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a b s t r a c t 

The extreme variability of the folding pattern of the human cortex makes the recognition of cortical sulci, 

both automatic and manual, particularly challenging. Reliable identification of the human cortical sulci in 

its entirety, is extremely difficult and is practiced by only a few experts. Moreover, these sulci corre- 

spond to more than a hundred different structures, which makes manual labeling long and fastidious 

and therefore limits access to large labeled databases to train machine learning. Here, we seek to im- 

prove the current model proposed in the Morphologist toolbox, a widely used sulcus recognition toolbox 

included in the BrainVISA package. Two novel approaches are proposed: patch-based multi-atlas segmen- 

tation (MAS) techniques and convolutional neural network (CNN)-based approaches. Both are currently 

applied for anatomical segmentations because they embed much better representations of inter-subject 

variability than approaches based on a single template atlas. However, these methods typically focus on 

voxel-wise labeling, disregarding certain geometrical and topological properties of interest for sulcus mor- 

phometry. Therefore, we propose to refine these approaches with domain specific bottom-up geometric 

constraints provided by the Morphologist toolbox. These constraints are utilized to provide a single sul- 

cus label to each topologically elementary fold, the building blocks of the pattern recognition problem. To 

eliminate the shortcomings associated with the Morphologist’s pre-segmentation into elementary folds, 

we complement this regularization scheme using a top-down perspective which triggers an additional 

cleavage of the elementary folds when required. All the newly proposed models outperform the cur- 

rent Morphologist model, the most efficient being a CNN U-Net-based approach which carries out sulcus 

recognition within a few seconds. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The surface of the brain is divided into many convolutions,

alled gyri, delimited by folds, called sulci. The main sulci are con-

idered as the limits between functionally and architecturally dif-

erent regions. Additionally, cortex morphometry is used to quan-

ify brain development and degenerative diseases. Despite the

any tools available for 3D visualization of sulci, sulci labeling is

 long and fastidious process. It takes several hours for an expert

o label all sulci in a single brain and reliable labeling requires the

pinion of several experts. However, because of the large variabil-
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ty of the folding pattern in the general population, inferring de-

elopmental biomarkers requires the mining of data from a large

umber of brains. These biomarkers may correspond to character-

stics of the sulci, such as size, depth or opening. However, these

easures require the prior labeling of sulci. Therefore, automation

f the sulcus recognition is essential. 

Nevertheless, learning to label sulci is an extremely complex

hallenge for several reasons. First, as illustrated in Fig. 1 , sulci are

ighly variable structures, some sulci are even absent in more than

0% of brains and some subjects have up to 8 sulci missing. Addi-

ionally, each brain contains more than 120 different sulci and only

 small number of segmentation algorithms are made for as many

tructures. Finally, the number of manually labeled subjects which

an be used for supervised learning is limited. 
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Illustration of cortical folds variability. The manual labeling of the three right hemispheres represented here shows the variability of cortical sulci by their shape, size, 

and position. 
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1.1. Overview of automatic sulci recognition methods 

Algorithms dedicated to automatic sulci recognition are pri-

marily based on graphical representations, which represents the

relative positions of the sulci with respect to each other, as

well as their position and their location in a standardized space

( Royackkers et al., 1998; Riviere et al., 2002; Vivodtzev et al., 2006;

Shi et al., 2007; Yang and Kruggel, 2009; Belaggoune et al., 2014 ).

To ensure their robust recognition, other methods have previously

been experimented with to model inter-subject variability using

several frameworks ranging from principal component analysis to

Bayesian approaches ( Lohmann and von Cramon, 20 0 0; Behnke

et al., 2003; Fischl et al., 2004; Perrot et al., 2011 ). All of these

methods are based on a segmentation algorithm followed by a

classification algorithm, in which the sulci are first extracted, ac-

cording to different representations, then labeled. 

In this paper, the objective is to improve the model proposed

in the BrainVISA/Morphologist package ( Perrot et al., 2011 ). To do

this, we focused on two aspects of the pipeline: on the one hand,

the sulci labeling algorithm and, on the other hand, the regulariza-

tion of the results. Note that we did not try to improve the sulci

extraction algorithm. 

1.2. New sulci labeling approaches: MAS and CNN 

Currently, the sulci labeling model proposed in the Brain-

VISA/Morphologist package, referred as the Statistical Probabilistic

Anatomy Map (SPAM) model in this paper, is based on a Bayesian

approach. As this labeling model has shown significant weak-

nesses, we have been inspired by two segmentation approaches for

biomedical applications that are among the most widely used to-

day, multi-atlas segmentation (MAS) and convolutional neural net-

works (CNNs). 

MAS techniques, initially introduced by Rohlfing et al. (2004) ,

use each manually segmented image as an atlas: the atlases are

adjusted to the image to be segmented and the best matches are

used to participate in the segmentation. Thus, MAS techniques

make it possible to more accurately represent anatomical variabil-

ity by not attempting to model a segmentation problem using an

average model. These techniques are now widely used, but have a

major disadvantage: the registration of the atlases to the images is

particularly expensive. 
Among the many variations of these techniques, the

atch-based approach introduced by Coupé et al. (2011) and

ousseau et al. (2011) have particularly attracted our attention.

y using a patch-based search strategy to identify matches with

he atlases, the image no longer needs to be aligned globally

ith all the atlases via expensive non-linear registration. Thus,

he registration and selection of matching patches can be partic-

larly accelerated thanks to the Optimized PatchMatch algorithm

roposed by Ta et al. (2014) . This algorithm is an adaptation

o segmentation of 3D images of the PatchMatch algorithm

 Barnes et al., 2009 ) that aims to assign to each patch of an image,

 patch similar to it in another image. 

Inspired by these approaches, we propose two algorithms

or cortical sulci recognition. The first is directly inspired by

omero et al. (2017) , that proposes a cerebellum lobule segmen-

ation method using an approach similar to the one originally pro-

osed by Coupé et al. (2011) ; Rousseau et al. (2011) with some im-

rovements. In the second algorithm, we propose a new patch gen-

ration strategy based on a high level representation of the sulci,

s the standard way of extracting cubic patches does not seem ca-

able optimally exploiting the sulci geometry and the relations be-

ween them, which we believe to be the discriminative features for

heir recognition. These two algorithms will be designated respec-

ively by PMAS (for Patch-based MAS) and HPMAS (for Patch-based

AS with High level representation of the data). 

The CNNs were initially developed to address problems in im-

ge classification and are now renowned for their formidable ef-

ectiveness in dealing with numerous computer vision problems.

hese techniques allow effective image analysis by learning an ab-

tract representation of the image. Concerning segmentation prob-

ems, the first approach was proposed approximately ten years ago

y Ciresan et al. (2012) where a neural network was trained to

lassify each voxel of the image to be segmented from its sur-

ounding patch. Since then, new approaches allow the entire im-

ge segmentation using fully convolutional neural networks, such

s the one initially proposed by Long et al. (2015) and dedicated

o semantic segmentation. Concerning segmentation problems in

edical imaging, the most commonly used architecture is the U-

et, a fully convolutional neural network which was initially pro-

osed by Ronneberger et al. (2015) and whose adaptation to 3D

mages was proposed in ( Çiçek et al., 2016; Milletari et al., 2016 ).

ere, we propose to compare two approaches based on CNNs. The
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Fig. 2. Where should the central sulcus end? The folds that may belong to the cen- 

tral sulcus are shown in red. Limits 1 or 2 can be chosen according to the morpho- 

logical definition of the central sulcus used. Note that depending on the definition 

chosen, the question then arises of adding a label to the nomenclature to identify 

the sulcus located between boundaries 1 and 2. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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rst is inspired by Ciresan et al. (2012) , adapted to address prob-

ems associated with 3D imaging. The second uses the 3D U-Net

rchitecture proposed in ( Çiçek et al., 2016 ). These two approaches

ill be called PCNN (for Patch-based CNN) and UNET, respectively.

To the best of our knowledge, despite their current popularity,

o MAS or CNN-based approach has yet been proposed for corti-

al sulci recognition. Note that these two approaches are generally

sed to segment the entire image while in this study only the pre-

egmented folds need to be labeled, requiring several adjustments

n the proposed models. 

.3. Bottom-up geometric constraints 

There is no guarantee that the geometric definition of a sulcus,

s a set of topologically simple surfaces, is respected in the case

f MAS and CNN-based methods described above. This is partic-

larly disadvantageous for morphometric studies whose measure-

ents are based on the definition of sulci. To remedy this, the

rainVISA/Morphologist pipeline provides an algorithm for bottom-

p aggregation of voxels into elementary folds, which are the geo-

etric building blocks of the problem. Once the voxels have been

abeled by one of the methods proposed above, it is possible to

egularize the results at the scale of the elementary folds. How-

ver, the upstream extraction of the elementary folds may some-

imes be inaccurate. Although from the same MRI, vastly different

ragmentations can be obtained because of stochastic optimizations

mbedded in the pipeline. This was previously a problem in the

odel proposed in ( Perrot et al., 2011 ), which uses the same geo-

etric entities to perform recognition, but is not capable of auto-

atically re-dividing the elementary folds. 

In this paper, we propose to use voxel-wise labeling to give a

op-down perspective to a traditional bottom-up pattern recogni-

ion system. Thus, the initial cutting into elementary folds pro-

osed by BrainVISA/Morphologist is challenged by voxel-wise la-

eling, eliminating under-segmentation errors in the model. The

roposed approach is particularly robust to the spatial inconsis-

encies that can occur during voxel labeling and to the potential

ncorrect definition of upstream geometric entities. 

. Database 

The training base is composed of 62 healthy brains selected

rom different heterogeneous databases and labeled with a model

ontaining 63 sulci for the right hemisphere and 64 for the left

emisphere. The “unknown” label is used to designate unidenti-

ed structures (usually small sulci). The two ventricles are labeled

ut not considered as sulci. Most of the subjects are right-handed

en, aged 25 to 35 years old. 

Unfortunately, there is no gold standard definition of sulci mor-

hology. Even the boundaries of the well-known central sulcus can

e difficult to define ( Fig. 2 ). Moreover, Fig. 2 shows that the def-

nition of sulci morphology impacts the level of granularity of the

omenclature. Therefore, for this study, the elementary folds of

ach brain were manually labeled according to a sulcus nomen-

lature following a long iterative process to achieve a consensus

cross a panel of several experts on cortex morphology. The last

teration of the database labeling was performed using the TileViz

isualization tool ( Mancip et al., 2018 ). This tool allows the entire

atabase to be visualized and labeled simultaneously on a wall of

creens (See Fig. 19 in supplementary material). Until now it was

nly possible to label and simultaneously evaluate a limited num-

er of hemispheres, generally four, on a standard screen. Thus, this

ool helps to limit the bias of labeling induced by a restricted view

f the database. To support this new iteration, the elementary folds

ere manually cut when necessary, which was not possible during

he study of Perrot et al. (2011) . 
Note that compared to traditional labeling approaches where

nly one expert can label images, this database has been progres-

ively labeled by several experts, both successively and simultane-

usly. This consensus-based labeling has sometimes led to the in-

roduction of new sulci labels when it was considered necessary,

aking it essential to use the video wall. However, the different

xperts have thus not produced independent labelings, which pre-

ents us from assessing human-level performance on this dataset. 

Compared to ( Perrot et al., 2011 ), the same MRI acquisitions

ere used but a new iteration of labeling was performed, result-

ng in the introduction of four new sulci in the nomenclature used.

he new nomenclature is described in the Fig. 3 . A more detailed

escription is provided in the Fig. 23 of the supplementary ma-

erials subsection. The manually labeled database is now available

n the BrainVISA website ( http://brainvisa.info/data/sulci _ database/

ase _ 62/2019 ). 

. Method 

The Morphologist/BrainVISA pipeline presented in ( Perrot et al.,

011 ) has two major deficiencies. First, the SPAM model of sulci la-

eling makes obvious labeling errors that are problematic in prac-

ice. Typically, it tends to duplicate the central sulcus, which is an

berration. Then, the model uses bottom-up geometric constraints

o group the voxels to be labeled in elementary folds, and this step

s subject to errors. In this article, we therefore seek to improve

he performance of the sulci labeling model and its robustness to

ub-segmentation errors in elementary folds. 

In this section, sulci labeling from an MRI is described in three

teps ( Fig. 4 ). First, the folds are segmented from the MRI using the

rainVISA/Morphologist pipeline (3.1.). Then, they are labeled using

ifferent algorithms (3.2.). Finally, the agglomeration of the vox-

ls into elementary folds proposed by the BrainVISA/Morphologist

ipeline is used to regularize the results (3.3.). 

Note that the strategies used to set the method hyperparame-

ers are detailed in the supplementary material. 

.1. Folds representation 

The Morphologist pipeline of the BrainVISA software ( www.

rainvisa.info ), a widely used resource for studying cortical

http://brainvisa.info/data/sulci_database/base_62/2019
http://www.brainvisa.info
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Fig. 3. New nomenclature used to label sulci. The visualization of the sulci labels is done thanks to the SPAM representation used by Perrot et al. (2011) which averages the 

position of the sulci as probability maps that are thresholded for this image. The new nomenclature includes 63 labels for the right hemisphere and 64 for the left hemi- 

sphere. Only the left hemisphere is represented in this figure. The right hemisphere has the same labels except the S.GSM. label. Compared to Perrot et al. (2011) , two new 

sulci are labeled (S.intraCing. and S.R.sup.). The ventricle label does not correspond to a sulcus label, but belongs to the fold skeleton extracted by the BrainVISA/Morphologist 

toolbox. Only the “unknown” label is not shown in this figure. Please refer to the Fig. 23 of the supplementary material section for English translations of each label. 

Fig. 4. MRI to labeled cortical sulci: a three-step pipeline. First, the fold skeleton is extracted using the BrainVISA/Morphologist toolbox. This toolbox also makes it possible 

to fragment the skeleton into elementary folds. Second, skeleton voxels are labeled by different algorithms. Algorithms based on MAS techniques (PMAS, HPMAS) and CNN- 

based algorithms (PCNN, UNET) label each skeleton voxel while the SPAM algorithm directly labels the elementary folds. Third, voxelwise labeling is regularized through the 

elementary folds, while automatically re-dividing them when the labeling indicates that it is required. 
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anatomy, allows first to represent the folds as a set of voxels cor-

responding to a skeleton of the cerebrospinal fluid filling the fold

and then to label them using the SPAM model ( Fig. 5 ). This first

step of fold segmentation is common to all the models presented

in this article. It consists of three major steps: first, the segmenta-

tion of white and grey matter from MRI, then the extraction of the

skeleton of cortical folds, followed by its division into elementary

folds. The fragmentation into elementary folds satisfies topological

and geometric constraints specific to the sulci’s definition. It is first

based on the topological characterization of a simple surface pro-

posed by Malandain et al. (1993) which isolates surface pieces that

do not include any junction. The skeleton is also fragmented at the

level of the buried gyri ( Fig. 6 ). 
The skeleton representation has three main advantages. First,

his 3D representation is essential during manual labeling because

t allows the visualization of the relative position of the sulci be-

ween each other and the evaluation of their depth, size, etc. Ad-

itionally, the agglomeration of the voxels into elementary folds

akes it possible to speed up labeling by giving a label to a set

f voxels rather than individually. Second, as the data are par-

icularly influenced by the type of MRI sequence, the age of the

ubjects (which has a significant impact on the opening of the

ulci) or even their pathologies, this pre-processing enables opti-

al normalization of the data. Moreover, the algorithm can focus

n labeling only after its segmentation. Finally, this representation

as previously been used in other pipelines, making it possible to
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Fig. 5. A computer vision pipeline mimicking a human anatomist ( Mangin et al., 

2015 ). A: interface between the cerebral envelope and the cortex. B: interface be- 

tween white matter and grey matter. C: extraction of the fold skeleton. D: cutting 

of the skeleton into elementary folds. E: Folds labeling using the SPAM model of 

Perrot et al. (2011) 

Fig. 6. Schematic representation of the fold skeleton. The fragmentation into ele- 

mentary folds isolates the internal and external branches and cuts the skeleton at 

the level of the buried gyri. Image taken from Riviere et al. (2002) . 
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Fig. 7. Extraction of the elementary folds from the same MRI. In the two lower 

brains, each color represents a different elementary fold. We observed that the 

skeleton extraction is visually stable, but its division into elementary folds can pro- 

duce very different results. (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 
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utomate the calculation of measurements (depth, length, connec-

ivity, etc.) used in morphometric studies or to realign the brains

ccording to the major sulci ( Auzias et al., 2011; 2013 ), which is

hy we have chosen to keep it. However, if we had chosen to con-

truct a model to recognize the sulci, that carries out both their

xtraction and labeling without relying on this representation, it

as highly probable that the results obtained would not conform

o the representation used by these pipelines and that some sig-

ificant post processing steps would be necessary. 

Although the extraction of the fold skeleton is robust, its frag-

entation into elementary folds demonstrates certain significant

nstabilities, such as vastly different fragmentations can be ob-

erved from the same MRI ( Fig. 7 ). Several stochastic optimizations

ere included in the segmentation pipeline (e. g. for bias correc-

ion, brain masking, skeletonization, etc.). These optimizations only

ave a slight impact on the shape of the resulting fold skeleton.

owever, for the topological fragmentation into elementary folds,

 single voxel can then make the difference. Thus, these stochastic

ptimizations can have important consequences on the fragmenta-

ion of large simple surfaces. To remedy this, during manual label-

ng, the folds were cut manually when necessary. During automatic

abeling, we propose a technique, based on a clustering algorithm,

o automatically redivide the elementary folds from a voxelwise la-
eling during the regularization step. This technique is described in

ection 3.3 . 

.2. Labeling methods 

The methods described below seek to automatically label the

oxels of the fold skeleton. Among the possible labels, while most

orrespond to cortical sulci, three other labels are used: those cor-

esponding to the right and left ventricles and the “unknown” la-

el. According to the methods presented here, the ventricles are

reated as sulci, as they are relatively stable anatomical structures

f the brain negative mold. However, the “unknown” label, corre-

ponding to voxels that do not belong to any of the other labeled

tructures, must be treated differently in some cases. 

.2.1. Statistical probabilistic anatomy map (SPAM) models 

In this comparative study, the reference method corresponds to

he one described in ( Perrot et al., 2011 ), where they propose a

oherent Bayesian framework to automatically identify sulci based

n a probabilistic atlas (a mixture of SPAM models) estimating

imultaneously normalization parameters. This method, currently 

vailable in the BrainVISA/Morphologist pipeline, has been widely

sed on very large databases for large-scale morphometric studies

 Le Guen et al., 2019 ). However, the model is still making obvious

rrors and we believe that this is due to the fact that the SPAM ap-

roach is based on a single template atlas, which prevents it from

ully representing the high variability of folding patterns. Each sul-

us can have several configurations, which may prove difficult to

epresent with a single average model. 

.2.2. MAS approaches 

Two MAS approaches, PMAS and HPMAS, are compared in this

ection. The first approach is largely inspired by the one proposed

n ( Romero et al., 2017 ) in which, unlike most MAS approaches,

imilar atlases are searched between two cubic patches, instead of

wo full images. The second MAS algorithm presented here, and

escribed in Borne et al. (2018) , aims to define a library of local

atches embedding enough geometrical information to minimize
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Fig. 8. Comparison of MAS approaches: PMAS vs. HPMAS. First of all, the patches are designed. Second, they are transferred to a new image to be labeled, where the fold 

skeleton has been extracted. Third, the best matches were selected and patch labels were propagated on the image to be labeled. Finally, the propagated labels are used 

to calculate the label score maps. In order to make the figures as readable as possible, we have chosen to represent the images in 2D while they are processed in 3D. 

All images are represented in 2 ∗2 ∗2 mm resolution, while for HPMAS, images are processed with the acquisition resolution. The acronym ANNs refers to the Approximate 

Nearest Neighbors patches obtained by the multiple run of the Optimized PatchMatch (OPM) algorithm. 
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ambiguities when searching for a high similarity hit in the un-

known subject morphology. Therefore, instead of taking native cu-

bic patches, this algorithm builds virtual patches containing whole

sulci. 

These two approaches are described in four steps: first, the de-

sign of the patches (patch generation), second, the strategy of re-

aligning the patches between them and selecting the best matches

(distance calculation), third, the strategy of propagating the labels

from the patch to the brain to be labeled (label propagation) and

finally the combination of the labels of the propagated patches (la-

bel fusion) ( Fig. 8 ). 

Patch-based MAS approach (PMAS) 

Patch generation. The patches are cubes containing the fold

skeleton. They are extracted from images with a resolution of

2 ∗2 ∗2 mm, that has been automatically relocated thanks to the

BrainVISA/Morphologist pipeline in the well-known MNI space

( Collins et al., 1994 ), which aligns the rough shapes of the brains

through an affine transformation. We chose to harmonize the res-

olution of the images at 2 ∗2 ∗2mm, because it seemed sufficient to

us to visually recognize the sulci. 

We chose to take into account only the patches with the cen-

tral voxel belonging to the fold skeleton for two main reasons.

First, it limits the number of patch matches that require optimiza-

tion as the voxels belonging to the skeleton represent only a small

part of the image’s voxels. Second, since the patches are extracted

from binarized images, the calculation of the distance between two

patches can be successful only if the patches contain a minimum

number of skeleton voxels. 

As proposed in ( Giraud et al., 2016 ), we adopted a multi-scale

approach, which involves the independent use of several patch

sizes (determined by inner cross validation), to produce several

score maps per label, which are then averaged. 
Distance calculation. In order to find the most similar set of

atches, we aimed to optimize the following distance d between

wo patches P ( S A ) and P ( S B ), respectively belonging to the fold

keletons S A and S B (superimposed by a simple translation): 

(P (S A ) , P (S B )) = 

d(P (S A ) → S B ) + d(P (S B ) → S A ) 

2 

(1)

The measurement from a patch P ( S A ) to a fold skeleton S B cor-

esponds to the average of quadratic Euclidean distances d E of the

keleton voxels p A ∈ P ( S A ) and their nearest neighbor in the fold

keleton S B ( Fig. 9 ): 

(P (S A ) → S B ) = 

1 

| P (S A ) | 
∑ 

p A ∈ P(S A ) 

min 

p B ∈ S B 
[ d 2 E (p A , p B )] (2)

Note that, in order to avoid border effects, the closest neighbor

f p A is searched in the entire skeleton S B and not only among the

keleton voxels contained in the patch P ( S B ). 

Realigning and comparing all the patches in the database for

ach skeleton voxel to be labeled would be extremely expensive,

aking it impossible to label within a reasonable time. Addition-

lly, it would increase the probability of spurious matching be-

ween remote areas in the brain while the images are already

oughly aligned with each other. It is important to note that be-

ause we use binarized images, the risk of obtaining false positives

s higher than usual. 

In ( Romero et al., 2017 ), the Optimized Patch Match Label fu-

ion (OPAL) ( Ta et al., 2014; Giraud et al., 2016 ) was used. This seg-

entation method is based on the Optimized PatchMatch (OPM)

lgorithm which uses a cooperative and random strategy resulting

n a very low computational burden. Compared to the PatchMatch

lgorithm ( Barnes et al., 2009 ) from which it is inspired, OPM is

dapted to 3D anatomical segmentation by taking into account the
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Fig. 9. Calculation of the distance from the patch P ( S A ) to the skeleton S B for the 

PMAS method. The grey voxel represents the central voxel of the patch P ( S A ) which 

is superposed with a voxel of the skeleton S B . For each voxel p A ∈ P ( S A ), we look 

for its closest neighbor among the voxels of the skeleton S B . The Euclidean distance 

between these two voxels is calculated. The distances over all the points p A ∈ P ( S A ) 
and their nearest neighbors are then averaged to obtain d ( P ( S A ) → S B ). 

r  

c  

a  

P

 

e  

s  

A  

t  

t  

e  

s  

l  

v  

b

 

l  

s  

w  

s  

2  

a  

e  

s

 

b

 

d

F

p

l

ig. 10. 3D representation of the HPMAS method. As for the Fig. 8 which represents t

atches, registering them on the image to be labeled, propagating the labels of the sele

abeling. 
ough alignment of images. Here, as only patches with the

entral voxel belonging to the fold skeleton are considered, an

dapted version of the OPM algorithm has been implemented.

lease refer to supplementary material for more details. 

Label propagation. In order to select several Approximate Near-

st Neighbors (ANNs) patch per skeleton voxel for a given patch

ize, multiple independent OPM were launched. The number of

NNs to be selected is determined by inner cross-validation. Once

he ANNs have been selected, all the voxels of each ANN patch par-

icipates in the labeling, as done in ( Rousseau et al., 2011; Giraud

t al., 2016 ). However, there are only a few voxels belonging to the

keleton of the patch that overlap with the skeleton voxels to be

abeled. Thus, we propose to propagate the label of each skeleton

oxel of the patch to its nearest neighbor in the skeleton to be la-

eled. 

Label fusion. For this method, we have implemented the non-

ocal patch-based label fusion used in ( Romero et al., 2017 ). In this

trategy, the distance between patches is used to perform a robust

eighted average of the labels. The label fusion strategy corre-

ponds to the multipoint estimation described in ( Rousseau et al.,

011 ). Once the non-local means estimator has been calculated for

ll patch sizes, the final estimation is obtained by averaging these

stimations thanks to a late fusion ( Snoek et al., 2005 ). Thus, a

core map is estimated for each label in the database. 

Concerning the “unknown” label, present in the manually la-

eled database, it is treated like a sulcus label. 

Patch-based MAS approach with High level representation of the

ata (HPMAS) 
he method in 2D, the approach is described in four steps: generating the virtual 

cted virtual patches and finally merging the propagated labels to obtain the final 
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Fig. 11. Calculation of the distance from the virtual patch P ( S A ) to the skeleton S B 
for the HPMAS method. For the sake of clarity, the skeletons S A and S B represented 

do not overlap in this Figure. For each voxel p A ∈ P ( S A ), we look for its closest neigh- 

bor among the voxels of the skeleton S B . The Euclidean distance between these two 

voxels is calculated. The distances over all the points p A ∈ P ( S A ) and their nearest 

neighbor are then summed and divided by the number of different activated points 

p ∗B to obtain d ( P ( S A ) → S B ). The two configurations represented are penalized by the 

division by the number of different activated points rather than by the number of 

points in P ( S A ) as for a classical average. On the first configuration, we observe that 

the proposed distance penalizes the virtual patch more if its shape is more complex 

or if its size is larger than the structure on which it has been registered. On the sec- 

ond configuration, we observe a greater penalization of the virtual patch if it has 

only one connected component and if it is registered on two different components. 
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As the standard way of extracting patches does not seem ca-

pable of exploiting the sulci geometry and the relations between

them, which we believe to be the distinguishing features neces-

sary for recognition, we have proposed a new virtual patch gen-

eration strategy based on a high level representation of the sulci

( Borne et al., 2018 ). This framework is well adapted to leverage

more information about the different folding configurations in the

training dataset. 

Note that this method is the only one of the proposed new

methods to have been specifically developed for the recognition of

cortical sulci. It includes many arrangements specific to this appli-

cation. Its complex design gives an idea of the scores that can be

obtained by pushing as far as possible in this direction. To facil-

itate the understanding of this ad-hoc method, Fig. 10 represents

the pipeline in 3D, which complements the 2D representation pro-

vided in Fig. 8 . 

Patch generation. In order to take into account as much ge-

ometric information as possible, the idea was to define virtual

patches containing whole sulci. These virtual patches correspond

to a voxel cloud representing a pair of sulci, extracted from MNI

space at the image resolution. By defining patches as clouds of

voxels and not as cubes, it allows to take into account the sulcus

in its entirety without parasitizing the patch with all its surround-

ing sulci. Note that the shape of small sulci is not specific enough

to prevent spurious hits. That is why we have chosen to aggre-

gate two sulci to create discriminative local shapes. In the follow-

ing, we define a type of virtual patches for each pair of sulci that

are neighbors in the brain. 

In practice, a pair of sulci is selected in the circumstance

that the two sulci are neighbors in at least one brain of the

atlas dataset, according to the topology provided by the Brain-

VISA/Morphologist pipeline that produces the folds. This pipeline

endows the list of folds with a graph structure corresponding to

either direct connections or to the fact that two folds are separated

by a piece of gyrus. Finally, each type is made up of the instances

of the pair of sulci in the atlas dataset, most of the time as many

shapes as atlases (some atlases miss a few small sulci) ( Fig. 10 .1). 

Note that only the unknown sulcus label is not selected to form

virtual patches, as it does not constitute a coherent structure like

the other labels. Thus, unlike the previous PMAS method, the un-

known label is not treated like other sulcus labels. 

Distance calculation. For the distance calculation step, the set

of folds of the brain to segment and the virtual patches of the li-

brary are represented by point clouds. In order to find an optimal

alignment of each virtual patch into the skeleton point cloud of the

brain to segment, the well-known iterative closest points algorithm

( Besl and McKay, 1992 ) is used, with the robust implementation of

Holz et al. (2015) . This algorithm iteratively adjusts the transforma-

tions (translation and rotation) in order to minimize the distance

between two set of points. Note that compared to the PMAS ap-

proach which only uses translations to superimpose patches, the

registration here allows rotations. 

To build the measure used to rank the matches, the nearest

voxels in the new fold skeleton S B of each skeleton voxel p A ∈ P ( S A )

are saved as activated voxels p ∗
B 

∈ S ∗
B,P(S A ) 

. Then, the measure corre-

sponds to the sum of the quadratic distances of the skeleton voxels

and their corresponding activated voxels, divided by the number of

different activated voxels: 

d(P (S A ) → S B ) = 

1 

| S ∗
B,P(S A ) 

| 
∑ 

p A ∈ P(S A ) 

min 

p B ∈ S B 
[ d 2 E (p A , p B )] (3)

Note that by dividing by | S ∗
B,P(S A ) 

| , we take into account the

number of different activated points. This allows the penalization

of virtual patches where several points activate the same point of

the skeleton to be labeled ( Fig. 11 ). 
With regards to each type of virtual patch, all matches are

anked according to the distance proposed above. A fixed num-

er of matches (determined by inner cross-validation) leading to

he shortest distances is selected to propagate the two parent sulci.

ll types of virtual patches are selected the same number of times

ven if they are not all equally informative. It is important to note

hat some sulcus instances are selected several times, because they

in the competition for several virtual patch types, but their mul-

iple contributions will be associated with slightly different align-

ents. Hence, sulcus instances maximizing regional similarity to

he unknown subject get more weight. 

Label Propagation. Each selected virtual patch after the optimal

lignment to the unknown subject, concomitantly propagates the

abel of each voxel to its nearest neighbor in the target brain. To

onsider the virtual patch structure, each connected set of voxels

n the virtual patch should correspond to a unique connected set

n the target brain: the smallest non-connected sets are excluded

 Fig. 10 .3). 

Label Fusion. Post complete propagation of all the proposed

irtual patches p ∈ V l that contain the sulcus l , the score map S l 
s calculated by averaging the number of times the points of coor-

inates ( x, y, z ) are activated by different virtual patches: 

 l (x, y, z) = 

∑ 

p∈ V l act p (x, y, z) 

| V l | (4)

ith act p ( x, y, z ) equals to 1 if the voxel of coordinates ( x, y, z ) is

ctivated by the patch p , and to 0 otherwise. 

Compared to PMAS, where patches are weighted by their dis-

ance to the patch to be labeled, here each propagated point has
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Fig. 12. Comparison of CNN-based approaches: PCNN vs. UNET. Boxes represent feature maps. The number of channels is denoted next to each feature map. The size of the 

feature map is indicated after the @ when appropriate. N is the number of different labels to be predicted. For clarity sake, input and output are represented in 2D rather 

than 3D. 
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he same weight in the label fusion. In order to perform a simi-

ar weighting, we have tested the use of distance from the entire

irtual patch to the skeleton to be labeled. This did not seem to

ignificantly improve the results. We also tried to weight by the

istance from the virtual patch point to the point it has activated,

ithout any further improvements. We think it is essential to com-

ine these two distances when weighting, for example by averag-

ng the two distances. However, our attempts have also been un-

uccessful so far, so we chose to avoid weighting. 

As the “unknown” label does not belong to any virtual patch,

ts score map is empty. This label will be selected only if the score

aps of all other labels are also empty for a given elementary fold.

.2.3. CNNs based approaches 

As this is the first time that CNNs are used for sulci labeling,

e take inspiration from two models that have proven their ef-

cacy in medical image segmentation ( Fig. 12 ): the first being a

atch-based approach inspired by ( Ciresan et al., 2012 ) and the

econd an approach that treats the entire image with a 3D U-Net

s in ( Çiçek et al., 2016 ). First the common modalities used during

raining of these two networks are detailed followed by an indi-

idual description of each network. The models presented are im-

lemented using the Pytorch library ( Paszke et al., 2017 ). 

Data. All the fold skeletons are registered in MNI space and

sed as input: they correspond to 3D binary volumes with a com-

on resolution of 2 ∗2 ∗2mm, where the voxels belonging to the

keleton are one and the others are zero. In order to augment the

raining dataset, a rotation in a random direction with a random

ngle (following a Gaussian distribution N (0 , π16 
2 ) ) is applied to

he images at each epoch. 

At the output of the neural network, a score per label present

n the database is obtained per voxel. Concerning the “unknown”

abel, it is treated like a sulcus label. 

Training design. Initialization of the weights of the neural net-

orks was done as in ( LeCun et al., 2012 ). Stochastic gradient de-
cent was used for training, with learning rate and momentum de-

ermined by 3-folds inner cross validation. The learning rate was

alved when the loss function had not improved for two consec-

tive epochs. After four consecutive epochs without improvement,

raining was stopped. The selected trained neural network corre-

ponds to the epoch obtaining the lower error rate E SI , described

n ( Perrot et al., 2011 ) and in the following section. 

The loss function used is the cross- entropy loss. In most cases,

or unbalanced problems, the loss function must be weighted to

void favoring the labels most involved in backpropagation, due to

heir higher presence in the database. Although the average size of

ach sulcus is extremely unbalanced, we have chosen not to weigh

his loss function because large sulci are also the most interesting

rom a neuroanatomical point of view and need to be better rec-

gnized than small ones. 

Patch-based model with a 3D CNN (PCNN) PCNN method adapts

he approach proposed in ( Ciresan et al., 2012 ), addressing a seg-

entation problem as a classification of each voxel based on its

nvironment contained in a patch. Here, only voxels belonging to

he skeleton are selected to participate in the classification. 

We designed the architecture of the neural network so that it

akes cubic patches of 6.2 cm side in input, which we considered

o be large enough to identify its central voxel. During training, the

ropout strategy ( Srivastava et al., 2014 ) with a probability of 0.5

s used on fully connected layers. Batch normalization ( Ioffe and

zegedy, 2015 ) was also used on convolutional and fully connected

ayers. The batch size has been set at 100 to minimize learning

ime and fit in memory. In order to ensure that the inner cross-

alidation is not too time-consuming, only three epochs are calcu-

ated for each hyperparameter value tested. 

3D U-Net based model (UNET) For the UNET method, the net-

ork architecture used is the one presented in ( Çiçek et al., 2016 ),

ith the Pytorch implementation of ( Wolny and enfisan, 2019 ). The

articularity of this application of U-Net lies in the fact that all the

oxels that do not belong to the fold skeleton, i.e. a large majority
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of the voxels in the image, do not need to be classified. Indeed,

as the values predicted by U-Net are masked by the segmenta-

tion of the fold skeleton made upstream, the background voxels do

not need to be predicted and therefore do not need to be learned.

Thus, during training, all voxels that do not belong to sulci are not

used for gradient backpropagation. The batch size has been set at

1 in order to fit in memory. 

3.3. Bottom-up geometric constraints 

In order to standardize the results, the voxels were agglomer-

ated into elementary folds. However, these folds are not always

sufficiently fragmented, so we propose to use the label score maps

to reconsider their fragmentation. 

The straightforward approach to regularize the results is to do

a weighted majority vote. The scores of each elementary fold were

averaged by label and the highest score label was selected. This

strategy was used as a reference to evaluate the impact of the au-

tomatic re-division of elementary folds. 

In this paper, we propose to re-divide the elementary folds with

help of the Ward’s hierarchical agglomerative clustering method

( Ward Jr, 1963 ). Clustering for each elementary fold was per-

formed based on the label score maps. In order to ensure spa-

tial consistency, a spatial connectivity constraint was imposed dur-

ing cluster agglomeration. Then, the Calinski-Harabasz index I CH 

( Cali ́nski and Harabasz, 1974 ), implemented in the scikit-learn li-

brary ( Pedregosa et al., 2011 ), was used to quantify the quality of

the proposed clustering. This score corresponds to the ratio of the

between clusters dispersion mean B and the within cluster disper-

sion W : 

I CH = 

T r(B ) 

T r(W ) 
∗ (N − 2) (5)

 = 

2 ∑ 

k =1 

∑ 

x ∈ C k 
(x − c k )(x − c k ) 

T (6)

B = 

2 ∑ 

k =1 

n k (c k − c)(c k − c) T (7)

with N be the number of voxels in the elementary fold E, C k be

the set of voxels in cluster k, c k be the center of cluster k, c be the

center of E, n k be the number of points in cluster k . 

The ratio was higher when clusters are dense and well sepa-

rated. If this score was higher than a threshold determined by in-

ner cross validation, the partitioning was performed. When an el-

ementary fold was split in two, each of the two clusters obtained

were also challenged with the same manipulation, until all the el-

ementary folds had a Calinski-Harabasz index below the threshold.

3.4. Performance evaluation of labeling models 

As in Perrot et al. (2011) , two measures were used to compare

the different models proposed above: E local at the sulcus scale and

E SI at the subject scale. Error rates were assessed by 10-folds cross

validation. One model was trained per hemisphere. 

3.4.1. Mean/max error rates 

To take into account the variability of the fragmentation into el-

ementary folds and therefore the robustness of the labeling meth-

ods to this variability, each image was re-segmented ten times (See

Fig. 20 in supplementary material). Thus, if the image belonged to

the training set, only the segmentation used for manual labeling

was considered. However, if the image belonged to the test set,

ten other segmentations (whose true labels have been transferred

from manual segmentation) were labeled and used to quantify the
rror rates. Note that manual segmentation was not used to calcu-

ate error rates. Using ten different segmentations for each sulcus

ighlights the weaknesses of the BrainVISA/Morphologist prepro-

essing since we can compute errors from the worst result, typi-

ally associated to an issue of under-segmentation. 

To quantify errors, for each new segmentation, the manual la-

eling on the initial segmentation must be transferred to the new

ne. Because of the variability of the segmentations obtained and

he sparsity of the fold skeleton, the simple superposition of im-

ges was insufficient. We have given to skeleton voxels that do

ot overlap with those of the initial segmentation, the label of

he nearest skeleton voxel of the initial segmentation. To do this,

 Voronoi diagram of the manual labeling is performed. Note that

he elementary folds were not used to transfer the labeling and

hat the true labeling was on the voxel scale. 

For each subject, from the ten segmentations, the average of the

rrors ( E mean 
SI 

and E mean 
local 

) and the maximum error ( E max 
SI 

and E max 
local 

)

ere calculated. Note that the training segmentation used for man-

al labeling was not used in the error calculation because it would

ias our evaluation. By considering the maximum error rates, la-

eling errors due to model variability were highlighted. These er-

ors in most models were related to an incorrect fragmentation of

he fold skeleton into elementary folds. Only the PMAS labeling

odel was not deterministic and includes stochastic optimizations

hat can penalize the calculation of maximum error rates. 

.4.2. Error at the sulcus scale: E local 

Given a sulcus l , 

 local (l) = 

F P l + F N l 

F P l + F N l + T P l 
(8)

ith TP l , FP l and FN l , respectively the number of true positive, false

ositive and false negative voxels for the sulcus l . 

It is important to note that the error rate was one, when the

ulcus was absent and labeled by the model. Similarly, for when

he sulcus was present but not labeled by the model. As small sulci

re frequently absent, this explained why error rates can be highly

ariable when averaging the error rates per subject. 

.4.3. Error at the subject scale: E SI 

Given a set of sulci L , 

 SI = 

∑ 

l∈ L 
w l ∗

F P l + F N l 

F P l + F N l + 2 ∗ T P l 
(9)

ith w l = s l / 
∑ 

s l and s l = F N l + T P l , the sulcus l true size. 

The error at the subject scale allows local errors to be gener-

ted in a single measurement. As explained in Perrot et al. (2011) ,

ach component of the sum over labels differs on two points com-

ared to E local ( l ). First, true positive measures are counted twice

s compared to the false positive and negative measures, in order

o remove errors shared by several labels, since each extra sulcal

iece for a given label is a missing part for another label. Second,

ach component was weighted according to the sulcus true size so

hat each local component count as much as its size. 

Compared to Perrot et al. (2011) , three labels were not included

n the set of sulci (unknown and both ventricles). These labels

ere not particularly considered as sulcus labels, but correspond

o other structures, not pertinent to our study. Thus, the scores

resented here for the SPAM method are worse than presented in

errot et al. (2011) for four reasons. First, because removing the

wo labels considerably improved the scores. Second, because we

ut the elementary folds during manual labeling while the SPAM

odel cannot automatically correct this kind of sub-segmentation

rrors. Third, because we are interested in the mean/max of the er-

or rates. Finally, because the error rates are estimated by 10-folds
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Fig. 13. Comparison of E SI error rates by model. Once the 10 segmentations have been labeled by hemisphere, we consider the average error in the upper chart and the 

maximum error in the lower chart. The box extends from the lower to upper quartile error values, with a line at the median. The whiskers extend from the box to show 

the minimum and maximum limits of the error rates. The SPAM model is represented in red, the PMAS model in blue, the HPMAS model in green, the PCNN model in 

yellow and the UNET model in purple. For the four new models, three modalities are represented: first, labeling at the voxel scale, then labeling after regularization at the 

elementary fold scale ( + reg.), and finally the labeling obtained after automatic re-division of the elementary folds ( + reg. + cut.). The models are compared by Wilcoxon 

signed-rank test. The p -values of the differences in model performances are written above and below the compared models. The p -value is written in black if it is less than 

0.05 and in red otherwise. Regularization by elementary folds significantly improves results. Automatic fold re-division also significantly improves results. All regularized 

models are significantly better than the SPAM model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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ross-validation and not by leave-one-out cross-validation. More-

ver, the addition of the four new sulci labels and our refined la-

eling of the training dataset may also have impacted the results. 

.4.4. Error rate comparison 

During the 10-folds cross validation, each fold contained ap-

roximately 6 hemispheres labeled to test the model’s perfor-

ance. Error rates are calculated by hemisphere and then aver-

ged over the entire database to obtain the mean error rates per

odel. When not specified, the average error rate includes the

ight and left hemispheres. In order to compare the models in

airs, a Wilcoxon signed-rank test was performed between the er-
or rate lists for each hemisphere. If the p -value was less than 0.05,

he error rates were considered significantly different. 

. Results 

.1. Which is the best model? 

In order to compare the five models presented above, we were

nterested in the E mean 
SI 

and E max 
SI 

for each model, trained separately

n each hemisphere ( Fig. 13 ). Please refer to the supplementary

aterials for the numerical values of the error rates per hemi-

phere (Table 1). 
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First, we observed that all of the new approaches proposed

with regularization per elementary folds were significantly better

than the SPAM approach (also based on this regularization), which

suggests that a model based on an average template was not the

most appropriate to represent the high variability of cortical folds. 

Second, with regards to the four proposed methods, regulariza-

tion by elementary folds of the label score maps significantly im-

proved the results compared to voxel labeling. Most importantly,

the automatic re-division of these elementary folds also signifi-

cantly improved the four methods. Thus, the use of top-down re-

finement of bottom-up regularization is particularly relevant in this

paper. 

Third, by comparing the new models in pairs, the models seem

to demonstrate equivalent performance. 

Concerning the PCNN and UNET models, this paper conse-

quently demonstrated the incredible efficiency of neural networks,

even for the recognition of structures as variable as cortical folds.

However, it is surprising that the UNET model was not better than

the PCNN model due to its deeper architecture. 

The fact that these four models do not stand out radically on

this dataset suggests that these models may have reached the limit

of what can be interpreted from this database, probably due to its

insufficient size to represent the high variability of cortical folds.

Therefore, the fold variability is such that manual labeling of a

brain raises many questions and it may be possible that the models

have reached the human-level performances. Unfortunately, since

manual labeling is based on consensus among several experts, it

is impossible for us to assess human-level performance on this

database. 

Finally, with regards to the computation time required to label

a hemisphere, the SPAM model takes about 5 min, while the UNET

model takes about 20 s, PCNN takes slightly more than a minute,

PMAS and HPMAS take several hours. Although the PMAS model

could be much faster by optimizing the codes as in ( Giraud et al.,

2016 ), the UNET model is currently by far the fastest. Thus, since

the UNET model has the lowest error rates and is the fastest, we

propose to study in more detail the differences between this model

and the SPAM model in the following section. In the rest of this

study, the UNET model will therefore refer to the model with regu-

larization using elementary folds and automatic redivision of these,

if necessary. 

4.2. Which sulci are better recognized? 

Concerning E mean 
local 

and E max 
local 

, the SPAM model has average/max

error rates from 5% to 77% while the error rates of the UNET

model vary between 2% and 68%. Comparing the E max 
local 

of each

sulcus ( Fig. 14 ), we can see that the difference between the er-

ror rates of both model for a given sulcus reaches up to 25%. Fi-

nally, almost all sulci were better recognized by the UNET model,

only about twenty sulci are less well recognized. Their compari-

son with the Wilcoxon signed-rank test, by controlling the false

discovery rate with the help of the Benjamini-Hochberg procedure

( Benjamini and Hochberg, 1995 ), showed that around 13% of sulci

were significantly better recognized by UNET than SPAM, while

none were significantly less well recognized. In the figure, we can

also see that the sulci with the highest labeling error rates using

the UNET model are also the smallest. This is probably due to the

fact that small sulci are generally also the most variable and were

already less well recognized by the SPAM model. Please refer to the

supplementary material for exact values of sulcus error rates (Ta-

bles 2 and 3). In order to visualize the location of the sulci better

recognized than before, Figs. 15 and 16 give graphical comparisons

of sulcus error rates between SPAM and UNET labeling. In Fig. 16 , it

can be seen that the differences in performance between the SPAM

and UNET models are not spatially uniform. This may be due to the
act that some regions have more variable fold patterns than oth-

rs and the recognition of their sulci was more severely penalized

y the use of a mono-template approach. We also noted that the

ulci best recognized by the UNET model are also those that were

ost impacted by sub-segmentation errors in elementary folds. 

In the next section, we focus on the impact of the significant

mprovement in central sulcus recognition, in which the E max 
local 

value

as gone from about 8% using the SPAM model to only 3% with the

est UNET model. 

.3. Experiment on an external database demonstrating the clinical 

dvantage 

Here, the SPAM model and the UNET model were trained on

he entire manually labeled database. The hyperparameters of the

NET model were estimated over the entire database, using the

ame procedures as during inner cross-validation, i.e. by perform-

ng a 3-folds cross-validation to select the hyperparameter values

hat minimize error rates. The database used by Sun et al. (2012) to

tudy the effect of handedness on the shape of the central sulcus

as labeled manually and automatically by these two models. This

atabase contains 23 consistent age and sex matched natural dex-

rals (mean age 34, range 22-59 years; 17 males, 6 females) and

8 similar natural sinistrals (mean age 36, range 25-56 years; 12

ales, 6 females). The database used in Sun et al. (2012) also con-

ains a group of 34 forced dextrals that is not studied here. 

We propose to investigate the asymmetry index I of the cen-

ral sulcus length along the brain hull between the left l S.C. _ le f t and

ight hemispheres l S.C. _ right : 

 = 

l S.C. _ le f t − l S.C. _ right 

l S.C. _ le f t + l S.C. _ right 

(10)

Note that in the nomenclature proposed in this paper, two sulci

abels belong to the central sulcus: “S.C.” and “S.C._sylvian.”. There-

ore, the lengths of these two “sub-sulci” are added together to ob-

ain l S.C . . 

With manual labeling, there is a significant difference between

eft-handed and right-handed people ( Fig. 17 ). Therefore, left-

anded people have on average a longer central sulcus in the right

emisphere than in the left, and vice versa for right-handed peo-

le. However, when focusing on the asymmetry index with SPAM

abeling, no significant difference was found, whereas this differ-

nce was significant with UNET labeling. 

Considering the worst labeling errors (See Fig. 21 in supplemen-

ary material) of each model, we observe that the SPAM model can

ouble the size of the central sulcus, by labeling completely unre-

ated large structures. However, the UNET model only adds small

ragments. 

. Discussion 

.1. PMAS 

Considering the hyperparameters selected during the inner

ross validation (See Fig. 22 in supplementary material), it seems

hat this method would benefit from increasing the number of

NNs selected by voxel. Indeed, the number of ANNs is automat-

cally set to 10, which is the upper limit of the values proposed

n the inner cross-validation. However, testing a larger number of

NNs would require optimization of the codes currently in use and

t is very likely that the model would not gain much in perfor-

ance. Indeed, the evolution of the scores according to the num-

er of ANNs suggests that a plateau is reached and that increasing

his hyperparameter would have little influence on the ranking of

he methods obtained. 
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Fig. 14. E max 
local 

per sulcus. The graph on the left and the graph on the right present E max 
local 

for the sulci on the left hemisphere and on the right hemisphere, respectively. The 

SPAM model is represented in blue and the UNET ( + reg. + cut.) is represented in pink. The significant differences ( pvalue < 0.05) are marked with a star. The star is black 

when the difference is still significant after controlling the false discovery rate through the Benjamini-Hochberg procedure ( Benjamini and Hochberg, 1995 ). Sulci are sorted 

from top to bottom, from the smallest to the largest. The average sulci sizes, ranging from about 15 mm 

3 to more than 20 0 0 mm 

3 on average per subject, are represented 

on the black graph. 
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.2. HPMAS 

With regard to HPMAS, the choice to use sulci pairs to form

atches was questionable, since there was no evidence suggest-

ng that two sulci are sufficient to prevent spurious hits, especially

hen two small sulci are associated. In order to create distinguish-

ble local shapes, patches containing three or more sulci should

lso be considered. However, it would be too expensive to take

nto account all combinations of three neighboring sulci, as it is

one for pairs of sulci. To remedy this, criteria for selecting rel-
vant patch types should be determined, but none of the criteria

e tested improves the results sufficiently to be considered here. 

.3. PCNN and UNET 

Compared to the approach proposed by Ciresan et al. (2012) ,

he PCNN approach has a major difference. In ( Ciresan et al.,

012 ), several patch sizes, processed by several neural networks

n parallel, were used to label each pixel, yet our PCNN approach

s based on only one patch size. Moreover, the neural network
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Fig. 15. E local error rate per sulcus for SPAM and UNET models. The UNET model corresponds to the one after re-division of the elementary folds. Once the 10 segmentations 

have been labeled by hemisphere, we consider the average error per sulcus in the left column and the maximum error in the right column. The external and internal sides 

are represented for each of the right and left hemispheres. 

Fig. 16. Comparison of E max 
local 

error rates between the SPAM model and the UNET model. The left column represents the difference between the E max 
local 

of the SPAM model and 

of the UNET model. The right column shows the p -value of the Wilcoxon test between each model. Note that the scale of the color palette used to represent p -values is 

logarithmic. In order to visualize the sulci significantly better recognized, the threshold 0.05 is indicated and the threshold at the star corresponds to the first sulci considered 

significantly better by controlling the false discovery rate through the Benjamini-Hochberg procedure ( Benjamini and Hochberg, 1995 ). 

 

 

 

 

 

 

 

 

5

 

i  

b  

o  

w  

a

a  
used for PCNN is not deep (only one hidden layer) compared to

( Ciresan et al., 2012 ). However, after trying to make the network

architecture more complex by increasing the number of hidden

layers or using multiple patch sizes, we did not observe signif-

icant improvements in the results. It is imperative to note that

the PCNN model achieves performances comparable to the UNET

model while the U-Net architecture is much deeper and previ-

ous studies show that it is supposed to achieve better results

( Ronneberger et al., 2015 ). 
.4. Unknown label 

In this paper, except for the HPMAS model, the “unknown” label

n the manually labeled database is treated like the other sulci la-

els. However, although the “unknown” label represents about 0.5%

f the skeleton voxels of manual labeling, this proportion is null if

e consider the labels of the HPMAS model. Moreover, the PMAS

nd PCNN models label around 0.02% of voxels as “unknown”

nd the SPAM and UNET models 0.04%. These figures show that
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Fig. 17. Comparison of the asymmetry index I between right-handed and left-handed people. The left/middle/right graphs respectively show the results obtained with 

manual/SPAM/UNET labeling. The index for right-handed people is represented in blue and the one for left-handed people in green. The p -values of the T -test for the means 

of these two independent samples of scores are indicated on the graphs. With manual labeling, there is a significant difference: in left-handed people, the central sulcus is 

longer in the right hemisphere than in the left, while this is the opposite in right-handed people. The same significant difference is observed with the UNET model labeling 

but not with the SPAM model labeling. The box extends from the lower to upper quartile index I values, with a line at the median. The whiskers extend from the box to 

show the minimum and maximum values. 
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reating the “unknown” label as other labels is insufficient. Models

hould also assign the “unknown” label to structures where it is

ot sufficiently confident. 

However, since all the new methods were compared to the

PAM model, which treated the unknown label as sulci labels, we

hose not to address this point in this paper. 

. Conclusion 

To summarize, the new methods presented in this paper out-

erform the current SPAM model provided by the Morphologist

oolbox of BrainVISA. Compared to the SPAM model, the best mod-

ls have a 4% higher recognition rate and 15% of sulci are sig-

ificantly better recognized. By automatically re-dividing the ele-

entary folds, the new models are considerably more robust to

nder-segmentation errors. In practice, these improvements make

t possible to reproduce findings that were previously only possi-

le with manual labeling. The UNET model will soon be available

n the BrainVISA/Morphologist toolbox. 

In this paper, the application of methods based on MAS or CNNs

ive approximately the same results for the automatic recognition

f cortical sulci. However, although CNN-based methods have a

articularly long training process compared to MAS-based meth-

ds, which are significantly faster. Therefore, CNNs-based meth-

ds are far more productive in practice. The UNET method labels

 brain in only twenty seconds, whereas the SPAM method takes

bout ten minutes. It is interesting to note that patch MAS ap-

roaches are also beginning to integrate deep learning techniques

 Manjón et al., 2018 ), probably due to their ability to effectively

ummarize the data and for their rapidity of execution. 

Furthermore, the top-down refinement of bottom-up regu-

arization significantly improves the results. Indeed, voxel-wise

abeling is used to give a top-down perspective to a traditional

ottom-up pattern recognition process that agglomerates the

oxels into elementary folds: these folds can therefore be auto-

atically re-divided when necessary. Thus, the labeling is robust to

nder-segmentation errors, unlike the SPAM method, which does

ot provide voxel-wise labeling. Note that despite the definition

f elementary folds specific to the problem posed here, defining

 coherent geometric entity is a legitimate concern addressed in

any segmentation problems, for example by using super-pixels

 Giraud et al., 2017; Soltaninejad et al., 2017 ) that group the most

imilar connected pixels together so that they have the same label.

In order to improve the current performance of the model, sev-

ral options remain to be considered. Second, the inputs currently
ontain the fold skeleton in order to normalize the data for acquisi-

ion and age biases. However, the input can be enriched by taking

nto account grey/white matter segmentation or directly the nor-

alized MRI. For instance, we could consider integrating this data

nto new input channels for CNN-based approaches. Finally, in or-

er to take advantage of the large unlabeled databases currently

vailable, a semi-supervised strategy would be particularly attrac-

ive to better represent the variability of the cortical folds. 

In the near future, considering that the labeling model seems

ufficiently reliable to us, we would like to reconsider the number

f sulci used in the nomenclature on the basis of the sulci most

ften confused by the model. Indeed, the error rates of some small

ulci are still too high to be used in morphological studies. By al-

owing the user to choose the level of granularity of the nomen-

lature, he will be able to use sufficiently stable labeling of the

tructures of interest to him. 
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