N

N

A bio-inspired 3-DOF light-weight manipulator with
tensegrity X-joints
Benjamin Fasquelle, Matthieu Furet, Parag Khanna, Damien Chablat,
Christine Chevallereau, Philippe Wenger

» To cite this version:

Benjamin Fasquelle, Matthieu Furet, Parag Khanna, Damien Chablat, Christine Chevallereau, et al..
A bio-inspired 3-DOF light-weight manipulator with tensegrity X-joints. ICRA’2020, May 2020, Paris,
France. 10.1109/icra40945.2020.9196589 . hal-02517339

HAL Id: hal-02517339
https://hal.science/hal-02517339
Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02517339
https://hal.archives-ouvertes.fr

A bio-inspired 3-DOF light-weight manipulator with tensegrity X-joints*

Benjamin Fasquelle, Matthieu Furet, Parag Khanna, Damien Chablat,
Christine Chevallereau, Philippe Wenger

Abstract— This paper proposes a new kind of light-weight
manipulators suitable for safe interactions. The proposed ma-
nipulators use anti-parallelogram joints in series, referred to
as X-joints. Each X-joint is remotely actuated with cables and
springs in parallel, thus realizing a tensegrity one-degree-of-
freedom mechanism. As compared to manipulators built with
simple revolute joints in series, manipulators with tensegrity
X-joint offer a number of advantages, such as an intrinsic
stability, variable stiffness and lower inertia. This new design
was inspired by the musculosleketon architecture of the bird
neck that is known to have remarkable features such as a
high dexterity. The paper analyzes in detail the kinetostatics
of a X-joint and proposes a 3-degree-of-freedom manipulator
made of three such joints in series. Both simulation results
and experiment results conducted on a test-bed prototype are
presented and discussed.

I. INTRODUCTION

Animal musculoskeletal systems offer remarkable dex-
terity and dynamic features that make them much more
efficient than existing industrial manipulators. Much less
studied than other animal models, the bird neck turns out
to exhibit very interesting performances. In fact birds use
their neck like an arm for every-day-life tasks such as
cleaning and feeding. Moreover, they often use their neck
for dexterous tasks interacting with the environment (e.g.,
a vulture picking food from a carcass) as well as for tasks
demanding high force transmissions and accelerations (e.g.,
the woodpecker hitting a tree trunk). Accordingly, bird necks
are an interesting source of bio-inspiration for designing
new manipulators with enhanced performances. This work
emerged from a collaborative project with biologists for
the purpose of understanding the behavior of bird necks
and building a robotic model. The concept of tensegrity
has been chosen in this project. A tensegrity structure is
an assembly of compressive elements (bars) and tensile
elements (cables, springs) held together in equilibrium [1],
[2]. Tensegrity is known in architecture and art for more than
a century [3] and is suitable for modeling living organisms
[4]. Tensegrity mechanisms have been more recently studied
for their promising properties in robotics such as low inertia,
natural compliance and deployability [5], [6], [7]. They are
also interesting candidates to design locomotion systems [8],
[9], [10], [11], [12]. A tensegrity mechanism is obtained
when one or several elements are actuated. A class of
planar tensegrity manipulators made of a series assembly

*This work was supported by the French National Research Agency,
AVINECK Project ANR-16-CE33-0025

Ecole Centrale de Nantes, CNRS, Laboratoire des Sciences du Numérique
de Nantes (LS2N), UMR CNRS 6004, 1 rue de la Nog, 44321 Nantes,
France {firstname.name}@ls2n.fr

of several tensegrity X-shape mechanisms i.e. crossed four-
bar mechanisms with springs along their lateral sides, has
been chosen as a suitable candidate for a preliminary planar
model of a bird neck, see Fig. 1. These mechanisms, referred
to as tensegrity X-joints, are inspired from the Snelson’s X-
shape mechanisms [13]. Although simplified because it is
planar, this model goes beyond the only available bird neck
model in the literature that uses a simple planar articulated
linkage [14], as it can be more easily actuated with cables
that play the role of tendons and muscles. Moreover, the
center of rotation of the X-joint is not fixed, which is the case
in most biological joints. Snelson’s X-shape mechanisms
have been studied by a number of researchers, either as
single mechanisms [5], [7], [15], [16] or assembled in series
[17], [18], [12], [11], [19], [20], [21]. In this paper, the
manipulator may be subject to gravity unlike in [11], where
the mechanism was used in a snake-like manipulator moving
on the ground.

This paper proposes a new paradigm for designing light-
weight manipulators using tensegrity X-joints. As compared
to a simple revolute joint, the proposed joint offers a num-
ber of advantages, such as an intrinsic stability, variable
stiffness and lower inertia. This paper analyzes in detail
the kinetostatics of an X-joint and proposes a 3-degree-of-
freedom manipulator made of three such joints in series. A
test-bed prototype is realized and described. Simulation and
experiment results are presented and discussed.

II. SINGLE JOINT DESIGN AND MODELLING

A. Joint description

A single tensegrity X-joint is composed of a crossed four-
bar linkage along with two lateral tension springs assumed
mass-less. The base and top bars have the same lengths and
so do the two crossed bars, thus defining a so-called anti-
parallelogram. The links are assumed infinitely rigid, and
are connected with each other with perfect revolute joints
(no friction or damping). The bottom bar defines the base of
the X-joint. Unlike the original Snelson’s X-shape tensegrity
that has only two compressive elements (the two crossed
bars) and four tensile elements (the four sides), the X-joints
used in this paper have four bars in total. The two additional
bars replace the tensile elements on the base and top sides.
This choice has been mainly motivated by the need to keep
torsion rigidity of the prototype that needs to be assembled
in different layers to prevent self collisions (see Fig. 2).
Accordingly, each X-mechanism used in this study is a class-
2 tensegrity [3].
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Fig. 1: Single tensegrity X-joint.

Fig. 2: Single X-joint testbed

The joint data are given in Tab. I. The two crossed bars
(resp. the base and top bars) are of length L (resp. b).

B. Actuation scheme

The X-joint is antagonistically actuated with two active
cables running through the springs. Each cable is attached
to a drum linked to a motor shaft. The cables are considered
infinitely stiff. The radius rg,, of the drums has been
determined such that the maximal motor torque provides
sufficient forces to actuate the X-joint in its full range of
rotation while keeping a satisfactory joint rate. Accordingly,
the maximal tension force that the cables can apply is
Smax = 155 N.

Parameter Value Unit

b : length of base and top bars 0.05 m
L : length of crossed bars 0.1 m

my : mass of one top bar 0.009 kg
my, m3 : mass of one crossed bar 0.016 kg

k;, kr : spring stiffness 90 N/m

lp : spring free length 0.037 m
Farum : drum radius 0.02 m
1, : Inertia of actuator at drive 0.0078  kg.m?

Jfmax * Maximal force applied by cable 155 N
TABLE I: 1-DoF Prototype data.

C. Dynamic model

The X-joint configuration is described by the angle «
between the bottom and top bars. The rotation range is
—oy < o < g, where oy < m, which means that the anti-
parallelogram cannot encounter its two flat configurations.
In practise, o4 is determined to avoid any collision. Here,
a;=140°. All other variables (orientation of the crossed bars,
springs and cables lengths) can be expressed w.r.t a. The
dynamic model of the X-joint is derived using the Lagrangian
method. The mass and inertia of bars, motors, reducers and
drums is taken into account in the dynamic model. The
equation of motion can be written in the following form :

M(a)i+C(a)a® +G(a) =Z() fi+ Z(a) fr (1)

Where M is the inertia, C the coefficient of Coriolis
effect and G the potential effects. The coefficients Z; and
Z, link the forces f; and f, applied by the left and right
cables to the generalized forces. Here they are defined by
the torque applied by the cables on the instantaneous center
of rotation of the X-joint (defined by the intersection point
of the two crossed bars). The derivation and expression of
the aforementioned quantities is not detailed here but can be
found in [16].

III. CONTROL OF A SINGLE JOINT (SIMULATION AND
EXPERIMENTS)

A. Wrench feasible workspace

The wrench feasible workspace (WFW) is the space of
reachable positions in which the manipulator can balance
a given set of external wrenches with bounded actuation
forces. In our case, the actuation wrench is the set of
forces that cables can apply and the external wrench is the
forces due to gravity. Using the static part of the dynamic
model, we compute all the orientations o such that f,; <
J1 < fmaxs fmin < fr < fmax and in which the mechanism
is in an equilibrium configuration [16], [19]. As shown
in [16], [19], the X-shape mechanism has only one stable
equilibrium configuration for a given set of applied forces.
Moreover, there exists two symmetric unstable equilibrium
configurations close to —x and 7. In our case, these unstable
configurations are not reachable as they are beyond the joint
limits.

B. Experimental results

For a desired trajectory (o, 0y, 0;), a computed torque
control with a proportional-integral-derivative (PID) correc-
tion is used. The forces (f, f;) are computed using (2):

M) (g +kg(0g — o) +ky(ag — @) +ki/or(ad —a)(t)dt)

+G(a)=Z(a)fi+Z-(a)fr )

For simplification reasons, the Coriolis effects are ne-
glected (low velocities are assumed). The gains are calculated
as explained in [22], namely, k, = 30°.k; = 30,k; = 0°,
where @ is a function of the torque constant, the dielec-
tric constant, the motor efficiency and its inertia. At each
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Fig. 3: Reference trajectory and real trajectory of the proto-
type, and real-time error on «.

iteration, the actual orientation o« of the mechanism is
computed by measuring the motor positions with encoders.
This encoder information is used to compute the effective
cable lengths /; and I, and the corresponding value of ¢. ¢ is
computed numerically. Since in (2), there are two forces and
one equation, an infinity of forces can be defined. A unique
set of forces can be determined by additionally satisfying a
desired stiffness as shown in [16]. In the experiments shown
here, a simpler strategy was used so as to keep one of the
forces to a fixed minimal value, f,i, = 3.5 N. This strategy
ensures that the cables are always in tension.

Since the mechanism is light, its own inertia is low as
compared to the actuator inertia. The actuator inertia taking
into account the full power train can be written w.r.t & as

follows :
o LN /9L \?
Mafe) = l(aa) +(5e) ] )

It is worth noting that M, strongly depends on o. Thus,
taking M, into account in (2) for the computation of M ()
is necessary to ensure a satisfactory trajectory tracking.

The results for a reference trajectory composed of three
successive back-and-forth motions of increasing magnitude
oy = {£30°,£60°,490°} is shown in Fig. 3 and 4, with
o =9 rd/s and f,;;, = 3.5 N. The mean absolute error for
the whole trajectory is of 1.4768°, and the maximal value
forces are smaller than 60 N. The small oscillations in the
forces are caused by the numerical computation of & and by
friction between the cable and shaft, but they do not impact
the behavior of the joint.

These results validate the dynamic modelling of a single
X-joint, the performances of the dynamic control law, and
the tuning of the PID controller, which will be used for the
3-DOF manipulator.

-a , mean absolute error =1.4768° maximum absolute error =4.5338° SD =1.0764°
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Fig. 4: Applied forces in the cables for the given trajectory.
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Fig. 5: 3-DoF manipulator (a) and focus on the actuation
strategy and the cable routing (b). Each cable is run through
pulleys and remains in one single motion plane. Routing of
each cable is optimized to ensure tension and contact with
pulleys in the full workspace.

IV. A 3-DOF MANIPULATOR WITH 3 X-JOINTS
A. Modelling

Bird necks have a number of vertebrae varying from 10 to
26 depending on the species [14]. This means that the bird
neck has a high kinematic redundancy. To start with, a model
with three vertebrae is studied. Accordingly, a manipulator
with three X-joints is analyzed. The manipulator is supposed
to operate in a vertical plane for positioning tasks. The
manipulator has thus a kinematic redundancy of 1.

The three X-joint are assembled in series, where joint 1
is fixed to the base and joint 3 carries the end-effector (here
the bird head). Each mechanism i is now equipped with 2
springs in parallel on each side (see Fig. 5). The bars are
made of aluminum alloy and all parameters values are given
in Tab. II.

B. Actuation scheme

The single X-joint was actuated with two cables in an
antagonist way. For the 3-DoF manipulator, several actuation



Value Unit

b : length of base and top bars 0.05 m
L : length of crossed bars 0.1 m

Parameter

my : mass of one top bar 0.024 kg

my, m3 : mass of one crossed bar 0.042 kg
ki1, k1 @ spring stiffness of mechanism 1 600 N/m
kia, ko @ spring stiffness of mechanism 2 200 N/m
ki3, k3 @ spring stiffness of mechanism 3 200 N/m

lo : spring free length (same for all springs) 0.05 m
1, : Inertia of actuator 0.0078  kg.m?

Jfmax * Maximal force applied by cable 155 N
TABLE II: 3-DoF Prototype data

strategies are possible. First, it is necessary to define an
appropriate number of active cables and a suitable way of
routing them from the motors to the mechanisms. Regarding
the number of active cables, we propose to use four ones.
This choice is a compromise between a minimal actuation
(2 active cables) and a maximal one (6 active cables, 2 for
each X-joint). With four cables, moreover, the three X-joint
can be fully controlled in position. Regarding the routing
strategy of the cables, several schemes can be considered,
including strut-routed [17] and side-routed [11], [23]. Here,
a strut-routed strategy with one cable for each joint is used
on the right side, while a side routed strategy with one single
cable running along the three joints is used on the left side.
This strategy is close to muscle scheme met in bird necks
[24]. More specifically, one cable is run through the left
sides of the three joints. This cable actuates the three X-
joints simultaneously. On the right sides, three cables are
run through the joints, so that each single joint is actuated
by one cable (see Fig. 6). This strut-routed actuation ensures
that there is no dependency between the cables [23]. The
path of each cable has been optimized to avoid any loss of
contact between pulleys and cables. Each cable is attached
to a drum linked to a motor shaft, and runs around the shafts
up to the top bar shafts thanks to pulleys.

C. Dynamic modeling

The dynamic model of the 3-DOF manipulator can be
written in vector form as follows:

M(e)&+C(a)e? +G(a) = Zy(a)fy+ Z (@), (4)

For the chosen actuation scheme, fi = [fiong; fiong, flong]T
and £, = [f1, />, f3] |, where fiong is the force along the long
cable on the left and fi,f>,f3 are the forces along three
cables on the right. All force components are greater than a
minimal value f,;,. @(t) is the vector of joint configurations,
its i component is denoted ;. Z; and Z, are diagonal
matrices, where the /' entry depends only on o [25].

D. Wrench Feasible Workspace

The WFW is computed by discretization of the joint space.
As previously, the joint limits are —140° < o; < —140°,
i=1,2,3. If the forces required to keep the manipulator in
equilibrium are within their bounds, the configuration is in
the WFW. The static model is used to compute the forces

e
s,
e

N,

=2

s
T S

Fig. 6: Actuation scheme for the three-DoF manipulator in
an arbitrary configuration. Bars are in dotted lines and cables
in plain lines. Each cable is on its own layer of pulleys.

for a given joint configuration, which can be set as:
G(a)=Z(a)fi+Z.(o)f; )

The WFW is first calculated for the four-cable actuation
scheme used for the prototype. To compute the forces in (5),
the following method is used. Let g; be i’ component of
G(a). For each joint i, the applied forces must satisfy:

8i = Z1i() fiong + Zri( ) f; (6)

where Zli(OC,') >0 and Z,«,'(OC,') <0 [25].

Since in the three linear equations (6), there are four
unknown variables f1, f2, f3, fiong, an infinite number of ac-
tuation forces exist. The solution minimizing the antagonistic
forces is chosen, while insuring that all forces f1, f2, f3, fiong
are greater than fy,;,. The minimal value of fj,, is calculated
to satisfy the four constraints independently. Accordingly, its
value is defined as the maximum of the minimal values:

(gi — Z:i( ) fnin

min 7
Zu(os) s fmin) (7

flong = maxic{(y,...3}

Then, f; is computed for each joint i as a function of fj:

8i — Zli(ai)flong

fi B Zri(ai)

®)
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Fig. 7: In blue, the WFW of the manipulator actuated with
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Fig. 8: WFW of the manipulator actuated with six cables.

The resulting WFW, limited by the constraint that each
force must be lower that f,,,,y, is shown in Fig. 7. Note that it
is not symmetrical due to the asymmetrical actuation strategy.

To evaluate the efficiency of the chosen actuation scheme,
the WFW is also computed for a full actuation strategy (six
cables, two antagonistic cables at each joint). In this case,
the three equations in (5) can be solved independently, and
each equation has an infinite number of solutions. Since each
force must be greater than f;,;,, the solution minimizing the
sum of the forces is obtained as follows:

._Zl. o .
Jii = fminy,  fri= glzr;((a:))fmm o Af 8i < gmi
fri = ﬁnim ,f[l = ng;l((all))f;nln s lf gl > gmz

where gni = (Z(04) + Z,i(04)) fnin and f;, fri are the
forces applied on the left and right side of joint i, respec-
tively. The resulting WFW is shown in Fig. 8. As compared
to the WFW with four cables, the difference in size is not
so large.

E. Equilibrium configurations at rest

The equilibrium configurations at rest (i.e. with no actua-
tion forces) satisfies:

G(a)=0 )

Equation (9) is difficult to solve algebraically but the
upright configuration where oy = op = a3 = 0 is found to
be an equilibrium solution at rest as expected for sym-
metrical springs. To verify if there is no other equilibrium
configurations at rest in the WFW, we have calculated those
parts of the WFW where the sum of the actuation forces
is lower than a threshold chosen as 1 N (assuming here
Sfmin = 0 N). As shown in Fig. 7, there is a small region
around the upright configuration (shown in red). In addition
to the equilibrium configurations at rest, it is interesting to
find the configurations associated with low actuation forces.
Regions of the WFW where the sum of the actuation forces
is lower than 5 N and 20 N are depicted in black and cyan,
respectively (see Fig. 7).

E Control

Let o,(t) be the desired joint trajectory. A computed
torque control with PID gains is used as for the single
X-joint. The desired torque at time ¢ is defined using the
dynamic model (with the centrifugal and Coriolis effects
neglected as above):

c;(t) =M(a())w(t) + G(a(r)) (10)

with
w(t) = &g (1) + keélt) + kpe(r) + k; /t;[:o(e(t’))dt (11)

Once the desired torque is defined, the actuation forces are
calculated using (7) and (8) where g; is replaced with the
i" component of ¢4(t). If a force is found to be out of its
bounds, it is updated with its nearest bound.

G. Trajectory planning

Let us define a task where the manipulator must move
between three points in the Cartesian space. Starting from
the upright position P. (equilibrium configuration at rest),
the manipulator moves successively to two positions P; and
Py and finally comes back to P, (points P., F; and Py are
shown on Fig. 7). Since the control is defined in the joint
space, a joint trajectory must be calculated. The kinematic
redundancy is solved by minimizing the actuated forces using
the static model. First of all, the optimal inverse solutions at
P, P; and Py are calculated by solving the inverse kinematics
while minimizing the sum of the actuated forces as follows:

mina(fl +f2 +f3 +flong)
st. P=FGM(a),
G(a) = Zi(o)fy + Zc(@)f;.

(12)

where FGM is the forward geometric model, and P is P,, P;
or Py. The resulting joint configurations are denoted €, @;
and @ y. With no surprise, &, = [0,0,0]”. The optimal joint
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Fig. 9: Optimal path in the Cartesian space with minimal
actuation forces. The cyan color shows the area of the WFW
reachable with C < 20 N.

trajectory is then obtained using an A* algorithm associated
with the cost function C below :

C=Y (fi+fr+fs+ fiong)

j=LN

(13)

where N is the number of points along the discretized path.
A polynomial function is used to link the N points using a
normalized curvilinear abscissa p. As a stop is imposed at
each point, a cycloid function is finally used to define the
timing law p(r) along the path. The resulting joint trajectory
is shown in Fig. 10. A 2 s stop is imposed at each point.
The motion between P, P; and between Py, P, is performed
in 2 s. The motion between F; and Py is performed in 4 s. In
the future, faster motions will be experimented using the full
dynamic model instead of the static model for the trajectory
optimization. It is worth noting that the optimal path between
P; and Py passes through P, whereas this was not prescribed.
This is due to the cost function that tends to minimize the
actuation forces during motion. Moreover, the optimal path
in the Cartesian space remains in the area with low forces
as shown in Fig. 9.

H. Experiments

As for the single joint experiments, the encoder informa-
tion is used to compute the effective cable length /,; at each
iteration (only on the right here because the long cable does
not provide additional information) and the corresponding
values of @. & are computed numerically.

The results for the optimized reference trajectory obtained
in the previous section is shown in Fig. 10 and 11, with
® =9 rd/s and f,;; = 3.5 N to ensure a minimal tension
in the cable. The tracking error is acceptable. The absolute
mean error is around 0.6°, while the maximum error is
around 6°. Since the actuation scheme is asymmetrical, the
force behavior depends on the direction of motion. When the
manipulator moves to the left, fj,,, is high as compared to fi,
f2, f3 and conversely. The actuation forces are not too high
even if higher than their expected values from simulation.
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o

o (degrees)
o

angle o, (degrees)

angle
o
angle

0 10 20 0 10 20 0 10 20
time (seconds) time (seconds) time (seconds)
Error= a,-a , mean absolute error =0.56394°
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N
a—

N
=
=
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Fig. 10: Reference trajectory and real trajectory of the
prototype, and real-time error on .

70

time (seconds)

Fig. 11: Applied forces in the cables for the given trajectory.

The difference can be explained by two main factors. First,
we have taken f,;;, = 3.5 N in the experiments to ensure
a minimal cable tension while f;,;; = 0 N in simulation.
Second, friction effects have been neglected in simulation.
The main oscillations on fj,,, are due to the friction of the
long cable due to the loop at each pulley (capstan effect).
A more efficient routing strategy of the long cable using a
double pulley will be realized in the near future.

V. CONCLUSIONS AND FUTURE WORK

A new concept of light-weight manipulator with X-joints
in series driven by cables has been presented and studied.
This concept has been validated on a single-joint testbed
and on a 3-DOF prototype manipulator moving along a
trajectory that minimizes the actuation forces. Although the
inertia of the manipulator itself is low, that of the full power



train is significant and turned out to have a highly variable
contribution in the inertia matrix of the dynamic model.
Accordingly, a dynamic control law instead of a simple
PID controller has been used. In future work, the kinematic
redundancy will be exploited with a Cartesian space control
to move the manipulator among obstacles by shaping around
them rather than trying to avoid these latter. Experiments will
be conducted on a prototype with ten X-joints.
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