
HAL Id: hal-02517462
https://hal.science/hal-02517462v1

Preprint submitted on 24 Mar 2020 (v1), last revised 8 Apr 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kernel Operations on GPU, without memory overflows
Kernel Operations on the GPU, with Autodiff, without

Memory Overflows
Benjamin Charlier, Jean Feydy, Joan Glaunès, François-David Collin,

Ghislain Durif

To cite this version:
Benjamin Charlier, Jean Feydy, Joan Glaunès, François-David Collin, Ghislain Durif. Kernel Oper-
ations on GPU, without memory overflows Kernel Operations on the GPU, with Autodiff, without
Memory Overflows. 2020. �hal-02517462v1�

https://hal.science/hal-02517462v1
https://hal.archives-ouvertes.fr

Kernel Operations on GPU, without memory overflows

Kernel Operations on the GPU, with Autodiff,
without Memory Overflows

Benjamin Charlier benjamin.charlier@umontpellier.fr
IMAG
Université de Montpellier, CNRS
Montpellier, France

Jean Feydy jean.feydy@ens.fr
DMA
École Normale Supérieure
Paris, France

Joan Alexis Glaunès alexis.glaunes@parisdescartes.fr

MAP5

Université de Paris, CNRS

Paris, France

François-David Collin francois-david.collin@umontpellier.fr

Ghislain Durif ghislain.durif@umontpellier.fr

IMAG

Université de Montpellier, CNRS

Montpellier, France

Editor: ***

Abstract

The KeOps library provides a fast and memory-efficient GPU support for tensors whose
entries are given by a mathematical formula, such as kernel and distance matrices. KeOps

alleviates the major bottleneck of tensor-centric libraries for kernel and geometric applica-
tions: memory consumption. It also supports automatic differentiation and outperforms
standard GPU baselines, including PyTorch CUDA tensors or the Halide and TVM libraries.
KeOps combines optimized C++/CUDA schemes with binders for high-level languages: Python
(Numpy and PyTorch), Matlab and GNU R. As a result, high-level “quadratic” codes can now
scale up to large data sets with millions of samples processed in seconds.

KeOps brings graphics-like performances for kernel methods and is freely available on
standard repositories (PyPi, CRAN). To showcase its versatility, we provide tutorials in a
wide range of settings online at www.kernel-operations.io.

Keywords: kernel methods, Gaussian processes, GPU, automatic differentiation

1. Introduction

Recent advances in machine learning have been driven by the diffusion of two pieces of
software: automatic differentiation engines and GPU backends for tensor computations. To-
day, thanks to the TensorFlow or PyTorch libraries (Abadi et al., 2015; Paszke et al., 2017),
users routinely perform gradient descent on functions that involve millions of parameters.

1

https://www.kernel-operations.io

Charlier, Feydy, Glaunès, Collin and Durif

These two frameworks keep a focus on tensor-like arrays, with a strong support of convo-
lution and linear algebra routines. They are perfectly suited to the design of convolutional
neural networks but also have clear limitations: the transfer and storage of large quadratic
buffers may prevent users of kernel methods or distance matrices to scale up their
method to large data sets.

To work around this problem, a common option is to wrap a custom Python operator
around a handcrafted piece of C++/CUDA code. This method can lead to optimal runtimes,
but is reserved to advanced coders and lacks flexibility. In order to lower the barrier of entry
to state-of-the-art performances, domain-specific compilers have thus been proposed for
image processing and deep learning: see for instance the Halide (Ragan-Kelley et al., 2017),
TVM (Chen et al., 2018) or Tiramisu (Baghdadi et al., 2019) libraries. These frameworks
are ambitious, but none of them really suits the needs of theorists in the machine learning
community: they generally do not support optimal schemes for kernel methods or require
an understanding of low-level parallel computing to be setup.

KeOps is all about filling this gap to relieve mathematicians from the burden of low-level
programming. It is fast, transparent to use and targets a single yet powerful abstraction:
semi-symbolic arrays whose entries are given by a mathematical formula. It can be called
from the major scripted languages used in the scientific community: Python (Numpy and
PyTorch), Matlab, and GNU R. In this short introduction, we focus on the Python interface
and refer to our documentation for additional tutorials, applications and benchmarks.

2. KeOps Purpose and Usage

A generic reduction framework. The workhorse of the KeOps library is a “Genred” engine
for Generic Reductions. Let us assume that we have at hand:

1. parameters: a collection p1, p2, . . . , pP of vectors;

2. i-variables: a collection x1i , x
2
i , . . . , x

X
i of vector sequences, indexed by i ∈ [[1,M]];

3. j-variables: a collection y1j , y
2
j , . . . , y

Y
j of vector sequences, indexed by j ∈ [[1,N]];

4. a vector-valued symbolic formula F (p1, . . . , pP , x1i , . . . , x
X
i , y1j , . . . , y

Y
j);

5. a reduction operation such as a sum, max, argmin, log-sum-exp, etc.

Then, a single call to the Genred engine allows users to evaluate the expression

ai = Reduction
j=1,...,N

[
F (p1, . . . , pP , x1i , . . . , x

X
i , y1j , . . . , y

Y
j)

]
for i = 1, . . . ,M (1)

efficiently, with a linear memory footprint on GPUs. This level of generality allows KeOps

to handle off-grid convolutions, k-nearest neighbors classification, k-means clustering and
many other tasks.

The LazyTensor abstraction. The “LazyTensor” wrapper for NumPy arrays and PyTorch

tensors allows users to specify computations along the lines of Eq. (1) with a tensor-like
interface. For instance, we can specify a Gaussian matrix-vector product with:

1 from pykeops.torch import LazyTensor # Wrapper for PyTorch Tensors

2 q_i = LazyTensor(q[:, None, :]) # (N,D) Tensor -> (N,1,D) Symbolic Tensor

3 q_j = LazyTensor(q[None, :, :]) # (N,D) Tensor -> (1,N,D) Symbolic Tensor

2

Kernel Operations on GPU, without memory overflows

4 D_ij = ((q_i - q_j) ** 2).sum(dim=2) # Symbolic squared distances matrix

5 K_ij = (- D_ij / (2 * s ** 2)).exp() # Symbolic Gaussian kernel matrix

6 v = K_ij @ p # Genuine torch Tensor. (N,N) @ (N,D) = (N,D)

In the script above, no computation is performed at lines 4 and 5: lazily, the KeOps engine
simply builds up a symbolic formula F encoded as a string attribute of the LazyTensor

K ij. The only “genuine” computation here is a call to the Genred engine for the virtual
matrix-vector product of line 6: no intermediate N-by-N buffer is created in memory. Note
that variable types (i-, j-variable or parameter) are inferred from the shapes of the input
tensors at lines 2 and 3.

As showcased on our website and at the end of this paper, KeOps scripts for kernel and
geometric applications generally outperform their Numpy and PyTorch counterparts by sev-
eral orders of magnitude while keeping a linear memory footprint. LazyTensors support a
wide range of mathematical operations that mimic the usual interface for NumPy arrays and
PyTorch tensors. They fully support broadcasting and batch dimensions, as well as a de-
cent collection of reduction operations: .sum(), .logsumexp(), .max(), .argKmin(K=...),
etc. This allows users to scale up to large data sets without having to make any kind of
approximation: we refer to our tutorials on K-means clustering, K-Nearest Neighbours
classification, spectral analysis or Gaussian mixture model estimation.

Backpropagation. Crucially, KeOps supports automatic differentiation through a Grad

operator that can be used on any formula F , recursively if needed. This mechanism is
fully integrated with the torch.autograd engine: users can seamlessly “backprop” through
KeOps calls using the usual torch.autograd.grad() and .backward() methods.

3. Internal Engine

Efficient GPU schemes. The KeOps CUDA routines are based on parallel implementations
of a tiled Map-Reduce scheme: we split reductions into medium-sized blocks to best leverage
the shared memory of GPU devices. This technique is well-known in GPU programming
and detailed in CUDA reference guides (Nguyen, 2007, Chapter 31). The originality of KeOps
resides in its genericity with respect to the formula F , its math-friendly interface and its
support of automatic differentiation.

Building formulas, automatic chain-rule. Internally, KeOps encodes formulas as recur-
sively templated C++ classes: each elementary vector-valued operation is defined in a tem-
plated KeOps class, that specifies an evaluation code to inline in the CUDA scheme and a
symbolic expression for its gradient. As an example, the element-wise, vector-valued expo-
nential function is encoded with:

1 template < class F >

2 struct Exp : UnaryOp<Exp, F> {

3 // dimension of the output: Exp(F) has the same dimension as F

4 static const int DIM = F::DIM

5 // actual computation, to be inlined inside the Cuda device routine

6 static DEVICE INLINE void Operation(TYPE *out, TYPE *in) {

7 #pragma unroll

3

Charlier, Feydy, Glaunès, Collin and Durif

8 for (int k=0; k<DIM; k++) { out[k] = exp(in[k]); }

9 }

10 // templated expression for the adjoint of the differential operator

11 // of Exp w.r.t. the variable V, and applied to GRADIN input vector:

12 // ∇V (Exp(F)).GRADIN = ∇V (F).(Exp(F)×GRADIN) in math notations

13 template < class V, class GRADIN >

14 using DiffT = typename F::template DiffT< V, Mult<Exp<F>,GRADIN> >;

15 };

Using similar definitions for other mathematical operations, we can then express a Gaussian
matrix-vector product as a sum reduction of the formula Scal< Exp<Minus<SqDist<X,Y>>>,

B> where X, Y and B are special classes that represent data loaders. This templated en-
gine has two main advantages: first, the code for evaluating the full formula F is built up
at compile time, allowing the compiler to optimize the resulting code; second, the chain
rule derivation for automatic differentiation can be performed at compile time, using the
recursive template mechanics.

4. Performances, Interface with High-Level Libraries

We compare the performances of several computing libraries on a simple benchmark:
a Gaussian kernel matrix-vector product with a growing number of points N in dimension
D = 3. All experiments are performed with float32 precision on a Nvidia RTX 2080 Ti
GPU, with the exception of the PyTorch-TPU column that was run in Google Colab.

PyTorch PyTorch-TPU TF-XLA Halide TVM PyKeOps KeOps++

N = 10k 9 ms 10 ms 13 ms 1.0 ms 3.80 ms 0.7 ms 0.4 ms

N = 100k out of mem out of mem 89 ms 34.1 ms 36.8 ms 15.0 ms 14.6 ms

N = 1M out of mem out of mem out of mem 3.8 s 2.79 s 1.39 s 1.38 s

Lines of code 5 5 5 15 17 5 55

Interface NumPy-
like

NumPy-
like

NumPy-
like

C++ low-level
Python

NumPy-
like

C++

KeOps is highly competitive for kernel-related computations, with a transparent syntax.
Going further, it can be neatly interfaced with the iterative linear solvers of the Scipy (Jones
et al., 2001) and GPytorch (Gardner et al., 2018) libraries and supports the specification
of cluster-wise block-sparsity patterns: this allows users to solve large kernel linear systems
efficiently, with applications to geology (Kriging), imaging (splines), statistics (Gaussian
processes) and data sciences (kernel methods).

Acknowledgements

The three first authors are the project leaders: they contributed equally to the library
and its documentation. The authors also thank Alain Trouvé, whose theoretical work in
shape analysis was the first motivation for the development of the KeOps engine.

4

Kernel Operations on GPU, without memory overflows

References

M. Abadi, A. Agarwal, et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/.

R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast
and portable code. In Proceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization, CGO 2019, page 193–205. IEEE Press, 2019. ISBN
9781728114361.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu,
L. Ceze, et al. TVM: An automated end-to-end optimizing compiler for deep learning.
In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, 2018.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural
Information Processing Systems, pages 7576–7586, 2018.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001. URL http://www.scipy.org/.

H. Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edition, 2007. ISBN
9780321545428.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff
Workshop, 2017.

J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy, S. Amarasinghe,
and F. Durand. Halide: Decoupling algorithms from schedules for high-performance
image processing. Commun. ACM, 61(1):106–115, Dec. 2017. ISSN 0001-0782. doi:
10.1145/3150211. URL https://doi.org/10.1145/3150211.

5

https://www.tensorflow.org/
http://www.scipy.org/
https://doi.org/10.1145/3150211

	Introduction
	KeOps Purpose and Usage
	Internal Engine
	Performances, Interface with High-Level Libraries

