
Kernel Operations on the GPU, with Autodiff,
without Memory Overflows

Benjamin Charlier* benjamin.charlier@umontpellier.fr
IMAG
Université de Montpellier, CNRS
Montpellier, France

Jean Feydy* jean.feydy@ens.fr
DMA
École Normale Supérieure
Paris, France

Joan Alexis Glaunès* alexis.glaunes@parisdescartes.fr
MAP5
Université de Paris, CNRS
Paris, France
François-David Collin francois-david.collin@umontpellier.fr
Ghislain Durif ghislain.durif@umontpellier.fr
IMAG
Université de Montpellier, CNRS
Montpellier, France * equal contribution

Abstract

The KeOps library provides a fast and memory-efficient GPU support for tensors whose
entries are given by a mathematical formula, such as kernel and distance matrices. KeOps
alleviates the main bottleneck of tensor-centric libraries for kernel and geometric applica-
tions: memory consumption. It also supports automatic differentiation and outperforms
standard GPU baselines, including PyTorch CUDA tensors or the Halide and TVM libraries.
KeOps combines optimized C++/CUDA schemes with binders for high-level languages: Python
(Numpy and PyTorch), Matlab and GNU R. As a result, high-level “quadratic” codes can
now scale up to large data sets with millions of samples processed in seconds. KeOps brings
graphics-like performances for kernel methods and is freely available on standard reposi-
tories (PyPi, CRAN). To showcase its versatility, we provide tutorials in a wide range of
settings online at www.kernel-operations.io.

Keywords: kernel methods, Gaussian processes, GPU, automatic differentiation

1. Introduction

Recent advances in machine learning have been driven by the diffusion of two pieces
of software: automatic differentiation and GPU backends for tensor computations. Today,
thanks to e.g. the TensorFlow or PyTorch libraries (Abadi et al., 2015; Paszke et al., 2017),
users routinely perform gradient descent on functions that involve millions of parameters.

© Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin and Ghislain Durif.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://www.kernel-operations.io
https://creativecommons.org/licenses/by/4.0/

Charlier, Feydy, Glaunès, Collin and Durif

These high-level Python frameworks unlock the use of massively parallel hardware for
machine learning research. Under the hood, they rely on C++ routines that are often sup-
ported by hardware manufacturers: the cuBLAS and cuDNN libraries edited by Nvidia pro-
vide the binaries for linear algebra and convolutions that power a majority of deep learning
models. In practice, the presence of a complete software stack (from low-level binaries to
well-documented Python libraries) is a prerequisite for the widespread adoption of a re-
search idea by the machine learning community. The KeOps library intends to provide such
a solid numerical foundation for all methods that involve large distance or kernel matrices.
A motivating example is the computation of pair-wise interactions of the form:

ai ←
∑N

j=1 exp(−‖xi − yj‖2/2σ2) bj =
∑N

j=1 k(xi, yj) bj for i = 1, . . . ,M (1)

where M and N range from a hundred to a billion, x1, . . . , xM and y1, . . . , yN all belong to a
common vector space RD, the signals b1, . . . , bN are real numbers and k(x, y) is a Gaussian
kernel of deviation σ > 0. This operation is often understood as a matrix-vector product
with a Gaussian kernel matrix (Ki,j) = (k(xi, yj)), or equivalently as a convolution with
the kernel function k that is sampled on the point clouds (xi) and (yj).

To perform this computation, common practice is to create an explicit M-by-N buffer
(Ki,j) and compute Eq. (1) with a linear algebra routine. Unfortunately, this method
requires the storage of the kernel matrix as a contiguous array in memory and does not scale
when M and N are in the order of 50k or more. To work around this problem, a common
strategy is thus to decompose Eq. (1) as a collection of smaller matrix-vector products
using a Python or Matlab “for” loop. This method alleviates memory issues but remains
inefficient in spaces of dimension D 6 100: the transfer of the tiles of the kernel matrix (Ki,j)
between different layers of GPU memory remains a narrow bottleneck for computations.
KeOps leverages efficient C++ schemes from the graphics literature (Nguyen, 2007, Chapter
31) to streamline the use of registers and reach optimal performance in this setting. It is
fast, transparent to use and targets a single yet powerful abstraction: semi-symbolic arrays
whose entries Mi,j are given by a mathematical formula “F (xi, yj)”, evaluated on data
arrays that are indexed by line and column numbers “i“ and “j”. It can be called from the
major scripting languages used in the scientific community: Python (Numpy and PyTorch),
Matlab, and GNU R. In this introduction, we focus on the Python interface and refer to our
documentation for additional tutorials, applications and benchmarks.

2. KeOps Purpose and Usage

A generic reduction framework. The workhorse of the KeOps library is a C++ engine for
generic reductions on sampled data. Let us assume that we have at hand:

1. parameters: a collection p1 ∈ Rd1
p , . . . , pP ∈ RdP

p of vectors;
2. i-variables: a collection x1 ∈ RM×d1

x , . . . , xX ∈ RM×dX
x of matrices, with rows in-

dexed by i ∈ [[1,M]] (hence for each k and i, xk
i is a vector in Rdk

x);
3. j-variables: a collection y1 ∈ RN×d1

y , . . . , yY ∈ RN×dY
y of matrices, with rows indexed

by j ∈ [[1,N]] (hence for each k and j, yk
j is a vector in Rdk

y);
4. a vector-valued symbolic formula F (p1, . . . , pP , x1

i , . . . , x
X
i , y

1
j , . . . , y

Y
j) ∈ Rdout ;

5. a reduction operation such as a sum, max, argmin, log-sum-exp, etc.

2

Kernel Operations on GPU, without memory overflows

Then, a single call to the KeOps C++ engine allows users to evaluate the expression:

ai ← Reduction
j=1,...,N

[
F (p1, . . . , pP , x1

i , . . . , x
X
i , y

1
j , . . . , y

Y
j)
]

for i = 1, . . . ,M (2)

efficiently, with a linear memory footprint on GPUs and CPUs. As illustrated in our gallery
of tutorials, this level of generality allows KeOps to handle off-grid convolutions, k-nearest
neighbors classification, k-means clustering and many other tasks.

The LazyTensor abstraction. The “LazyTensor” wrapper for NumPy arrays and PyTorch
tensors lets users specify computations along the lines of Eq. (2) with a tensor-like interface.
For instance, we can specify the Gaussian matrix-vector product of Eq. (1) with:

1 from pykeops.torch import LazyTensor # Wrapper for PyTorch Tensors
2 x_i = LazyTensor(x[:,None,:]) # (M,D) Tensor -> (M,1,D) Symbolic Tensor
3 y_j = LazyTensor(y[None,:,:]) # (N,D) Tensor -> (1,N,D) Symbolic Tensor
4 D_ij = ((x_i - y_j)**2).sum(dim=2) # (M,N,1) Symbolic matrix of squared distances
5 K_ij = (- D_ij / (2 * s**2)).exp() # (M,N,1) Symbolic Gaussian kernel matrix
6 a = K_ij @ b # Genuine torch Tensor. (M,N,1) @ (N,D) = (M,D)

In the script above, no computation is performed at lines 4 and 5: lazily, the KeOps
engine builds up a symbolic formula F encoded as a string attribute of the LazyTensor
K ij. The lazy chain is only terminated by the virtual matrix product of line 6, a generic
reduction that triggers the real computation: no intermediate N-by-M buffer is created in
the global device memory.

Note that variable types (i-, j-variable or parameter) are inferred from the shapes of
the input tensors at lines 2 and 3: in practice, symbolic tensors are as easy to use as sparse
matrices. The LazyTensor wrapper turns a dense array into a symbolic matrix whose axes
-3 and -2 are understood as “virtual” dimensions; a reduction on these axes is the signal
that triggers a call to the KeOps C++ engine.

As showcased on our website and at the end of this paper, KeOps scripts for kernel
and geometric applications generally outperform their Numpy and PyTorch counterparts by
several orders of magnitude while keeping a linear memory footprint. LazyTensors support
a wide range of mathematical operations that mimic the usual interface for NumPy arrays
and PyTorch tensors. They fully support broadcasting and batch dimensions, as well as a
decent collection of reduction operations: .sum(), .logsumexp(), .max() and .min() but
also .argmin() or .argKmin(K=...) that return the indices of the smallest (or K-smallest)
elements of the rows of a symbolic tensor.

Inner engine. Internally, KeOps creates an optimized C++ code for every new reduction
and formula F that it encounters. Binaries are then compiled and stored on the hard
drive for later use: compilation relies on the standard CUDA stack (nvcc, gcc and/or clang
compilers) and is only performed once per reduction.

Backpropagation. Crucially, KeOps supports automatic differentiation up to arbitrary
orders of differentiation: a new binary is created automatically for every new partial deriva-
tive that is required by the user’s computations. This mechanism is fully integrated with
the torch.autograd engine and lets users “backprop” through KeOps calls using the usual
torch.autograd.grad() and .backward() methods.

3

Charlier, Feydy, Glaunès, Collin and Durif

3. Performance evaluation

KeOps is geared towards computations that fit the mould of Eq. (2). In this spe-
cific context, it combines a fully transparent interface with state-of-the-art performance.
To illustrate this, we compare KeOps to similar scientific computing libraries – PyTorch,
TensorFlow, Halide (Ragan-Kelley et al., 2017) and TVM (Chen et al., 2018) – on a simple
benchmark: the Gaussian kernel matrix-vector product of Eq. (1) with an increasing num-
ber of points M = N in dimension D = 3. All experiments are performed with float32
precision on a Nvidia RTX 2080 Ti GPU, with the exception of the PyTorch-TPU column
that was run in Google Colab; code is available on our repository in the benchmarks folder.
Our gallery also includes comparisons with JAX (Bradbury et al., 2018) and domain-
specific libraries such as FAISS (Johnson et al., 2017) for K-Nearest Neighbors search.

PyTorch PyTorch-TPU TF-XLA Halide TVM PyKeOps KeOps++
N = 10k 9 ms 10 ms 13 ms 1.0 ms 3.80 ms 0.7 ms 0.4 ms
N = 100k out of mem out of mem 89 ms 34.1 ms 36.8 ms 15.0 ms 14.6 ms
N = 1M out of mem out of mem out of mem 3.8 s 2.79 s 1.39 s 1.38 s

Lines of code 5 5 5 15 17 5 55

Interface Numpy-
like

Numpy-
like

Numpy-
like

C++ low-level
Python

Numpy-
like

C++

As evidenced by this table, KeOps turns NumPy-like scripts into highly competitive bi-
naries. Going further, it can be neatly interfaced with the iterative linear solvers of the
Scipy (Jones et al., 2001) or GPytorch (Gardner et al., 2018) libraries and supports the
specification of cluster-wise block-sparsity patterns: this allows users to solve large kernel
linear systems efficiently, with applications to geology (Kriging), imaging (splines), statistics
(Gaussian processes) and data sciences (kernel methods).

4. Intended Use, Limitations and Future Works

KeOps fills a specific but important niche in machine learning research. Unlike most
other compilers for deep learning computations, such as Halide and TVM, it is meant to
be used directly by theorists of the machine learning community. Our focus on the simple
yet powerful concept of symbolic matrices allows us to keep a transparent interface, while
being more efficient than the generalist PyTorch and XLA frameworks on a wide range of
computations. In future works, we intend to add support for approximation schemes such
as the Nyström and FFM methods (Yang et al., 2012; Aussal and Bakry, 2019), beyond the
block-sparse truncation rule that is currently supported. These features will be valuable to
many researchers in the field, while being out of scope for most deep learning libraries.

The core strength of the KeOps C++ engine is that it optimizes the use of GPU registers
for computations that fit the template of Eq. (2). In practice, it is therefore of limited
use in situations where a kernel matrix can fit in memory and is re-used a large number
of times, or when the evaluation of the formula “F (p, xi, yj)” takes a significant amount
of time. Keeping in mind the motivating example of Eq. (1), we believe that KeOps will
be most useful for computations that involve 10k points or more in a space of dimension
D 6 100. Going forward, our main priority will be to ease the deployment of pre-compiled

4

https://github.com/getkeops/keops/tree/master/benchmarks
https://www.kernel-operations.io/keops/_auto_benchmarks/index.html

Kernel Operations on GPU, without memory overflows

KeOps binaries, reduce compilation times to at most a handful of seconds per routine and
add support for the newly released CUDA Tensor cores.

Acknowledgements

The three first authors are the project leaders: they contributed equally to the library
and its documentation. The authors also thank Alain Trouvé, whose theoretical work in
shape analysis was the first motivation for the development of the KeOps engine.

References

M. Abadi, A. Agarwal, et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/.

M. Aussal and M. Bakry. The Fast and Free Memory method for the efficient computation
of convolution kernels. arXiv preprint arXiv:1909.05600, 2019.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and
S. Wanderman-Milne. JAX: composable transformations of Python+NumPy programs.
v0.1.55, 2018. URL http://github.com/google/jax.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu,
L. Ceze, et al. TVM: An automated end-to-end optimizing compiler for deep learning.
In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, 2018.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural
Information Processing Systems, pages 7576–7586, 2018.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734, 2017.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001. URL http://www.scipy.org/.

H. Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edition, 2007. ISBN
9780321545428.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff
Workshop, 2017.

J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy, S. Amarasinghe,
and F. Durand. Halide: Decoupling algorithms from schedules for high-performance
image processing. Commun. ACM, 61(1):106–115, Dec. 2017. ISSN 0001-0782. doi:
10.1145/3150211. URL https://doi.org/10.1145/3150211.

5

https://www.tensorflow.org/
http://github.com/google/jax
http://www.scipy.org/
https://doi.org/10.1145/3150211

Charlier, Feydy, Glaunès, Collin and Durif

T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random Fourier
features: A theoretical and empirical comparison. In Advances in neural information
processing systems, pages 476–484, 2012.

6

	Introduction
	KeOps Purpose and Usage
	Performance evaluation
	Intended Use, Limitations and Future Works

