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Cayley graphs of basic algebraic structures

Introduction

Arthur Cayley was the first to define in 1854 [START_REF] Cayley | On the theory of groups, as depending on the symbolic equation θ n = 1[END_REF] the notion of a group as well as the table of its operation known as the Cayley table. To describe the structure of a group (G, •), Cayley also introduced in 1878 [START_REF] Cayley | The theory of groups: graphical representation[END_REF] the concept of graph for G according to a generating subset S, namely the set of labeled oriented edges g s -→ g•s for every g of G and s of S. Such a graph, called Cayley graph, is directed and labeled in S (or an encoding of S by symbols called letters or colors). A characterization of unlabeled and undirected Cayley graphs was given by Sabidussi in 1958 [START_REF] Sabidussi | On a class of fixed-point-free graphs[END_REF] : an unlabeled and undirected graph is a Cayley graph if and only if we can find a group with a free and transitive action on the graph. Following a question asked by Hamkins in 2010 [START_REF] Hamkins | Which graphs are Cayley graphs?[END_REF]: 'Which graphs are Cayley graphs?', we present simple graphtheoretic characterizations of Cayley graphs first for the monoids, then for the right-cancellative or/and left-cancellative monoids, and finally for the groups.

Let us present the main structural characterizations starting with the Cayley graphs of monoids. Among many properties of these graphs, we retain only basic ones. First and by definition, any Cayley graph is deterministic: there are no two edges of the same source and label. They are also source-complete: for any label of the graph and from any vertex, there is at least one edge. These first two properties are well known in automata theory. Every Cayley graph of a monoid is rooted: there is a path from the identity element to any vertex. The identity is also an out-simple vertex: it is not source of two edges with the same target. Finally, the identity is a propagating vertex meaning that if it is source of two paths labeled by u and v with the same target then any two paths labeled by u and v of the same source have the same target. These properties satisfied by the Cayley graphs of monoids are sufficient to characterize them: they are the deterministic and source-complete graphs with a propagating out-simple root (Theorem 4.4). In fact for any graph Γ and root r satisfying these properties, the vertex set of Γ is a monoid whose s • t is the target of the path from s labeled by u if u labels a path from r to t. It follows that Γ is a Cayley graph of this monoid generated by the set of successors of r.

We then characterize the Cayley graphs of right-cancellative monoids as being the Cayley graphs of monoids which are co-deterministic: there are no two edges of the same target and label (Theorem 6.2). We also characterize the Cayley graphs of left-cancellative monoids as being the Cayley graphs ISSN subm. to DMTCS c 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License of monoids which are propagating: any vertex is propagating (Theorem 6.6). By extending to chains the vertex propagation, we get the Cayley graphs of groups: they are the deterministic and co-deterministic, chain-propagating connected simple graphs (Theorem 7.3).

Directed labeled graphs

We present some basic concepts on directed labeled graph, namely the determinism, the source-completeness, and the simplicity, which are basic notions in automata theory.

Let A be an arbitrary (finite or infinite) set. We denote by A * the set of tuples (words) over A which is for the concatenation the free monoid generated by A. We denote by ε the 0-tuple i.e. the identity element called the empty word. A directed A-graph (V, G) is defined by a set V of vertices and a subset G ⊆ V ×A×V of edges. Any edge (s, a, t) ∈ G is from the source s to the target t with label a, and is also written by the transition s a -→ G t or directly s a -→ t if G is clear from the context. The sources and targets of edges form the set V G of non-isolated vertices of G and A G is the set of edge labels:

V G = { s | ∃ a, t (s a -→ t ∨ t a -→ s) } and A G = { a | ∃ s, t (s a -→ t) }. The set V -V G
is the set of isolated vertices. From now on, we assume that any graph (V, G) is without isolated vertex (i.e. V = V G ), hence the graph can be identified with its edge set G. We also exclude the empty graph ∅ : every graph is a non-empty set of labeled edges. Let -→ G be the edge relation defined by 

s -→ G t if s a -→ G t for some a ∈ A G . A path (s 0 , a 1 , s 1 , . . . , a n , s n ) of length n ≥ 0 in a graph G is a sequence s 0 a1 -→ s 1 . . .
-→ * G t if s u -→ G t for some u ∈ A * G . We denote by -→ G (r) = { s | r -→ G s } the set of successors of a vertex r. A graph G is accessible from P ⊆ V G if for any s ∈ V G there is r ∈ P such that r -→ * G s. A vertex r is a root if the graph is accessible from {r}. A graph G is strongly connected if every vertex is a root: s -→ *
G t for all s, t ∈ V G . A graph G is deterministic if there are no two edges of the same source and label i.e.

(r a -→ G s ∧ r a -→ G t) =⇒ s = t for any r, s, t ∈ V G and a ∈ A G meaning that for any label a ∈ A G , the relation a -→ is one to one. This local condition is equivalent to the injectivity of u -→ for any word u ∈ A * G . A vertex s is a source-complete vertex if for any label a of the graph, there is at least one edge from s labeled by a i.e. ∀ a ∈ A G ∃ t (s a -→ G t). A graph is a source-complete graph if all its vertices are source-complete. This condition is equivalent for any label word u to the existence of a path labeled by u from any vertex:

∀ u ∈ A * G ∀ s ∈ V G ∃ t (s u -→ G t).
Thus a graph G is deterministic and sourcecomplete if and only if for any label

a ∈ A G , a -→ G is a mapping from V G into V G or equivalently for any label word u ∈ A * G , u
-→ G is a mapping. A vertex s is an out-simple vertex if there are no two edges of source s with the same target:

(s a -→ t ∧ s b -→ t) =⇒ a = b for any t ∈ V G and a, b ∈ A G .
We also say that s is an in-simple vertex if there are no two edges of target s with the same source:

(t a -→ s ∧ t b -→ s) =⇒ a = b for any t ∈ V G and a, b ∈ A G .
A simple vertex is a vertex which is both in-simple and out-simple. A simple graph is a graph whose any vertex is simple (or in-simple, or out-simple).

Generalized Cayley graphs

We present graph-theoretic characterizations for the generalized Cayley graphs of magmas with a left identity, and with an identity.

Recall that a magma is a set M equipped with a binary operation • : M ×M -→ M that sends any two elements p, q ∈ M to the element p • q. Given a subset Q ⊆ M and an injective mapping [[ ]] : Q -→ A, we define the generalized Cayley graph :

C[[M, Q]] = { p [[q]] -→ p • q | p ∈ M ∧ q ∈ Q } of vertex set M and of label set [[Q]] = { [[q]] | q ∈ Q }.
We will be able to give a characterization of these graphs when the magma M has an identity (see Proposition 3.5). This characterization will then be refined when M is a monoid generated by Q, and then M is a group generated by Q.

Fact 3.1 Any generalized Cayley graph of a magma is deterministic and source-complete.

The deterministic source-complete graphs are the graphs such that for any label word u and for any vertex s, there is a unique path from s labeled by u. Among the deterministic and source-complete graphs, we want to determine those that are generalized Cayley graphs. Given a vertex r of a graph G, a binary operation

• on V G is a r-edge operation of G if r a -→ t =⇒ s a
-→ s•t for any s, t ∈ V G and a ∈ A G Such an operation is illustrated below and will be refined later (see Figures 4.5 In particular if a graph G has a r-edge operation with r source-complete then G is source-complete.

For any deterministic and source-complete graph, the existence of an edge-operation from an out-simple vertex allows to express it as a generalized Cayley graph.

Lemma 3.3 Let r be an out-simple source-complete vertex of a deterministic graph G. 

Let • be a r-edge operation of G. So G = C[[V G , -→ G (r)]] with [[s]] = a for any r a -→ s. Proof. We denote by S r = -→ G (r) = { s | ∃ a ∈ A G (r a -→ s) } the set of successors of r. As r is out-simple, [[ ]] is a mapping from S r into A G . As G is deterministic, [[ ]] is injective. As r is source-complete, [[ ]] is surjective hence [[ ]] is bijective. Let us check that G = C[[V G , S r ]]. ⊆ : Let s a -→ G t. As r is source-complete, there exists q such that r a -→ G q. So [[q]] = a. As • is a r-edge operation, we have s a -→ G s•q. As G is deterministic, we get t = s•q hence s a -→ C[ [V G , Sr ] ] s•q = t. ⊇ : Let s a -→ C[ [V G , Sr ] ] t. There exists (a unique) q ∈ S r such that [[q]] = a. So t = s•q and r a -→ G q. As • is a r-edge operation, we have s a -→ G s•q = t. ✷ Recall that
-→ G s with a, b ∈ A G . As A G = [[Q]], we have a = [[p]] and b = [[q]]
for some p, q ∈ Q. Thus s = e•p = p and s = e•q = q hence p = q i.e. a = b. ⇐= : Let G be a deterministic and source-complete graph and let r be an out-simple vertex. We consider the magma (V G , •) with • defined for any s, t ∈ V G by

s • t =      x if r a -→ t and s a -→ x for some a ∈ A G t if s = r r otherwise.
As r is out-simple and G is deterministic, • is well-defined. So r is a left identity and • is a r-edge operation. As G is source-complete and by Lemma 3.3, G is a generalized Cayley graph of (V G , •). Note that we could also define more simply • for any s, t ∈ V G by

s • t = x if r a -→ t and s a -→ x for some a ∈ A G t otherwise.
However, this is only the first definition that can be generalized to the next proposition. ✷

Let us introduce a graph notion. A vertex r of a graph G is a loop-propagating vertex if r a -→ r =⇒ s a -→ s for any s ∈ V G and a ∈ A G meaning that if r has a loop labeled by a then any vertex has a loop labeled by a. In particular any vertex without loop is loop-propagating. If a magma M has a left identity e and a right identity e ′ then e = e • e ′ = e ′ is the identity of M and we say that M is a unital magma. The identity e of a magma is a loop-propagating vertex for its generalized Cayley graphs. We can strengthen Proposition 3.4 to magmas with an identity.

Proposition 3.5 A graph is a generalized Cayley graph of a unital magma if and only if it is deterministic, source-complete with an out-simple and loop-propagating vertex.

Proof. =⇒ : Let

G = C[[M, Q]]
for some magma M with an identity e and some Q ⊆ M . In the proof of Proposition 3.4, we have seen that e is out-simple. It remains to check that e is loop-

propogating. Let e a -→ G e with a ∈ A G and let s ∈ V G = M . So a = [[q]] for some q ∈ Q hence e = e•q = q. Thus s a -→ G s•q = s•e = s.
⇐= : We have just to refine the operation • of the previous proof as follows: for any s 

, t ∈ V G s • t =          x if r a -→ t and s a -→ x for some a ∈ A G t if s = r s if t = r r otherwise. As r is out-simple,
m • n =      m if n = 0 -m + n if n = 1, 2 0
otherwise.

Cayley graphs of monoids

We present a graph theoretic characterization for the Cayley graphs of monoids. Such a characterization is based on a structural property describing a partial symmetry of these graphs: every vertex is the image of the unit element by an endomorphism. We express this general property by an elementary notion of propagation.

We write s

u,v -→ G t if s u -→ G t and s v -→ G t. We write s u,v -→ G when s u,v -→ G t for some t. A vertex r of a graph G is a propagating vertex if r u,v -→ =⇒ s u,v -→ for any s ∈ V G and u, v ∈ A * G
meaning that if there are two paths from r of the same target labeled by u and v then from any vertex, there are two paths of the same target labeled by u and v.

In particular for u = v ∈ A, a graph is source-complete if it has a source-complete propagating vertex. Furthermore for u = ε and v ∈ A, a propagating vertex is loop-propagating.

For the following deterministic and source-complete graph: -→) which is not the case for the other vertices. Let us express the existence of a propagating vertex by a partial symmetry of the graph when it is deterministic. Given a vertex r of a graph G, we denote by G ↓r the restriction of G to the vertices accessible from r :

G ↓r = { (s, a, t) ∈ G | r -→ * G s }. A morphism from a graph G into a graph H is a mapping h from V G into V H such that s a -→ G t =⇒ h(s) a -→ H h(t).
A propagating vertex r of a deterministic graph G is a vertex from which there is for any vertex s a morphism from G ↓r into G ↓s linking r to s. Lemma 4.1 For any deterministic graph G and vertices r, s, we have r

u,v -→ G =⇒ s u,v -→ G for any u, v ∈ A * G if and only if there is a morphism h from G ↓r to G ↓s such that h(r) = s.

Proof.

⇐= : Immediate for any graph. =⇒ : As G is deterministic, it allows to define the mapping h :

V G ↓r -→ V G ↓s by h(p) = q if r u -→ G p and s u -→ G q for some u ∈ A * . Thus h(r) = s. It remains to check that h is a morphism. Let p a -→ G ↓r q. There exists u ∈ A * G such that r u -→ G p. As r ua -→ G , we have s ua -→ G i.e. s u -→ G p ′ a -→ G q ′ for some vertices p ′ , q ′ . As G is deterministic, h(p) = p ′ and h(q) = q ′ hence h(p) a -→ G ↓s h(q). ✷ Recall that a magma (M, •) is a semigroup if • is associative: (p • q) • r = p • (q • r) for any p, q, r ∈ M .
A monoid M is a semigroup with an identity 1. In that case, 1 is a propagating vertex of its generalized Cayley graphs.

Fact 4.2 For any generalized Cayley graph of a monoid, 1 is a propagating vertex.

Proof. Let 1 u,v -→ G s with u, v ∈ A * G . We have u = [[p 1 ]] . . . [[p m ]] and v = [[q 1 ]] . . . [[q n ]] for some m, n ≥ 0 and p 1 , . . . , p m , q 1 , . . . , q n ∈ Q. Thus (. . .(1•p 1 ). . .)•p m = s = (. . .(1•q 1 ). . .)•q n . As • is associative, p 1 •. . .•p m = q 1 •. . .•q n . Let t be any vertex of G. So t u -→ G (. . .(t•p 1 ). . .)•p m = t•(p 1 •. . .•p m ) and t v -→ G t•(q 1 •. . .•q n ) = t•(p 1 •. . .•p m ). Hence t u,v -→ G . ✷
For instance the following oriented and labeled Petersen graph: Proof.

* = { q 1 • . . . •q n | n ≥ 0 ∧ q 1 , . . . , q n ∈ Q } containing Q. A Cayley graph of a monoid M is a generalized Cayley graph C[[M, Q]] for M generated by Q i.e. M = Q * . Fact 4.3 For any Cayley graph of a monoid, 1 is a root. Proof. Let G = C[[M, Q]] for some monoid M generated by Q. For any m ∈ M , we have m = q 1 •. . .•q n for some n ≥ 0 and q 1 , . . . , q n ∈ Q, thus 1 v -→ G m for the label word v = [[q 1 ]] . . . [[q n ]]. ✷ Thus a
=⇒ : Let G = C[[M, Q]]
for some monoid M and some Q ⊆ M such that Q * = M . By Fact 3.1, G is deterministic and source-complete. By (the proof of) Proposition 3.4, the vertex 1 is out-simple. By Facts 4.2 and 4.3, the vertex 1 is a propagating root. ⇐= : Let G be a deterministic and source-complete graph and r be a propagating out-simple root. We extend a r-edge operation into a r-path operation as being a binary operation Let us check the existence and the unicity of a r-path operation. Let s, t ∈ V G . Let us check that s • t is well-defined.

• on V G such that r u -→ t =⇒ s u -→ s • t for any s, t ∈ V G and u ∈ A * G which is illustrated below. u u for s s • t r t and u ∈ A *
As r is a root, there exists

u ∈ A * G such that r u -→ G t.
As G is source-complete, there exists x such that s

u -→ G x. Let r v -→ G t for some v ∈ A * G . So r u,v -→ G . As r is propagating, s u,v -→ G . As G is deterministic, we get s v -→ G x. Thus s • t = x is well-defined. The path operation • is a r-edge operation. By Lemma 3.3, G = C[[V G , -→ G (r)]] where [[s]] = a for any r a -→ s. It remains to check that (V G , •) is a monoid generated by -→ G (r). i) Let us check that r is a left identity. Let s ∈ V G . As r is a root, there exists u ∈ A * G such that r u -→ G s. By definition of • , we have r u -→ G r • s. As G is deterministic, we get r • s = s. ii) Let us check that r is also a right identity. Let s ∈ V G . As r ε -→ G r and by definition of • , we have s ε -→ G s • r i.e. s • r = s. iii) Let us check that • is associative. Let x, y, z ∈ V G . As r is a root, there exists v, w ∈ A * G such that r v -→ y and r w -→ z. Thus x v -→ x • y w -→ (x • y) • z and y w -→ y • z. So r vw -→ y • z hence x vw -→ x • (y • z). As G is deterministic, we get (x • y) • z = x • (y • z). iv) Let us check that -→ G (r) generates V G . Let s ∈ V G . There exists a path r = s 0 a1 -→ s 1 . . .s n-1 an -→ s n = s.
As r is source-complete, there exists r 1 , . . . , r n such that r a1 -→ r 1 , . . . , r an -→ r n . By induction on 1 ≤ i ≤ n, we have • r s t r r s t s s s t t t s t

s i = s i-1 • r i . Therefore s = (. . . (r • r 1 ) • . . .)• r n = r 1 • . . . • r n ∈ (-→ G (
Another example is given by the following infinite graph: p + q if p or q is even, p + q + 1 if p and q are odd which is indeed associative.

G = { n a -→ n + 2 | n ∈ N } ∪ { 2n b -→ 2n + 1 | n ∈ N } ∪ { 2n + 1 a,b -→ 2n + 3 | n ∈ N } represented as follows:

Cayley graphs of semigroups

We exploit the previous characterization for the Cayley graphs of monoids to obtain a characterization for the Cayley graphs of semigroups.

Recall that a Cayley graph of a semigroup

M is a generalized Cayley graph C[[M, Q]] such that M = Q + whose Q + = { q 1 • . . . •q n | n > 0 ∧ q 1 , . . . , q n ∈ Q } is the subsemigroup generated by Q.
Let us extend Theorem 4.4 into a characterization of these graphs. Every semigroup trivially embeds into a monoid by adding an element. On the graph side, we just need to express properties that make it possible to embed into a graph satisfying the conditions of Theorem 4.4 just by adding a single vertex.

Theorem 5.1 A graph G is a Cayley graph of a semigroup if and only if it is deterministic and there is an injection

i from A G into V G such that G is accessible from i(A G ) i(a) u -→ v ←-i(b) =⇒ s au,bv -→ for any s ∈ V G , a, b ∈ A G and u, v ∈ A * G . Proof. =⇒ : Let G = C[[M, Q]] for some semigroup (M, •) generated by Q. By Fact 3.1, G is deterministic. If M is not a monoid i.e
. it has no identity, we turn M into a monoid M ′ = M ∪ {1} by just adding an identity 1 i.e. p•1 = 1•p = p for any p ∈ M ′ . Let M ′ = M when M is a monoid. In both cases, M ′ is a monoid of identity 1.

Let G ′ = C[[M ′ , Q]] = G ∪ { 1 [ [q] ] -→ q | q ∈ Q }. Let i : A G -→ Q defined by i([[q]]) = q for any q ∈ Q. As M is generated by Q, the graph G is accessible from Q = i(A G ). Let i([[p]]) u -→ G G v ←-i([[q]]) for some p, q ∈ Q and u, v ∈ A * G . So p u -→ G G v ←-q hence 1 [ [p] ]u , [ [q] ]v -→ G ′ . By Fact 4.2, 1 is a propagating vertex of G ′ . Let s ∈ V G . Therefore s [ [p] ]u , [ [q] ]v -→ G ′ hence s [ [p] ]u , [ [q] ]v -→ G . ⇐= : Let G be a deterministic graph. Let an injection i : A G -→ V G such that G is accessible from Q = i(A G ) and such that s au,bv -→ G when i(a) u -→ G G v ←-i(b) for any s ∈ V G , a, b ∈ A G and u, v ∈ A * G .
(1) Note that by (1), we get s a -→ G for any s ∈ V G and a ∈ A G , hence G source-complete. We take a new vertex r and we define the graph

G = G ∪ { r a -→ i(a) | a ∈ A G }.
So G remains deterministic and source-complete, and r is out-simple. As G is accessible from Q, r is a root of G. By (1), r is a propagating vertex of G. By the proof of Theorem 4.4,

V G = V G ∪ {r} is a monoid generated by Q for the r-path operation • of identity r with G = C[[V G , Q]] = C[[V G , Q]] ∪ { r [ [q] ] -→ q | q ∈ Q } where i([[q]]) = q for every q ∈ Q.
As r is not the target of an edge of G and by definition, • remains an internal operation on V G i.e. p • q = r for any p, q ∈ V G . Thus • remains associative on Recall that a magma (M, •) is right-cancellative if p • r = q • r =⇒ p = q for any p, q, r ∈ M . Let us give a basic property of their generalized Cayley graphs. A graph G is co-deterministic if there are no two edges of the same target and label i.e.

V G . Finally G = C[[V G , Q]] and (V G , •) is a semigroup. ✷ For instance, the two semilines G a = { n a -→ n + 1 | n ∈ N -{0} } ∪ { n a -→ n -1 | n ∈ Z -N } is not a
(s 

a -→ G r ∧ t a -→ G r) =⇒ s = t
, t ∈ V G such that s•t = s ′ •t. There exists u ∈ A * G such that r u -→ t. So s u -→ s•t and s ′ u -→ s ′ •t = s•t. As G is co-deterministic, we get s = s ′ . ✷
For instance, let us consider the following source-complete, deterministic and co-deterministic graph G :

a b a, b a, b a, b a, b 3 -1 -2 -3 0 1 2
which is a completion of G a ∪ G b from the first example after Theorem 5.1. The vertex 0 is the unique out-simple vertex, is the unique root and is the unique propagating vertex. By Theorem 6. 

m • n = n if m = 0 m + sign(m) |n| if m = 0
which is the natural completion of the semigroup that we have associated with G a ∪ G b .

We will now consider the Cayley graphs of left-cancellative monoids. Recall that a magma (M, •) is left-cancellative if r • p = r • q =⇒ p = q for any p, q, r ∈ M .

Fact 6.3 Any generalized Cayley graph of a left-cancellative magma is simple.

Let us strengthen Theorem 4.4 in order to characterize the Cayley graphs of left-cancellative monoids. We say that a graph is a propagating graph when all its vertices are propagating. The previous graph is not propagating since only its root is a propagating vertex. Here is a propagating graph: 

Proof. Let r u,v -→ G s with u, v ∈ A * G . We have u = [[p 1 ]] . . . [[p m ]] and v = [[q 1 ]] . . . [[q n ]
] for some m, n ≥ 0 and p 1 , . . . , p m , q 1 , . . . , q n ∈ Q. Thus (. . .(r•p 1 ). . .)•p m = s = (. . .(r•q 1 ). . .)•q n . As • is associative and left-cancellative, we get

p 1 •. . .•p m = q 1 •. . .•q n . Let t be any vertex of G. So t u,v -→ G t•(p 1 •. . .•p m ) = t•(q 1 •. . .•q n ).
✷

We get a graph-theoretic characterization for the Cayley graphs of left-cancellative monoids: they are the Cayley graphs of monoids which are propagating.

Theorem 6.6 A graph is a Cayley graph of a left-cancellative monoid if and only if

it is rooted, simple, deterministic and propagating.

Proof. =⇒ : By Facts 3.

⇐= : Let G be a simple, deterministic and propagating graph with a root r.

It remains to check that the r-path operation • defined in the proof of Theorem 4.4 is left-cancellative. Assume that s

• t = s • t ′ . As r is a root, there exists u, v ∈ A * G such that r u -→ G t and r v -→ G t ′ . By definition of • we get s u -→ G s • t and s v -→ G s • t ′ = s • t. Thus s u,v -→ G . As G is propagating, r u,v -→ G . As G is deterministic, it follows that t = t ′ . ✷
For instance, let us consider the following graph: It is a skeleton of the graph of ω 2 where a is the successor and b goes to the next limit ordinal:

G = { b m a n a -→ b m a n+1 | m, n ≥ 0 } ∪ { b m a n b -→ b m+1 | m, n ≥ 0 } represented below.
(V G , -→ * G ) is isomorphic to (ω 2 , ≤
). This graph is not co-deterministic hence by Fact 6.1 is not a generalized Cayley graph of a right-cancellative monoid. By Theorem 6.6, G = C(V G , {a, b}) where (V G , •) is the left-cancellative monoid defined for any m, n, p, q ≥ 0 by

b m a n • b p a q = b m a n+q if p = 0 b m+p a q if p = 0.
As the converse of Theorems 6.2 and 6.6 define the same monoid, it follows a characterization for the Cayley graphs of monoids which are cancellative i.e. both left-cancellative and right-cancellative.

Corollary 6.7 A graph is a Cayley graph of a cancellative monoid if and only if

it is rooted, simple, deterministic, co-deterministic, propagating.

Let us summarize the previous characterizations. 

Cayley graphs of groups

We present a graph-theoretic characterization for the Cayley graphs of groups in a strong form [START_REF] Caucal | On Cayley graphs of algebraic structures[END_REF] (see Theorem 7.3.b) and in a weak form [START_REF]On Cayley graphs of basic algebraic structures[END_REF] (see Theorem 7.3.c). It follows a characterization for the generalized Cayley graphs of groups (see Theorem 7.6).

We start by introducing some basic graph notions. We need to circulate in a graph G in the direct and inverse direction of the arrows. Let -: A G -→ A -A G be an injective mapping whose

A G = { a | a ∈ A G } is a disjoint copy of A G . This allows to define the inverse of G as the graph G = { t a -→ s | s a -→ G t }. So V G = V G and A G = A G . A path of G ∪ G i.e. s u -→ G ∪ G t with u ∈ (A G ∪ A G ) * is a chain of G also denoted by s u -→ G t where s a -→ G t means that t a -→ G s for any a ∈ A G . So the chain r a -→ s b -→ t corresponds to r a -→ s b ←-t. We write ←→ G for the adjacency relation -→ G ∪ G i.e. s ←→ G t for s -→ G t or t -→ G s. We denote by ←→ * G for the chain relation -→ * G ∪ G . Recall that a graph G is connected if G ∪ G is strongly connected i.e. s ←→ * G t for all s, t ∈ V G . So G is co-deterministic if G is deterministic. We say that G is target-complete if G is source-complete i.e.
for any label a and any vertex s, there is at least one edge labeled by a of target s.

A chain-propagating vertex r of a graph G is a propagating vertex of G ∪ G i.e. r u,v -→ G =⇒ s u,v
-→ G for any s ∈ V G and u, v ∈ (A G ∪ A G ) * meaning that if there are two chains from r of the same target labeled by u and v then from any vertex, there are two chains of the same target labeled by u and v.

We say that a graph is a chain-propagating graph when all its vertices are chain-propagating. Let us recall the vertex-transitivity of a graph. An automorphism of G is an isomorphism from G to G. Two vertices s, t of a graph G are isomorphic and we write s ≃ G t if t = h(s) for some automorphism h of G. A graph G is vertex-transitive if its automorphism group acts transitively upon its vertices i.e. if all its vertices are isomorphic: s ≃ G t for every s, t ∈ V G . This implies that the graph is chainpropagating. The converse is true when the graph is both deterministic and co-deterministic.

Lemma 7.1 A deterministic and co-deterministic graph is vertex-transitive if and only if

it is chain-propagating.

Proof.

=⇒ : Let G be a vertex-transitive graph and s

u,v -→ G for some u, v ∈ (A G ∪ A G ) * . For any t ∈ V G , we have s ≃ G t hence t u,v
-→ G thus s is chain-propagating. ⇐= : Let G be a deterministic and co-deterministic graph which is chain-propagating. In particular G is source and target-complete since these properties are only on the labels of the graph. Let s, ∈ V G . Let us check that s ≃ G t. As s, t are chain-propagating, we have s

u,v -→ G ⇐⇒ t u,v -→ G for any u, v ∈ (A G ∪ A G ) * . So we can define the mapping f s,t : V G -→ V G for any r ∈ V G by f s,t (r) =      r ′ if s u -→ r and t u -→ r ′ for some u ∈ (A G ∪ A G ) * r ′ otherwise and if s u -→ r ′ and t u -→ r for some u ∈ (A G ∪ A G ) * r
otherwise. Let us check that f s,t is a bijective morphism of inverse f t,s . Thus and as f s,t (s) = t, we get s ≃ G t. Let r a -→ G r ′ with a ∈ A G ∪ {ε}. We have to show that f t,s (f s,t (r)) = r and f s,t (r) a -→ G f s,t (r ′ ). We distinguish the three complementary cases below.

Case 1 : r ←→ * G s. So s u -→ G r for some u ∈ (A G ∪ A G ) * . Thus t u -→ G f s,t (r) and t ua -→ G f s,t (r ′ ). As G is deterministic, f s,t (r) a -→ G f s,t (r ′ ). Moreover s u -→ G f t,s (f s,t (r)).
As G is deterministic and co-deterministic, f t,s (f s,t (r)) = r. Case 2 : ¬(r ←→ * G s) and r ←→ * G t. So ¬(r ′ ←→ * G s) and t

u -→ G r for some u ∈ (A G ∪ A G ) * . Thus s u -→ G f s,t (r) and s ua -→ G f s,t (r ′ ). As G is deterministic, f s,t (r) a -→ G f s,t (r ′ ). Moreover t u -→ G f t,s (f s,t (r)).
As G is deterministic and co-deterministic, f t,s (f s,t (r)) = r. Case 3 : ¬(r ←→ * G s) and ¬(r ←→ * G t). So f s,t (r) = r and f s,t (r ′ ) = r ′ and f t,s (r) = r. ✷

A group (M, •) is a monoid whose each element p has an inverse p -1 : p

• p -1 = p -1 • p = 1.
Fact 7.2 Any generalized Cayley graph of a group is co-deterministic, simple and vertex-transitive.

Proof.

Let G be a generalized Cayley graph of a group. By Facts 6.1 and 6.3, G is co-deterministic and simple.

It remains to chack that G is vertex-transitive. Let r u,v -→ s for u, v ∈ (A G ∪ A G ) * . Let t ∈ V G . By Lemma 7.1, it remains to check that t u,v -→ . As x [ [q] ] -→ y ⇐⇒ y [ [q] ] -→ x ⇐⇒ x = y • q ⇐⇒ y = x • q -1 we extend [[ ]] on Q -1 -Q by [[q -1 ]] = [[q]] for any q ∈ Q such that q -1 ∈ Q. i) Let us check that r is an identity. Let s ∈ V G . As r ε -→ G r and by definition of • , we have s ε -→ G s • r i.e. s • r = s. Furthermore and as G is connected, there exists u ∈ (A G ∪ A G ) * such that r u -→ G s. By definition of • , we have r u -→ G r • s. As G is deterministic and co-deterministic, r • s = s. ii) Let us check that • is associative. Let x, y, z ∈ V G . As G is connected, there exists v, w ∈ (A G ∪ A G ) * such that r v -→ y and r w -→ z. Thus x v -→ x • y w -→ (x • y) • z and y w -→ y • z. So r vw -→ y • z hence x vw -→ x • (y • z).
As G is deterministic and co-deterministic, we get

(x • y) • z = x • (y • z). iii) Let s ∈ V G . Let us check that s has an inverse. As G is connected, there exists u ∈ (A G ∪ A G ) * such that r u -→ s.
As G is source and target-complete, there exists s ∈ V G such that s p + q if p or q is even, p + q -2 if p and q are odd and makes that (Z, •) is a group.

We can now obtain a characterization for the generalized Cayley graphs of groups. First, let us start with a basic fact on their connected components which are their maximal connected subsets. Its canonical mapping π P : V G -→ P is the mapping associating to each vertex s the vertex of P in the same connected component: s ←→ * G π P (s) for any s ∈ V G . So π P (p) = p for any p ∈ P . Using ZFC set theory, there exists a representive set P and a binary operation • such that (P, •) is a group. Let r be its identity and C ∈ Comp(G) having r as vertex. By (the proof of) Theorem 7.3, (V C , r •) is a group for the r-chain-operation r • and of identity r. We take the group product (P ×V C , •) with (p, x) • (q, y) = (p • q, x r • y) for any p, q ∈ P and x, y ∈ V C .

Fact 7.5 The connected components of the generalized

This group is of identity (r, r).

As G is vertex-transitive, deterministic and co-deterministic, we can define the mapping f : P ×V C -→ V G such that r u -→ G x =⇒ p u -→ G f (p, x) for (any) u ∈ (A G ∪ A G ) * . Thus f is a bijection hence (V G , •) is a group where f (p, x) • f (q, y) = f (p • q, x r • y) for any p, q ∈ P and x, y ∈ V C .

This group (V G , •) is of identity f (r, r) = r.

Let us show that this operation • is a r-chain operation hence by Lemma 3.3,

G = C[[V G , -→ G (r)]
] with [[s]] = a for any r a -→ s. We say that a binary operation P • on V G is a P -chain operation if for any s, t ∈ V G , (π P (s) u -→ G s ∧ π P (t) v -→ G t) =⇒ π P (s) • π P (t) uv -→ G s P • t for any u, v ∈ (A G ∪ A G ) * which is illustrated below. Any P -chain operation is a r-chain operation. As G is vertex-transitive, deterministic and co-deterministic, P • exists and is unique. Let us check that • and P • are equal. Let p, q ∈ P and x, y ∈ V C . We have to check that f (p, x) P • f (q, y) = f (p, x) • f (q, y). -→ G f (q, y). By definition of P • , we have p • q uv -→ G f (p, x) P • f (q, y). As G is deterministic, we get f (p, x) P • f (q, y) = f (p • q, x r • y) = f (p, x) • f (q, y). ✷ for the group operation (m, i, p) • (n, j, q) = (m + n, i + j (mod2), p + q). Note that the graph G = { s q -→ s + q | s ∈ R ∧ q ∈ Q } is the generalized Cayley graph C(R, Q) for the group (R, +). Its unlabeled edge relation -→ G is the Vitali equivalence (1905) for which we need the axiom of choice to select an element in each class (and the selected elements form a set which is not Lebesgue measurable). Similarly the graph { P

Q -→ P ∆ Q | P, Q ⊆ N ∧ Q finite } is the generalized Cayley graph C(2 IN , 2 IN
f ) for the group 2 IN of the subsets of N with the symmetric difference operation ∆ , and for the set 2 IN f of finite subsets of N. Its unlabeled edge relation is the equivalence E 0 for which we also need the axiom of choice to have a selector [START_REF] Harrington | A Glimm-Effros dichotomy for Borel equivalence relations[END_REF].

  an -→ s n of n consecutive edges, and we write s 0 a1...an -→ s n for indicating the source s 0 , the target s n and the label word a 1 . . .a n ∈ A * G of the path. Let -→ * G be the path relation defined by s

  , 7.4, 7.7).
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 32 Figure 3.2 A r-edge operation on the vertex set of a graph.

  loop-propagating and as G is deterministic, • is well-defined. ✷ For instance consider the magma (Z, •) where m • n = -m + n for any m, n ∈ Z. There is no right identity and 0 is the unique left identity. The generalized Cayley graph G = C[[Z, {1, 2}]] with [[1]] = a and [[2]] = b is the following simple graph: than 1 is loop-propagating. By Proposition 3.5, G is a generalized Cayley graph of a unital magma. Precisely by applying the construction given in its proof for r = 0, we get G = C[[Z, {1, 2}]] with [[1]] = a and [[2]] = b for the magma (Z, •) of identity 0 defined for any n by 0 • n = n and for any m = 0 by

  r is propagating but the vertices s, t are not propagating: we have s ε,a -→ (resp. t ε,b

  generalized Cayley graph of a monoid since it has no propagating vertex: for s an inner vertex and t an outer vertex, we have s ε,ababa -→ and t ε,baaba -→ while t / ababa -→ t and s / baaba -→ s.Recall that the submonoid generated by a subset Q of a monoid M is the least submonoid Q

Figure 4 . 5 A

 45 Figure 4.5 A r-path operation on the vertex set of a graph.

  r)) * . ✷ By Theorem 4.4, the graph of the first figure of this section is a Cayley graph of a monoid: it is equal to C[[{r, s, t} , {s, t}]] with [[s]] = a , [[t]] = b for the monoid ({r, s, t}, •) where • is the r-path operation defined by the following Cayley table:

  is deterministic, source-complete, and its root 0 is out-simple and propagating. By Theorem 4.4, G is a Cayley graph of a monoid. Precisely G = C[[N, {1, 2}]] where [[1]] = b and [[2]] = a for the 0-path operation • defined for any p, q ∈ N by p • q =

  Cayley graph of a semigroup since it is not connected and has a unique label. On the other hand, G a ∪G b is a Cayley graph of a semigroup. Precisely G a ∪ G b = C[[Z -{0}, {1, -1}]] where [[1]] = a and [[-1]] = b for the associative operation • defined by m • n = m + sign(m) |n| for any m, n ∈ Z -{0}where sign(m) = 1 for any m > 0 and sign(m) = -1 for any m < 0.Another example is given by the following graph G : set V is the regular set a * a ∪ a * b ∪ b * bb. By Theorem 5.1, G is the Cayley graph C(V, {a, b}) for the associative binary operation • on V defined for any m, n > 0, i, j ≥ 0, p, q > 1 by the following Cayley table:

• a n a j b b q a m a m+n a j+m b a m+q-1 b a i b a i+n b a i+j+1 b a i+q b b p a n+p-1 b a j+p b b p+q 6

 6 Cayley graphs of right-cancellative and left-cancellative monoidsWe strengthen the characterization for the Cayley graphs of monoids (Theorem 4.4) to the Cayley graphs of right-cancellative monoids and of left-cancellative monoids.

2 ,

 2 G is a Cayley graph of a right-cancellative monoid. Precisely G = C[[Z, {1, -1}]] where [[1]] = a and [[-1]] = b for the right-cancellative monoid (Z, •) defined for any m, n ∈ Z by

  deterministic + source-complete + out-simple vertex r (3.4) + co-deterministic (6.2) + r loop-propagating (3.5) + r propagating root (4right-cancellative monoids monoids of left-cancellative of magmas with an identity It remains to extend the path propagation to chains in Corollary 6.7 to get a characterization for the Cayley graphs of groups.

u-

  → r. We have s u -→ s • s. As G is deterministic and co-deterministic, s • s = r. For u = a 1 . . .a n with n ≥ 0 and a 1 , . . . , a n ∈ A G ∪ A G , let u ′ = a n . . .a 1 with a = a for any a ∈ A G . Thus s u ′ -→ r and r u ′ -→ s. So s u ′ -→ s • s. As G is deterministic and co-deterministic, s • s = r. ✷ Let us consider the following graph: the properties of Theorem 7.3 (b) or (c) hence is the Cayley graph C[[Z, {1, 2}]] with [[1]] = b and [[2]] = a, where • is the 0-chain operation defined for any p, q ∈ Z by p • q =

Figure 7 . 7 A

 77 Figure 7.7 A P -chain operation on the vertex set of a graph.

  Let u, v ∈ (A G ∪ A G ) * such that r u -→ G x and r v -→ G y. By definition of r • , we have x v -→ G x r • y hence r uv -→ G x r • y. By definition of f , we get p • q uv -→ G f (p • q, x r • y), p u -→ G f (p, x) and q v

For instance let us

  consider the following graph:G = { (m, i, p) a -→ (m + 1, i, p) | m, p ∈ Z ∧ i ∈ {0, 1} } ∪ { (m, i, p) b -→ (m, 1i, p) | m, p ∈ Z ∧ i ∈ {0, 1} } ofrepresentation the countable repetition of the preceding one. By Theorem 7.6, G = C[[Z×{0, 1}×Z, {(1, 0, 0), (0, 1, 0)}]] with [[(1, 0, 0)]] = a, [[(0, 1, 0)]] = b and

  an element e of M is a left identity (resp. right identity) if e•p = p (resp. p•e = p) for any p ∈ M . Note that any left identity of a magma is an out-simple vertex of its generalized Cayley graphs.

	This property with those of Fact 3.1 suffices to characterize the generalized Cayley graphs of magmas
	with a left identity.	
	Proposition 3.4 A graph is a generalized Cayley graph of a magma with a left identity
	if and only if it is deterministic, source-complete with an out-simple vertex.
	Proof.	
	=⇒ : Let G = C[[M, Q]] for some magma M with a left identity e and some Q ⊆ M .
	By Fact 3.1, it remains to check that e is out-simple.
	Let e	a -→ G s and e	b

  for any r, s, t ∈ V G and a ∈ A G .By adding the condition of co-determinism in Theorem 4.4, we get a characterization for the Cayley graphs of right-cancellative monoids. ⇐= : Let G be a deterministic and co-deterministic source-complete graph with a propagating outsimple root r. It remains to check that the r-path operation • defined in the proof of Theorem 4.4 is right-cancellative. Let s, s ′

	Theorem 6.2 A graph is a Cayley graph of a right-cancellative monoid if and only if
	it is deterministic, co-deterministic, source-complete with a propagating out-simple root.
	Proof.
	=⇒ : By Theorem 4.4 and Fact 6.1.
	Fact 6.1 Any generalized Cayley graph of a right-cancellative magma is co-deterministic.

  Note that every propagating graph with an out-simple vertex is simple. Let us express differently the propagating graphs when they are deterministic. If a morphism h from a graph G into a graph H is bijective and h -1 is a morphism, h is called an isomorphism from G to H. We say vertices s, t of a graph G are accessible-isomorphic if t = h(s) for some isomorphism h from G ↓s to G ↓t . Let us apply Lemma 4.1. For the necessary condition, Lemma 4.1 provides two morphisms between G ↓s and G ↓t which are mutual inverses since G is deterministic. ✷ When a monoid is left-cancellative, its generalized Cayley graphs are propagating. Any generalized Cayley graph of a left-cancellative monoid is propagating.

	Proof.	
	Fact 6.5	
	a, b	a, b
	Corollary 6.4 A deterministic graph is propagating if and only if
	all its vertices are accessible-isomorphic.

  Cayley graph of groups are the Cayley graphs of groups.To characterize the generalized Cayley graphs of groups, we will give before the conclusion two examples showing that we cannot get rid of the axiom of choice. The axiom of choice is equivalent in ZF set theory to the property that any non-empty set has a group structure[START_REF] Hajnal | Some new algebraic equivalents of the axiom of choice[END_REF]. In ZFC set theory, a graph is a generalized Cayley graph of a group if and only if it is simple, deterministic, co-deterministic, vertex-transitive.

	Theorem 7.6 Proof.	
	Proof.	
	=⇒ : By Facts 3.1, 7.2 and Theorem 7.3.	
	⇐= : Any Cayley graph of a group is a connected generalized Cayley graph.	✷

=⇒ : By Facts 3.1 and 7.2. ⇐= : Let G be a simple, deterministic, co-deterministic, vertex-transitive graph. Let Comp(G) be the set of connected components of G. Let us recall that a representative set (or a transversal) P of Comp(G) is a subset of V G that has exactly one vertex in each connected component: |P ∩ V C | = 1 for any C ∈ Comp(G).

Conclusion

We obtained simple graph-theoretic characterizations for the Cayley graphs of elementary algebraic structures. Simple characterizations have also been given for the generalized Cayley graphs of left-quasigroups and quasigroups [1]. A natural question arises: how such characterizations can shed new light on group and monoid theories? I would like to thank the referees for their comments. All my thanks to the one who made me several pages of remarks which allowed me to greatly improve this article. I also thank Christian Delhommé and Pierre Simonnet very much for their questions and comments.

] for some m, n ≥ 0 and p 1 , . . . , p m , q 1 , . . . , q n in Q

A Cayley graph of a group M has been defined in [START_REF] Cayley | The theory of groups: graphical representation[END_REF] and is a generalized 

(b) =⇒ (c) : any vertex-transitive graph is source and target-complete, and by Lemma 7.1. (c) =⇒ (a) : Let r be a chain-propagating vertex of G which is also simple, source and target-complete. So G is source-complete and target-complete. We extend a r-path operation into a r-chain operation as being a binary operation

for and u ∈ A * Let us check the existence and the unicity of a r-chain operation. Let s, t ∈ V G . Let us check that s • t is well-defined. As G is connected, there exists u