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ETIS, Université Paris Seine, ENSEA
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Abstract—Wireless secret key generation (W-SKG) from
shared randomness (e.g., from the wireless channel fading
realizations), is a well established scheme that can be used for
session key agreement. W-SKG approaches can be of particular
interest in delay constrained wireless networks and notably
in the context of ultra reliable low latency communications
(URLLC) in beyond fifth generation (B5G) systems. However
W-SKG schemes are known to be malleable over the so called
“advantage distillation” phase, during which observations of
the shared randomness are obtained at the legitimate parties.
As an example, an active attacker can act as a man-in-the-
middle (MiM) by injecting pilot signals and/or can mount denial
of service attacks (DoS) in the form of jamming. This paper
investigates the impact of injection and reactive jamming attacks
in W-SKG. First, it is demonstrated that injection attacks can
be reduced to – potentially less harmful – jamming attacks by
pilot randomization; a novel system design with randomized
QPSK pilots is presented. Subsequently, the optimal jamming
strategy is identified in a block fading additive white Gaussian
noise (BF-AWGN) channel in the presence of a reactive jammer,
using a game theoretic formulation. It is shown that the impact
of a reactive jammer is far more severe than that of a simple
proactive jammer.

Index Terms—Wireless secret key agreement, shared ran-
domness, injection attack, man-in-the-middle, denial of service
attack, jamming.

I. INTRODUCTION

In the past two decades a large number of studies and

patents appeared on the topic of wireless secret key generation

(W-SKG) schemes that exploit channel reciprocity as the

source of shared randomness (see [1] for a comprehensive

review and [2] for a tutorial on physical layer security in-

cluding W-SKG). Additionally, W-SKG over unauthenticated

channels has been proposed in [3]. To overcome trivial higher-

layer man-in-the-middle (MiM) attacks, as with MiM attacks

on unauthenticated Diffie-Hellman schemes, physical layer

security technologies have been combined with standard au-

thentication and encryption (AE) schemes [4]. Furthermore, a

large number of practical demonstrators have provided “proof

of concept” [5], [6]. A resurgence of interest in W-SKG

has been witnessed recently as these technologies could be

considered for application in B5G systems [1], in particular

in the context of Internet of things (IoT) [7] and – potentially

– URLLC applications. W-SKG could be a good fit in these

systems as the limited computational resources and strict

delay constraints can render challenging the use of standard

security protocols such as the transport layer security protocol

(TLS) protocol and it’s IoT friendly version, the datagram

transport layer security (DTLS) protocol.

In recent works it has been shown that building seman-

tically secure AE protocols using the W-SKG procedure is

straightforward, as long as the channel probing phase of the

scheme is robust against active attacks [4], [8]. Therefore, an

important next step is to study MiM and denial of service

(DoS) attacks during the channel excitation phase of the W-

SKG protocol, commonly referred to as “advantage distilla-

tion” [4]. In this paper, two such active attacks, during channel

probing are discussed.

Firstly, MiM attacks, referred to as “injection” attacks, are

investigated in Section II: an active adversary tries to control

part of the generated secret key by spoofing the channel

estimation phase of the W-SKG scheme. Existing works have

considered jamming attacks and formulate these in game-

theoretic form [9], [10]. However, they have not considered

the close relationship between injection and jammming. Here

we propose a simple approach to mount such a MiM at-

tack, assuming that the adversary has one additional antenna

with respect to the legitimate users. This is a very mild

assumption with respect to the adversary’s capabilities and

reveals a critical vulnerability of W-SKG, that needs to be

addressed. As a countermeasure, we propose a concrete pilot

randomization scheme using quadrature amplitude phase shift

keying (QPSK) modulated random pilots. We prove that the

source of shared randomness remains Gaussian and that the

adversary can no longer mount the MiM attack. An interesting

conclusion of our analysis is that the MiM injection attack

is reduced to a jamming attack when pilot randomization is

employed.

Motivated by this result, in Sections III and IV, DoS in the

form of reactive jamming is studied for BF-AWGN channels

– used as an abstraction for orthogonal frequency division

multiplexing (OFDM) modulation systems. The attacker’s

optimal strategies are derived. In the present contribution

we assume that the legitimate users blindly adopt a uniform

power allocation policy, the level of which we optimally iden-

tify; the more general case of an arbitrary power allocation

for the legitimate parties will be investigated in the future.
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Fig. 1. Alice and Bob have single transmit and receive antennas and exchange
pilot signals X over a Rayleigh fading channel with realization H . A MiM,
Mallory, with multiple transmit antennas can inject a suitably pre-coded signal
PXJ , such that the received signal at both Alice and Bob coincide W =

HA
T
P = HB

T
P.

Our study demonstrates that a reactive jammer can have a far

more serious impact on the W-SKG process compared to a

simple proactive jammer. In the future, frequency hopping as

well as energy harvesting approaches to mitigate the impact

of reactive jammers [11] will be explored.

Finally, conclusions and further work are discussed in

Section V.

II. MIM IN W-SKG SYSTEMS: INJECTION ATTACKS

MiM in the form of injection attacks constitutes one of

the most critical limitations in W-SKG systems that extract

secret keys from received signal strength (RSS) measurements

[12]–[14]. Recently, various possible approaches for injection

attacks have been published: in [12], the attacker controlled

the movement of objects in an indoor wireless network,

thus generating predictable changes in the RSS, (e.g., by

obstructing, or not, a line-of-sight). In [13], whenever similar

channel envelope measurements in the links to the legitimate

nodes were observed, the MiM spoofed the W-SKG process

by injecting a strong signal. In the following we will prove

that – even when full CSI is used to extract the keys – it

suffices that the adversary has one additional antenna with

respect to the legitimate users to be able to mount an injection

MiM attack.

To capture the main components of MiM attacks in W-

SKG systems, we employ the system model depicted in

Fig. 1, comprising three nodes: a legitimate transmitter, its

intended receiver, and a MiM, referred to as Alice, Bob

and Mallory, respectively. Alice and Bob are assumed to

have a single antenna each for simplicity, while Mallory

has two transmit antennas.1 The fading channel realization

in the link Alice-Bob is denoted by the complex circularly

symmetric Gaussian random variable H ∼ CN (0, σ2). To

obtain estimates of H , Alice and Bob exchange pilot sig-

nals X with E[|X|2] ≤ P . Furthermore, following [13],

we assume Mallory has perfect knowledge of the channel

vectors in the multiple input single output (MISO) links

Mallory-Alice and Mallory-Bob. The channel coefficients

are assumed to be independent and identically distributed

(i.i.d.), i.e., HA = [HA1, HA2]
T ,HB = [HB1, HB2]

T with

1It is straightforward to see that the scenario can easily be generalized to
a multi-antenna setting in which Mallory has one more antenna than Alice
and Bob.

(HA1, HA2, HB1, HB2) ∼ CN (0, σ2
J/2 I4); this assumption

is realistic since Mallory can estimate the channel vectors

while Alice and Bob exchange pilot signals, as long as the

channel’s coherence time is respected (a plausible scenario in

slow fading, low mobility environments).

To mount the attack, Mallory transmits a signal XJ , suit-

ably precoded as PXJ . The precoding matrix P = [P1, P2]
T

is chosen such that the same signal is “injected” at both Alice

and Bob, i.e.,

HA
T
PXJ = HB

T
PXJ ⇒

P1 =
HB2 −HA2

HA1 −HB1
P2, (1)

where, due to the i.i.d. assumption and to the continuous

distribution of the channels, HA1 6= HB1 almost surely.

As a result, Mallory can select a suitable precoding matrix

(among infinite possibilities). Assuming a total power con-

straint E[|PXJ |2] ≤ Γ for Mallory’s transmission, P2 should

be chosen as

P2 ≤
√
Γ∣∣∣HB2−HA2

HA1−HB1

∣∣∣
. (2)

This procedure, illustrated in Fig. 1, shows that it is possible

to generalize the injection attack presented in [13], in which

an attacker injected a strong signal whenever the RSS in

the Mallory-Alice and Mallory-Bob links were similar. More

importantly, the presented injection attack accounts not only

for the RSS but for the full CSI, i.e., it includes the signal

phase.

The observations at Alice and Bob, denoted by ZA and ZB ,

are

ZA = XH +W +NA (3)

ZB = XH +W +NB , (4)

where W = HA
T
PXJ = HB

T
PXJ denotes the observed

injected signal at Alice and Bob which is identical at both due

the precoding matrix P; and, NA, NB denote zero-mean unit

variance i.i.d. complex circularly symmetric Gaussian random

noise variables, i.e., NA, NB ∼ CN (0, 1). The secret key rate

controlled by Mallory is upper bounded by [8]

L ≤ I(ZA, ZB ;W ). (5)

Identifying the optimal injection signal W , corresponds to

finding the capacity achieving input signal of the two-

look Gaussian channel in (3)-(4). This signal is known to

be Gaussian [15]; hence, a good choice for XJ is to be

constant, so that, the overall injected signal is an optimal

complex zero-mean circularly symmetric Gaussian signal,

W ∼ CN (0, σ2
JΓ).

A countermeasure to injection attacks can be built by

randomizing the pilot sequence exchanged between Alice and

Bob [8], [14]. Here, we propose to randomize the pilots by

drawing them from a (scaled) QPSK modulation, as follows:

instead of transmitting the same probing signal X , Alice and

Bob transmit independent, random probe signals X and Y ,



respectively, drawn from i.i.d. zero-mean discrete uniform

distributions U({±r ± jr}), where j =
√
−1, r =

√
P/2,

so that, E [X] = E [Y ] = 0, E
[
|X|2

]
= E

[
|Y |2

]
= P

and E [XY ] = 0, i.e., the pilots are randomly chosen QPSK

signals. Alice’s observation ZA is modified accordingly as

ZA = Y H +W +NA, (6)

while Bob’s observation is given in (4). To establish shared

randomness in spite of the pilot randomization, Alice and

Bob post-multiply ZA and ZB by their randomized pilots,

obtaining local observations Z̃A and Z̃B (unobservable by

Mallory), expressed as:

Z̃A = XZA = XYH +XW +XNA, (7)

Z̃B = Y ZB = XYH + YW + Y NB . (8)

Lemma 1: The source of shared randomness, when the

pilots are randomized QPSK symbols, is a circularly sym-

metric zero mean Gaussian random variable, XYH ∼
CN (0, P 2σ2).

Proof: We treat the two orthogonal axes (real and imag-

inary) independently. Looking only at the real values of the

pilots and of the channel coefficient X,Y,H denoted here by

XR = Re(X), YR = Re(Y ) and HR = Re(H), we express

the underlying discrete uniform pdf fXR
(x) and fYR

(y) and

the continuous pdf fHR
(h) as

fXR
(x) =

1

2
δ(x− r) +

1

2
δ(x+ r), (9)

fYR
(y) =

1

2
δ(y − r) +

1

2
δ(y + r), (10)

fHR
(h) =

1√
πσ

e−
h2

σ2 . (11)

The pdf of the product XRHR is given as

fXRHR
(z) =

∫ ∞

−∞

fXR
(x)fHR

(z/x)
1

|x|dx

=

∫ ∞

−∞

1

2
√
πσ|x|δ(x− r)e−

(z/x)2

σ2 dx

+

∫ ∞

−∞

1

2
√
πσ|x|δ(x+ r)e

−(z/x)2

σ2 dx

=

√
2e−

2z2

Pσ2

√
πPσ

(12)

by substituting r =
√

P/2 at the last derivation, i.e.,

XRHR ∼ N (0, Pσ2

4 ). A similar result holds for the products

involving also the imaginary parts of X and H: XIHI , XIHR

and XRHI , so that XH ∼ CN (0, Pσ2). Extending this

result, we find that XHY ∼ CN (0, P 2σ2).
Furthermore, due to the fact that X and Y are inde-

pendent and have zero mean, the variables XW and YW
are uncorrelated, circularly symmetric zero-mean Gaussian

random variables, and, therefore independent, while the same

holds for XNA, Y NB , i.e., (XW,YW ) ∼ CN (0, σ2
JPΓI2)

and (XNA, Y NB) ∼ CN (0, P I2). Alice and Bob extract

the common key from the modified source of common

randomness XYH as opposed to XH . On the other hand,

since XW,YW,XNA, Y NB are i.i.d. complex circularly

symmetric Gaussian random variables, the proposed scheme

reduces injection attacks to uncorrelated jamming attacks, i.e.,

using Lemma 1 we get that

L ≤ I
Ä

Z̃A, Z̃B ;W
ä

= 0. (13)

III. JAMMING ATTACKS ON W-SKG

Building on the results of the previous section, we next

examine in detail the scenario in which Mallory acts as a

reactive jammer. Reactive jamming is a stealthy jamming

approach in which the jammer first senses the spectrum and

jams only when she detects an ongoing transmission. Due

to the effectiveness and difficulty to be detected, reactive

jammers are considered as the most harmful [16], [17].

Furthermore, as OFDM is used in many actual systems (and

will be used at least in the first deployments of 5G), in

our analysis we assume a BF-AWGN channel as in [11]. In

this context, we assume that Alice and Bob perform W-SKG

over a BF-AWGN channel with N parallel blocks (referred

to as subcarriers for clarity). The notation introduced in

Section II is extended with the introduction of a carrier index

i ∈ {1, . . . , N}, i.e., Xi, Yi denote the randomized pilots

on the i-th subcarrier, Hi denotes the channel coefficient

in the link Alice-Bob, Wi the signal injected by Mallory

on the i-th subcarrier and NA,i, NB,i noise variables. As a

reactive jammer, Mallory senses the spectrum and jams a

specific subcarrier only when the power on it exceeds a certain

threshold pth. Two scenarios are considered: i) when pth is

fixed (determined in essence by the carrier sensing capability

of Mallory’s receiver); ii) when pth is variable (its choice

forms part of her strategy).

We can reformulate the expressions of Alice’s and Bob’s

local observations on the i-th W-SKG subcarrier as follows:

Z̃A,i = XiYiHi +XiWi +XiNA,i (14)

Z̃B,i = XiYiHi + YiWi + YiNB,i (15)

for i = 1, . . . , N with Hi ∼ CN (0, σ2), Wi ∼ CN (0, σ2
Jγi),

NA,i ∼ CN (0, 1), NB,i ∼ CN (0, 1). In this work, we assume

that Alice and Bob use the same power p on all pilots,

in agreement with common practice during the advantage

distillation phase; the more general scenario of an arbitrary

power allocation across the subcarriers will be investigated in

the future. Based on this assumption we have that E[|Xi|2] =
E[|Yi|2] = p with p ∈ [0, P ].

On the other hand, we let Mallory choose the power

allocation vector to maximize the impact of her attack. The

power Mallory uses on the i-th subcarrier is denoted by γi, so

that E[|Wi|2] = σ2
Jγi. Denoting the average available power

for jamming by Γ and the power allocation of the jammer by

γ = (γ1, . . . , γN ), we assume the following short-term power

constraint:

γ ∈ R
N
+ ,

N∑

i=1

γi ≤ NΓ. (16)

Assuming that Hi is uncorrelated with HA,i, HB,i, i =
1, . . . , N and that the pilot randomization approach proposed



in Section II is employed, the W-SKG rate R(p, γi) =

I
Ä

Z̃A,i; Z̃B,i

ä

on the i-th subcarrier, can be expressed as a

function of p and γi, i = 1, . . . , N as [11]:

R(p, γi) = log2

Ñ

1 +
pσ2

2(1 + γiσ2
J) +

(1+γiσ
2
J
)2

pσ2

é

. (17)

Note that the rate in (17) is independent of the instantaneous

realizations of the fading coefficients; instead, the variations

of the channel gains expressed through the variances σ2, σ2
J

determine the rate of the secret keys that can be extracted

from the wireless medium. The overall W-SKG sum-rate can

then be simply expressed as follows:

CK(p,γ) =
N∑

i=1

R(p, γi). (18)

IV. OPTIMAL POWER ALLOCATION STRATEGIES

Alice and Bob’s common objective is to maximize

CK(p,γ) with respect to (w.r.t.) p, while Mallory wants to

minimize CK(p,γ) w.r.t. γ. Given the opposed objectives, a

non-cooperative zero-sum game can be formulated to study

the strategic interaction between the legitimate users and the

jammer: G = ({L, J}, {AL,AJ(p)}, CK(p,γ)). The game G
has three components. Firstly, there are two players: player L
representing the legitimate users (Alice and Bob are consid-

ered to act as a single player) and player J representing the

jammer (Mallory). Secondly, player L has a set of possible

actions AL = [0, P ] while player J’s set of actions is

AJ(p)=

®

{(0, . . . , 0)}, if p ≤ pth,
¶

γ ∈ R
N
+ |∑N

i=1 γi ≤ NΓ
©

, if p > pth.
(19)

At last, CK(p,γ), denotes the payoff function of player L.

Due to the fact that Mallory first observes the transmit

power of the legitimate users on the subcarriers and then

decides which strategy to choose (a consequence of player

J being a reactive jammer), we study a hierarchical game in

which player L is the leader and player J is the follower.

In this hierarchical game, the solution is the Stackelberg

equilibrium (SE) – rather than Nash – defined as a strategy

profile (pSE,γSE) where player L chooses his optimal strategy

first, by anticipating the strategic reaction of player J (i.e., its

best response). This can be rigorously written as:

pSE , argmax
p∈AL

N∑

i=1

R(p,γ∗(p)), and γ
SE , γ

∗(pSE), (20)

where γ
∗(p) denotes the jammer’s best response (BR) func-

tion to any strategy p ∈ AL chosen by player L, defined as

follows:

γ
∗(p) , argmin

γ∈AJ (p)

N∑

i=1

R(p,γ). (21)

We also denote by γ∗
i (p) the i-th component of γ∗(p).

A. Stackelberg equilibrium with fixed pth

In the following, we evaluate the SE of the game G
assuming that the threshold pth is predefined and fixed. The

case P ≤ pth is trivial as γ
SE = (0, . . . , 0), whereas, the

legitimate users will optimally use the maximum available

power so that (pSE = P ). Indeed, because of the badly chosen

threshold or low sensing capabilities of Mallory, the legitimate

transmission will never be detected on any of the subcarriers

and hence will not be jammed. In the following, we assume

that: P > pth.

Lemma 2: The BR of the jammer for any p ∈ AL chosen

by the leader defined in (21) is the uniform power allocation,

such that:

γ
∗(p) ,

ß

(Γ, . . . ,Γ), if p > pth,
(0, . . . , 0), if p ≤ pth.

(22)

Proof: Note that R(p, γi) is a monotonically decreasing

convex function w.r.t γi, i = 1, . . . , N for any p > 0. We

show that the jamming power should be equally distributed on

all of the subcarriers. To prove this, we apply Jensen’s inequal-

ity using δi > 0,
∑N

i=1 δi = 1, so that R
Ä

p,
∑N

i=1 δixi

ä

≤∑N
i=1 δiR(p, xi). Substituting δi = 1/N , xi = Γ/bi, we get:

R

(
p,

N∑

i=1

Γ

Nbi

)
≤

N∑

i=1

1

N
R

Å

p,
Γ

bi

ã

⇒

NR

(
p,

1

N

N∑

i=1

Γ

bi

)
≤

N∑

i=1

R

Å

p,
Γ

bi

ã

. (23)

Applying the power constraint
∑N

i=1 Γ/bi ≤ NΓ on the LHS

of (23), for any p > pth we have:

NR (p,Γ)<
N∑

i=1

R

Å

p,
Γ

bi

ã

⇒ CK(p, (Γ, . . . ,Γ))≤CK(p,γ),

which shows that in order to minimize CK , Mallory has to

distribute her power equally on all subcarriers.

In light of this result, the W-SKG sum rate can have two

forms:

CK(p,γ∗(p)) =

ß

NR(p,Γ), if p > pth,
NR(p, 0), if p ≤ pth,

(24)

which simplifies the players’ options. Next, we address the

question of how Alice and Bob should choose their power p
optimally by considering the actions available to the players

in the game at the key points i.e. at P and pth.

Theorem 1: Depending on the available power P for

W-SKG, player L will either transmit at P or pth on all

subcarriers. The SE point of the game is unique when

P 6= pth(σ
2
JΓ + 1) and is given by

(pSE,γSE)=

ß{(pth, (0, . . . , 0))}, if P < pth(σ
2
JΓ+1),

{(P, (Γ, . . . ,Γ))}, if P > pth(σ
2
JΓ+1).

(25)

When P = pth(σ
2
JΓ + 1), the game G has two SEs:

(pSE,γSE) ∈ {(pth, (0, . . . , 0)), (P, (Γ, . . . ,Γ))}.

Proof: Given the BR in (22) and the simplification in

(24), player L wants to find the optimal p ∈ AL that



Fig. 2. UP: SE policy compared to always transmitting with either full
power or with pth. DOWN: Functions D and F vs P . In both sub-figures,
pth = 2,Γ = 4, N = 10, σ2

= σ2

J
= 1.

maximizes:

R(p, γ∗
i (p)) =

ß

R(p, 0), if p ≤ pth,
R(p,Γ), if p > pth.

(26)

Given that R(p, γ) is monotonically increasing with p for

fixed γ, two cases are distinguished: a) p ∈ [0, pth], b) p ∈
(pth, P ]. The optimal p in each case is given by

a) argmax
p∈[0,pth]

R(p, γ∗
i (p)) = argmax

p∈[0,pth]

R(p, 0) = pth,

b) argmax
p∈(pth,P ]

R(p, γ∗
i (p)) = argmax

p∈(pth,P ]

R(p,Γ) = P.

From a) and b), we conclude that the overall solution is pSE =

argmax
p∈AL

R(p, γ∗
i (p)) =





pth, if R(P,Γ) < R(pth, 0),
P, if R(P,Γ) > R(pth, 0),
{pth, P}, if R(P,Γ) = R(pth, 0).

To simplify the three possibilities, we focus on the case

when transmitting at full power R(P,Γ) (hence being sensed

and jammed) is equal to the case when player L is transmit-

ting at threshold pth (the jammer is silent) i.e., R(P,Γ) =
R(pth, 0). Using this equality, and by substituting appropri-

ately into (17), we obtain a quadratic equation in P :

P 2(2σ2pth+1)−P (2pth
2σ2+2σ2

JΓpth
2σ2)−(1+σ2

JΓ)
2pth

2=0,

which has a unique positive root equal to pth(σ
2
JΓ+1). Given

that, the leading coefficient of (27): (2σ2pth +1) ≥ 0 and that

P > 0, we can say that the inequalities R(P,Γ) > R(pth, 0)
and R(P,Γ) < R(pth, 0) are equivalent to P > pth(σ

2
JΓ + 1)

and P < pth(σ
2
JΓ + 1), respectively.

Some numerical results are presented in Fig. 2 for a total

number of SKG subcarriers N = 10 (pertinent to narrowband

IoT applications), pth = 2, Γ = 4, and σ2 = σ2
J = 1. The top

figure compares the achievable rates of the SE strategy and of

two alternative strategies consisting in transmitting with fixed

p = P or p = pth. The bottom figure depicts the following

quantities:

F =
CK(pSE,γSE)− CK(P, (Γ, . . . ,Γ))

CSE
K

, (27)

Fig. 3. Relative gain of player J , evaluated by function E, for strategic pth

and fixed pth = 2 when N = 10, σ2

J
= 1 and UP: Γ = 4, DOWN: σ2

= 1.

D =
CK(pSE,γSE)− CK(pth, (0, . . . , 0))

CSE
K

, (28)

where F and D represent the jammer’s gain (or legitimate

users’ loss) if player L deviates from the SE point (indeed,

if player L transmits at P > pth, the jammer will jam at

γ∗
i (P ) = Γ; and if player L transmits at pth the jammer will

not detect it and will remain silent). Both figures show that

deviating from the SE point can decrease the achievable sum-

rates by up to 85%.

B. Stackelberg equilibrium with strategic pth

Finally, we investigate how Mallory could optimally adjust

pth and how her choice will impact Alice’s and Bob’s strate-

gies. Allowing pth to vary modifies the game under study as

follows Ĝ = ({L, J}, {AL, ÂJ (p)}, CK(p,γ, pth)), where:

ÂJ(p) ,

®

{((0, . . . , 0), pth), pth ≥ 0}, if pth ≥ p,
¶

(γ, pth) ∈ R
N+1
+ | ∑N

i=1 γi ≤ NΓ
©

, if pth < p.
(29)

The BR of jammer can then be defined as:

(γ̂∗(p), p̂th
∗
(p)) , argmin

(γ,pth)∈ÂJ (p)

CK(p,γ, pth). (30)

Lemma 3: The BR of player J in this case is a set of

strategies:

(γ̂∗(p), p̂th
∗
(p)) ∈ { ((Γ, . . . ,Γ), ǫ), ǫ ∈ [0, p)}. (31)

Proof: The problem that the jammer wants to solve is:

min
(γ,pth)∈ÂJ (p)

CK(p,γ, pth), which can be split as follows:

min
pth≥0

min
γ∈ÂJ (p)

CK(p,γ(p), pth). (32)

The solution of the inner minimization is already known from

(22). For the outer problem we have to find the optimal pth ≥



Fig. 4. Relative gain of player J , evaluated by function E, for different
values of pth for N = 10, σ2

J
= 1 and Γ = 4.

0 that minimizes CK(p, γ̂∗(p), pth). Given that:

min
pth≥0

CK(p, γ̂∗(p), pth)=

ß

NR(p,Γ, pth), if pth < p,
NR(p, 0, pth), if pth ≥ p,

(33)

and that R(p,Γ, pth) < R(p, 0, pth) the jammer can optimally

choose any threshold such that pth = ǫ, ∀ǫ < p. meaning,

any ongoing transmission is sensed and jammed.

Theorem 2: The game Ĝ has an infinite number of SEs:

(p̂SE, γ̂SE, p̂th
SE
) ∈ { (P, (Γ, . . . ,Γ), ǫ), ∀ǫ < P}. (34)

Proof: Given the BR of player J , we will now evaluate

the SE of the game Ĝ. The definition for p̂SE is given as:

p̂SE , arg
p∈AL

maxCK(p, γ̂∗(p), p̂th(p)
∗). (35)

Since the jammer will act as in (31), we have:

CK(p, γ̂∗(p), p̂th(p)
∗) = NR(p,Γ, ǫ), ∀ǫ < p, (36)

and the fact that R(p,Γ, ǫ) is monotonically increasing with

p results in p̂SE = P .

Fig. 3 and Fig. 4 illustrate the gain of the jammer (or the

loss in W-SKG rate) when pth is part of her strategy, with

utility function CK(p,γ, pth), compared to the case when it

is not, with utility function CK(p,γ). We evaluate this gain

by:

E =
CK(pSE ,γSE)− CK(p̂SE , γ̂SE , p̂th

SE
)

CK(pSE ,γSE)
. (37)

As in Fig. 2 the total number of subcarriers is N = 10 and

σ2
J = 1. The non-strategic threshold on Fig. 3 is set to pth = 2

and the quantity E is evaluated for different values of σ2 and

Γ. The numerical results demonstrate that when pth is part of

Mallory’s strategy, she can be a significantly more effective

opponent, compared to the case when pth is fixed, confirming

that reactive jammers can indeed pose a serious threat. This

is also confirmed by the results on Fig. 4 where the relative

gain of the jammer is presented for different pth. As expected

with decreasing the threshold her gain increases.

V. CONCLUSIONS

In this study, injection and reactive jamming attacks were

analyzed in W-SKG systems and optimal power allocation

policies were investigated in BF-AWGN channels. It was

shown that pilot randomization can reduce injection MiM

attacks to less harmful jamming attacks. An intelligent re-

active jammer should optimally jam with equal power on the

whole spectrum. Furthermore, a strategically chosen jamming

threshold just below the power level used by the legitimate

users, allows the adversary to launch a much more effective

attack. In this case, the legitimate users have no choice but to

transmit at full power.
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