the cali-
bration method can avoid these arbitrages and correct the input data.

Let’s show how our calibration method perform in the real market. We calibrate the SVI model
using the implied volatility extracted from options listed in three indexes: SP ASX 200 listed on
the Australian Securities Exchange, the index DJ Stoxx 600 Utilities Rt Inde and Swiss Market
Index Swiss Market Ind on date of April 5,2019.
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Figure 2.6: SVI calibration arbitrage free (butterfly and calendar spread) for (left: DJ Stoxx 600
Utilities Rt Inde) and (right: SPA SX200 index) on April 5th,2019.Dots are implied total variance
input data and continue line is SVI model

Figure 2.7: SVI calibration for the index (left: NASDAQ 100) and (right: Swiss Market Ind), with
both butterfly and calendar spread arbitrage free.Dots are implied total variance input data and
continue line is SVI model

We note in both figures above (2.6) ,for (left: DJ Stoxx 600 Utilities Rt Inde), (right: SPA
SX200 index) and (down right: Swiss Market Ind), the crossing in the input data with dots which
is mean that our input data incorporate the calendar spread arbitrage for many maturities.

We succeed to eliminate both arbitrages: calendar spread and butterfly during the calibration
step. Our SVI’s parameters are arbitrage free. The continues lines represent the fit of the SVI
model, and we note that this lines are separated.
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Conclusion

In this paper we studied the Stochastic Volatility Inspired model (SVI) as implied volatility model:
we started by the analytic part of the SVI model and next, we established the characterization of
static arbitrage (calendar spread and butterfly).

The SVI model had the arbitrage problem: no calibration method was able to grantee an
SVI calibration arbitrage-free. The main contribution of this paper is that we provided sufficient
conditions that guarantee an SVI static arbitrage-free. These conditions ensure that the probability
density function will remain positive. that allows automatic elimination of arbitrage (butterfly and
calendar spread) during the calibration which was not possible until recently.

We provided the SVI’s parameters boundaries and the initial guess. We illustrated the perfor-
mance of our algorithm in some synthetic numerical examples with arbitrage and we showed how
to fix them. Moreover, in order to test the performance of our calibration method, we applied the
method to calibrate the implied volatility for 23 indexes with 14 maturities each (322 slices).

The calibration method is robust and easy to implement. It performs even when the input data
contain arbitrage. The model’s calibration corrects the input data coming from the market and it
fits very well the variance of the equity market.

Using this calibration method, we can interpolate on the maturity axis in order to get the
implied volatility surface, and next we can use Dupire’s formula to get the local volatility surface
in terms of the total variance SVI (the implied volatility). This is very useful to well price different
types of path dependant options such as barrier options, American options.

We can also use the method to calibrate the SVI model in the FX market and also to price
different interest rates derivatives such as swaptions, cap, and floor. The advantage of this SVI
calibration is that our result is guarantee arbitrage-free, and it fits well the input data comparing
to SABR model.
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Appendix A

SVI Calibration Using Indexes

Remark:the calibration method is tested for 23 indexes, each index with 14 slices. We display
here only some examples that we selected to show the performance of the method.
DJ Stoxx 600 Utilities Rt Inde

Forward Maturity (Year) χR = {a, b, ρ,m, σ} MSE
317.91 0.01918

(
0.00017, 0.0022, -0.057, 0.084, 0.018 ) 7.126373 10−9

317.28 0.08493
(
0.000195, 0.013, -0.285, 0.01884, 0.088 ) 2.521449 10−8

312.42 0.16712
(
0.00059, 0.022, -0.291, 0.03397, 0.0798 ) 5.740408 10−8

311.08 0.2493
(
0.000988, 0.0276, -0.2845, 0.04493, 0.0959 ) 9.921849 10−8

307.99 0.50685
(
0.00252, 0.03868, -0.2557, 0.08039, 0.1286) 6.084056 10−8

306.32 0.75616
(
0.00397, 0.0474, -0.2664, 0.1056, 0.1581) 5.838878 10−8

304.86 1.00548
(
0.006786, 0.045, -0.204, 0.18, 0.161) 1.800535 10−6

Table A.1: SVI fit for DJ Stoxx 600 Utilities Rt Inde

SP ASX200

Forward Maturity (Year) χR = {a, b, ρ,m, σ} MSE
6179.10 0.01918

(
0.0001195, 0.00724, -0.106, 0.0095, 0.01 ) 4.929172 10−9

6184.80 0.08493
(
0.000421, 0.01532, -0.3705, 0.01483, 0.059 ) 1.242112 10−7

6158.70 0.16712
(
0.000508, 0.0248, -0.3878, -0.00615, 0.0792 ) 1.96188 10−7

6153.80 0.2493
(
0.00072, 0.03068, -0.39244, -0.00623, 0.0929 ) 1.98044 10−8

6098.80 0.50685
(
0.00370, 0.03628, -0.3727, 0.02393, 0.08299) 5.999724 10−8

6081.50 0.75616
(
0.005814, 0.04559, -0.559, 0.01207, 0.1367) 2.38178 10−6

6031.80 1.00548
(
0.013815, 0.04155, -0.688, 0.02323, 0.049) 4.317087 10−7

Table A.2: SVI fit for SP ASX200

NASDAQ 100

Forward Maturity (Year) χR = {a, b, ρ,m, σ} MSE
7576.20 0.01918

(
.0000867, 0.01237, -0.4957, -0.00006, 0.01) 2.58162 10−7

7588.40 0.08493
(
0.000343, 0.023149, -0.3847, 0.02053, 0.05065 ) 4.351337 10−7

7592.70 0.16712
(
0.0010962, 0.030378, -0.35853, 0.05138, 0.056567 ) 5.556376 10−7

7603.20 0.2493
(
0.0018707, 0.03853, -0.34163, 0.06739,0.0596 ) 1.505823 10−7

7633.50 0.50685
(
0.00375, 0.05806, -0.41078, 0.1012, 0.0949) 2.456222 10−8

7663.90 0.75616
(
0.00622, 0.06635, -0.495, 0.1250, 0.1292) 3.056964 10−7

7688.20 1.00548
(
0.010716, 0.07854, -0.5305, 0.12891, 0.145812) 7.034514 10−7

7741.10 1.50411
(
0.02077, 0.09305, -0.590, 0.16763, 0.16816) 3.553784 10−6

7790.60 2.00548
(
0.03656, 0.099372, -0.6740, 0.1933, 0.17998) 4.490482 10−6

7889.20 3.00274
(
0.072781, 0.1087, -0.8217, 0.21717, 0.145812) 7.034514 10−7

Table A.3: SVI fit for NASDAQ 100
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SWISS MARKET IND

Forward Maturity (Year) χR = {a, b, ρ,m, σ} MSE
9535.40 0.01918

(
0.01918, 0.000092891,0.008128150, 0.48069,0.00471,0.01) 1.74004 10−8

9469.90 0.08493
(
0.000946983,0.012566,-0.04130, 0.00013, 0.016016 ) 1.447122 10−6

9410.20 0.16712
(
0.00107,0.02143,-0.26564,-0.00578, 0.06189 ) 5.02672 10−7

9403.60 0.2493
(
0.00026,0.03399,-0.28963,0.00492,0.10285 ) 5.877006 10−7

9373.50 0.50685
(
0.002297,0.042255,-0.314,0.072,0.0747) 1.72667 10−7

9352.50 0.75616
(
0.003515,0.054161,-0.314,0.0853,0.09741) 2.388377 10−7

9219.70 1.00548
(
0.00467,0.06437,-0.335,0.09863,0.119623) 2.61608 10−7

Table A.4: SVI fit for SWISS MARKET IND

Figure A.1: SVI calibration for the CAC 40 Index implied volatility listed on date April 05, 2019

30



Figure A.2: SVI fits for the NASDAQ 100 Index implied volatility listed on date April 05, 2019
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Figure A.3: SVI fits for the DAX 30 Index implied volatility listed on date April 05, 2019
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Figure A.4: SVI fits for the S&P500 Index implied volatility listed on date April 05, 2019
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Figure A.5: SVI fits for the MSCI world TR Index implied volatility listed on date April 05, 2019
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